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Finslerian metric function of totally anisotropic type

By G. S. ASANOV (Moscow)

Abstract. The work focuses upon the geometric properties of a Minkowski space

endowed with a metric function of the Berwald–Moor type. The zero curvature of the

indicatrix is a remarkable property of the approach. We demonstrate how the associated

geodesic equations can be solved in a transparent way, thereby obtaining a possibility

to introduce unambiguously distance, angle, and scalar product. The invariance group

for the metric tensor is found.

1. Introduction and motivation

The pseudo-Euclidean metric function suits the cases when the space-time

is uniform in all directions. Alternatively, we may imagine a situation when

there exist N geometrically distinguished directions and propose the fundamental

metric function

F (y) = N

√√√√
N∏

A=1

|yA| (1.1)

to measure the length of vectors y = {yA}. For historical reasons, the metric

function is frequently called after Berwald [1] and Moor [2], belonging to the

domain of Finsler Geometry [3], [4]. Such a choice reveals numerous remarkable

geometrical properties, many of which have been described in [3]. However, no

possibility can be found in the literature to construct appropriate distance and

angle. On the other hand, in the previous work [5,6] we have developed a detailed

technique to obtain such notions in case of the Finsleroid metric function. It

turns that the technique can successfully be applied to the Minkowski space with
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Finslerian metric function of the Berwald–Moor type. Our reasoning is based on

the following three definitions.

Definition. Given a centered vector space VN with a point O being the ori-

gin and with the members y ∈ VN issued from the point O. Let N directions

{eA}, A = 1, 2, . . . , N , be presupposed in VN . We may decompose vectors y with

respect to such a basis, obtaining the component representation y = {yA}. Under

these conditions, we define the AN -space:

AN := {VN , eA, F (y)}. (1.2)

According to the known methods of Finsler geometry [3], [4], we construct

on the basis of the function F the covariant vector ŷ = {yA} and the Finslerian

metric tensor {gAB}:

yA
def
=

1

2

∂F 2

∂yA
, gAB

def
=

∂yA

∂yB
=

1

2

∂2F 2

∂yA∂yB
. (1.3)

We call the (N − 1)-dimensional hyperplanes defined by the zeros {yA = 0}
of the function F singular hyperplanes. They break down the space AN into a

collection of N2 sectors, including the up-sector A
{+}
N .

Definition. The up-sector A
{+}
N ∈ AN is defined by the conditions

{yA} ∈ A
{+}
N : yA > 0. (1.4)

In what follows, we shall deal with that sector (unless explicitly stated oth-

erwise), so that the moduli in the right-hand part of the primary definition (1.1)

can be omitted:

F (y) = N
√
y1y2 . . . yN = N

√√√√
N∏

A=1

yA. (1.5)

Applying the rules (1.3) to (1.5) yields the explicit component values

yA =
F 2

NyA
(1.6)

and

gAB =
2yAyB

F 2
− F 2

NyAyB
δAB; (1.7)

the contravariant version of the last tensor is {gAB} with

gAB =
2yAyB

F 2
− NyAyB

F 2
δAB, (1.8)
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so that gACgBC = δA
B; δ stands for the Kronecker symbol. The indefinite nature

of the metric tensor

signature {gAB} = (+ − · · ·−), (1.9)

as well as the constant determinant

det(gAB) = (−1)(N+1)N−N , (1.10)

are remarkable properties of the space under study (cf. [3]). Owing to (1.9), the

metric tensor may be represented as

gAB = h0
Ah

0
B − h1

Ah
1
B − · · · − hN−1

A hN−1
B (1.11)

in terms of the associated orthonormal frame {hA
p }. The reciprocal representation

reads

gAB = hA
0 h

B
0 − hA

1 h
B
1 − · · · − hA

N−1h
B
N−1 (1.12)

subject to the reciprocity

hp
Ah

A
q = δp

q (1.13)

(the indices p, q, . . . will be specified over the range 0, 1, . . . , N−1 unless explicitly

stated otherwise). By comparing (1.10) with (1.11) we may conclude that

det(hp
A) = N−N/2. (1.14)

Definition. The indicatrix I
{+}
N ∈ A

{+}
N is defined as follows:

y ∈ I
{+}
N : {y ∈ A

{+}
N , F (y) = 1}. (1.15)

Using the unit vectors

lA
def
=

yA

F (y)
(1.16)

(so that F (l) = 1) and choosing a convenient parameterization {ua}, a, b =

1, . . . , N − 1 over the indicatrix to have the representation

lA = tA(ua), (1.17)

we may construct the projection factors

tAa (u)
def
=

∂tA

∂ua
(1.18)
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for the indicatrix to obtain the induced metric tensor over the indicatrix

iab(u)
def
= −tAa tBb gAB; (1.19)

here the minus in front of the right-hand side reflects the indefinite signature

(1.9). As was demonstrated in [3], it is convenient to treat the indicatrix in terms

of the coordinate

z0 def
= lnF. (1.20)

Depending on the sign of the coordinate z0, the space under study is broken

into the union

A
{+}
N = A

{+}
N {z0>0} ∪A

{+}
N {z0=0} ∪A

{+}
N {z0<0} (1.21)

of the three following regions:

A
{+}
N {z0>0} := {y ∈ A

{+}
N : F (y) > 1}, (1.22)

A
{+}
N {z0=0} := {y ∈ A

{+}
N : F (y) = 1}, (1.23)

A
{+}
N {z0<0} := {y ∈ A

{+}
N : 1 > F (y) > 0}. (1.24)

Notice that the sector (1.23) is the indicatrix:

A
{+}
N {z0=0} = I

{+}
N . (1.25)

It is the known that if we juxtapose (1.20) to an indicatrix coordinate set

{ua} to obtain the coordinates

zp = {z0, za = ua}, (1.26)

then the respective transformation of the Finslerian metric tensor would lead to

the result

gAB(y)
∂yA

∂zp

∂yB

∂zq
= e2z0

g∗pq (1.27)

which is remarkable in that

g∗00 = 1, g∗0a = 0, g∗ab = −iab, (1.28)

where {iab} is just the indicatrix metric tensor (1.19) (see [3]). Also, in case of the

Finslerian metric function (1.5) the tensor {iab} proves to be exactly Euclidean,

so that the conformal representation

g∗pq = e2z0

rpq (1.29)
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holds with {rpq} being the pseudo-Euclidean metric tensor.

Therefore, it is advantageous to introduce the associated conformally-pseudo-

Euclidean space CN :

CN := {VN , z
p ∈ VN , g

∗
pq} (1.30)

to have the isometry

A
{+}
N ⇐⇒ CN (1.31)

with the decomposition

CN = C
{+}
N ∪ C{0} ∪C{−}

N , (1.32)

where

C
{+}
N := {zp ∈ C

{+}
N : z0 > 0}, (1.33)

C
{0}
N := {zp ∈ C

{0}
N : z0 = 0}, (1.34)

C
{−}
N := {zp ∈ C

{−}
N : z0 < 0}, (1.35)

so that

A
{+}
N {z0>0} ⇐⇒ C

{+}
N , A

{+}
N {z0=0} ⇐⇒ C

{0}
N , A

{+}
N {z0<0} ⇐⇒ C

{−}
N . (1.36)

Now the question is what is the particular and convenient choice for the set

{ua} under which the tensor {iab} is exactly the diagonal unity, that is, when do

we get

iab = δab. (1.37)

Obviously, in the last case the fundamental length interval ds can be given merely

by

(ds)2 = e2z0
(
(dz0)2 − δabdz

adzb
)
. (1.38)

To suppose true a due and possible answer to the question, it is useful to note

that the choice

lA = exp(CA
a u

a) (1.39)

with any constant CA
a subjected to the condition

N∑

A=1

CA
a = 0 (1.40)
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would parametrize the indicatrix because of the product structure of the Fins-

lerian metric function (1.5) under study. Also, if we subject the constants to the

condition
N∑

A=1

CA
a C

A
b = Nδab, (1.41)

then, because of the particular structure of the right-hand part in the metric

tensor (1.7), we just obtain δab in the right-hand part of (1.19). When verify-

ing this assertion, it is convenient to note that the projection coefficients (1.18)

constructed on the basis of (1.39) bear the structure

tAa = CA
a · lA (1.42)

at any value of the index A. Owing to the exponential nature of the right-hand

part in the representation (1.39), it is convenient to call the set {ua} the indicatrix

variables.

It is convenient to supplement the constants by the members

CA
0 = 1, (1.43)

so that
N∑

A=1

CA
p C

A
q = Nepq, (1.44)

where {epq} = diagonal(1,−1, . . . ,−1) is the pseudo-Euclidean metric tensor.

This entails
N∑

A=1

Ca
A = 0. (1.45)

The inverse constants Cp
A obeying the relations

Cp
AC

A
q = δp

q (1.46)

must show the properties

C0
A =

1

N
(1.47)

and
N∑

A=1

CA
a = 0. (1.48)

Under these conditions, the representation (1.39) can be inverted to yield

ua = Ca
A ln lA = Cp

A ln yA (1.49)
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and

zp = Cp
A ln yA, (1.50)

which in turn yields for the orthonormal frames

hp
A = Fzp

A = Cp
A · 1

lA
, (1.51)

where

zp
A =

∂zp

∂yA
. (1.52)

From (1.51) it follows that

gAB = F 2cAB (1.53)

with the tensor

cAB = zp
Az

q
Bepq, (1.54)

which demonstrates that the Finslerian metric tensor associated with the metric

function (1.1) is conformal to the pseudo-Euclidean metric tensor. The conformal

multiplier is the square F 2 of the metric function F .

In Section 2 we deal with the geodesic equations of the space under study.

It proves possible to find the adequate explicit solutions for them in both the

initial-value and the fixed-edge forms. The associated distance and the scalar

product are also found. This opens up the straightforward way to obtain the

angle η(a, b) between two vectors a ∈ VN and b ∈ VN by postulating the cosine

theorem. The angle is actually defined by the unit vectors lA(a) = aA/F (a) and

lA(b) = bA/F (b) :

η(a, b) =

√√√√ 1

N

N∑

A=1

(
ln
lA(a)

lA(b)

)2

(1.55)

(see (2.48)) and it is entirely independent of any choice of the constants CA
a enter-

ing the parametric representation (1.39) of the indicatrix. The angle is additive

when the vectors point to a fixed geodesic curve. In fact, this angle measures the

Euclidean length in the indicatrix.

In Section 3, we expose the transformations that leave invariant the Fins-

lerian metric function as well as the Finslerian metric tensor. In the space under

study, the transformations are found to be in general nonlinear. They realize

Euclidean rotations and translations in the indicatrix. That is to say, the group

of such transformations is a nonlinear image of the Euclidean invariance group.
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The translations in the Euclidean indicatrix give rise to scale (product) transfor-

mations in the initial space, so that they form a linear (and abelian) subgroup.

Detailed calculations are presented in the Appendices A, B, and C.

The paper ends with short Conclusions to emphasize the key aspects of our

approach.

2. Geodesics, distance, and angle in A
{+}
N

-spaces

Let be given a conformally-pseudo-Euclidean space C
{+}
N (see (1.33)) with

the metric tensor {g∗pq} prescribed by the conformal representation (1.29). Calcu-

lating the partial derivatives g∗pq,r = ∂g∗pq/∂z
r, we get g∗pq,a = 0 and g∗pq,0 = 2gpq,

so that for the components Γpqr = 1
2 (g∗pq,r + g∗qr,p − g∗pq,r) we shall have the values

Γ000 = g∗00, Γa00 = Γ0a0 = 0, Γa0b = −g∗ab,

Γab0 = g∗ab, Γabc = 0, Γpq0 = g∗pq.
(2.1)

The associated Christoffel symbols Γp
r
q = g∗ rsΓpsq are given by the components

Γ0
0
0 = 1, Γa

0
0 = Γ0

a
0 = 0, Γa

b
0 = δb

a,

Γa
0
b = rab, Γa

b
c = 0, Γp

q
0 = δq

p.
(2.2)

Let us consider a curve C(s) parameterized by the length parameter s (cf.

(1.38)) and introduce the respective N -dimensional velocity

Up =
dzp

ds
, (2.3)

so that the velocity is unit:

g∗pq(z)U
pU q = 1. (2.4)

The differential equation for the C(s) to be a geodesic curve

dUp

ds
+ Γs

p
rU

sU r = 0 (2.5)

proves to consist of two parts:

dU0

ds
= −[(U0)2 + U2] = −2(U0)2 + e−2z0

(2.6)
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and
dUa

ds
= −2UaU0. (2.7)

The equation

d2z0

ds2
+ 2

(
dz0

ds

)2

= e−2z0

(2.8)

can readily be integrated, yielding

z0 = ln(f(s)) (2.9)

with

f(s) =
√
a2 + 2bs+ s2, (2.10)

where a and b are integration constants.

Since z0 = lnF (see (1.20)), from (2.10) it follows that the Finslerian metric

function varies along the geodesics according to the law

F (s) =
√
a2 + 2bs+ s2. (2.11)

Furthermore, using
dz0

ds
=

b+ s

(F (s))2
= U0 (2.12)

in (2.7) enables us to readily find

Ua =

√
b2 − a2 na

(F (s))2
, (2.13)

where na is a set of constants. To fulfil (2.4), the set must be subjected to the

unity length condition:

δabn
anb = 1. (2.14)

Using Ua = dza/ds (see (2.3)) in (2.13) gives us a differential equation to find

the functions za(s). The equation can readily be integrated to yield

za(s) = ma + na 1

2
ln
s+ b−

√
b2 − a2

s+ b+
√
b2 − a2

, (2.15)

where ma are new integration constants; we assume

b2 − a2 ≥ 0, a > 0. (2.16)

Equations (2.11)–(2.14) with the condition (2.16) fulfil (2.4).
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In this way we obtain explicitly the following formulae:

r01 = ln a, r02 = ln(F (∆s)),
√
b2 − a2 = a2|v1|, b = a

√
1 + a2|v1|2, (2.17)

r0 =
1

2
ln(a2 + 2bs+ s2), (2.18)

r(s) = r1 +
1

2
v1

a2

√
b2 − a2

ln
(
X(s)

)
, (2.19)

where r0 = z0, r = {za
1}, v = {va

1}, and

X(s) =
s+ b−

√
b2 − a2

s+ b+
√
b2 − a2

b+
√
b2 − a2

b−
√
b2 − a2

. (2.20)

The last function can also be represented in the form

X(s) =

[
a2 +

(
b+

√
b2 − a2

)
s
]2

a2F 2(s)
=

[
a2 + bs+

√
b2 − a2 s

]2

a2F 2(s)
. (2.21)

Thus we have arrived at

Theorem 2.1. The initial-value solution of the geodesic equations (2.5)

under study can explicitly be given by equations (2.17)–(2.20).

Also, it is possible to explicate the representation

r(s) = r1 +
r2 − r1

|r2 − r1|
ln
√
X(s), (2.22)

with

|r2 − r1| = ln
√
X(∆s), (2.23)

b =
|r1||r2| cosh |r2 − r1| − |r1|2

∆s
, (2.24)

√
b2 − a2 =

|r1||r2| sinh |r2 − r1|
∆s

, (2.25)

and

(∆s)2 = |r1|2 + |r2|2 − 2|r1||r2| cosh |r2 − r1|. (2.26)

Thus, we have obtained

Theorem 2.2. The fixed-edge solution of the geodesic equations (2.5) under

study can explicitly be given by equations (2.22)–(2.26).
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Formula (2.26) can also be written as

(∆s)2 = |r1|2 + |r2|2 − 2|r1||r2| cosh
(
η(r1, r2)

)
(2.27)

with the following C
{+}
N -angle:

η(r1, r2) = |r2 − r1|. (2.28)

Theorem 2.3. The C
{+}
N -cosine theorem reads as (2.26) or (2.27).

In view of (2.21) and (2.24)–(2.25), we can write

X(∆s) = e2η . (2.29)

By comparing (2.15) and (2.20) with the unit vector representation of the

exponential type (1.39), we can readily conclude that the components of the unit

vector lA vary along geodesics in accordance with the law

lA(s) = lA(0)
(
X(s)

)lnX(∆s)(l
A(∆s)/lA(0))

, (2.30)

where
N∏

A=1

lA(0) = 1,

N∏

A=1

lA(∆s) = 1,

N∏

A=1

lA(s) = 1. (2.31)

This law is applicable at any dimension N ≥ 2.

For the vector

aA(s) = F (s)lA(s) (2.32)

we obtain from (2.30) a similar behaviour

aA(s) =
F (s)aA(0)

F (0)

(
X(s)

)lnX(∆s)(a
A(∆s)F (0)/aA(0)F (∆s))

, (2.33)

where F (0) = a (in view of (2.11)).

Thus we have arrived at

Theorem 2.4. Let be given two vectors {aA
{1}} and {aA

{2}}. Let C be a

curve going from the end of the first vector to the end of the second vector. Put

aA(0) = {aA
{1}} and aA(∆s) = {aA

{2}}. Attribute the length values s = 0 and

s = ∆s to the vectors, where ∆s is the length of the curve C. If C is a geodesics,

then the vector stretching to the geodesics point with a length value s is explicitly

given by (2.33).
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The result (2.11) entails the relation

a2F 2(∆s) = (a2 + b∆s)2 −
(√

b2 − a2 ∆s
)2

, (2.34)

which can be used to introduce the angle η according to

a2 + b∆s = aF (∆s) cosh η (2.35)

and √
b2 − a2 ∆s = aF (∆s) sinh η, (2.36)

or
a2 + b∆s√
b2 − a2 ∆s

= tanh η. (2.37)

Applying (2.35) and (2.36) to (2.21), it follows that

X(∆s) = (cosh η + sinh η)2 = e2η, (2.38)

so that the equality (2.29) has been reproduced. Therefore, we may write the

laws (2.30) and (2.33) in the forms

lA(s) = lA(0)
(
X(s)

) 1
2η

ln(lA(∆s)/lA(0))
(2.39)

and

aA(s) =
F (s)aA(0)

F (0)

(
X(s)

) 1
2η

ln(aA(∆s)F (0)/aA(0)F (∆s))
. (2.40)

Since

d
(

s+b−
√

b2−a2

s+b+
√

b2−a2

)

ds
=

2
√
b2 − a2

F 2

s+ b −
√
b2 − a2

s+ b +
√
b2 − a2

, (2.41)

from (2.16) and (2.40) we can conclude that

F (s)
daA

ds
=
dF (s)

ds
aA(s) + 2

√
b2 − a2 aA(s)

1

2η
ln(lA(∆s)/lA(0)). (2.42)

Using here

gAB =
2aAaB

F 2
− F 2

NaAaB
δAB, aA =

F 2

NaA
(2.43)

(see (1.6) and (1.7)), and noting that

N∏

A=1

ln(lA(∆s)/lA(0)) = 0, (2.44)
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we find the equality

gAB(aC)
daA

ds

daB

ds
=

(
dF

ds

)2

− (b2 − a2)
1

F 2

1

Nη2

N∑

A=1

(
ln(lA(∆s)/lA(0))

)2

= 1 +
b2 − a2

F 2
− (b2 − a2)

1

F 2

1

Nη2

N∑

A=1

(
ln(lA(∆s)/lA(0))

)2
. (2.45)

The left-hand side here must be 1. Therefore, the angle η can be given by

η =

√√√√ 1

N

N∑

A=1

(
ln
lA(∆s)

lA(0)

)2

, (2.46)

or equivalently,

η =

√√√√ 1

N

N∑

A=1

(
ln
aA(∆s)F (0)

aA(0)F (∆s)

)2

. (2.47)

If we merely consider two vectors {aA} and {bA}, then (2.47) assigns to them

the respective angle

η(a, b) =

√√√√ 1

N

N∑

A=1

(
ln
aA/F (a)

bA/F (b)

)2

≡ F (b)

F (a
)

√√√√ 1

N

N∑

A=1

(
ln
aA

bA

)2

. (2.48)

Thus the following assertions are valid.

Theorem 2.5. The angle between two vectors {aA} and {bA} is given by

(2.48) The angle is symmetric:

η(a, b) = η(b, a). (2.49)

Also, the angle is additive:

η(a, b) + η(b, c) = η(a, c), (2.50)

when the vectors {aA, bA, cA} point to a fixed geodesic curve.

Rewriting (2.34) as

F 2(∆s) = (∆s)2 − a2 + 2(a2 + b∆s) (2.51)
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and using (2.35), we get the Finslerian A
{+}
N -Cosine Theorem:

(∆s)2 = (F (a))2 + (F (b))2 − 2F (a)F (b) cosh
(
η(a, b)

)
. (2.52)

Therefore, the Finslerian A
{+}
N -Distance |b⊖a| between the endpoints of two

given vectors is

|b⊖ a|2 = (F (a))2 + (F (b))2 − 2F (a)F (b) cosh
(
η(a, b)

)
. (2.53)

The Finslerian A
{+}
N -Scalar Product

(ab) = F (a)F (b) cosh
(
η(a, b)

)
(2.54)

is obtained.

We may use in the above expression (2.46) the indicatrix representation (1.39)

and apply (1.41). On so doing, we obtain

η =
√

(∆u1)2 + (∆u2)2 + · · · + (∆uN−1)2. (2.55)

Since at the same time the variables {ua} are some Euclidean coordinates on the

indicatrix (see (1.37)), we may state the following

Theorem 2.6. The Finslerian angle η is tantamount to the indicatrix Euclid-

ean distance.

It may also be said that, in entire analogy to Euclidean geometry proper, the

Finslerian angle η found measures the geodesic lengths on the indicatrix. However,

in Euclidean geometry the arcs are pieces of circles (the Euclidean indicatrix is

a unit sphere), while in our present case they are pieces of straightlines (since

the indicatrix is a Euclidean plane). It is useful to compare (2.55) with the

representation (2.28) of the angle η.

Note. The two-dimensional case N = 2 is also comprised by the above for-

mulae. Namely, the {N = 2}-dimensional precursor to the angle (2.48) reads

η{N=2}(a, b) =

√√√√1

2

2∑

A=1

(
ln
aAF (b)

bAF (a)

)2

=

√√√√1

2

((
ln
a1F (b)

b1F (a)

)2

+

(
ln
a2F (b)

b2F (a)

)2
)

(with F (a) =
√
a1a2 and F (b) =

√
b1b2 ), or

η{N=2}(a, b) = ln
a1F (b)

b1F (a)
.
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Therefore,

cosh(η{N=2}(a, b)) =
1

2

(
a1F (b)

b1F (a)
+
b1F (a)

a1F (b)

)
=
a1b2 + b1a2

F (a)F (b)
. (2.56)

On taking

m1 =
a1 + a2

2
, m2 =

a1 − a2

2
, n1 =

b1 + b2

2
, n2 =

b1 − b2

2
,

our explication (2.56) just reduces to the ordinary pseudo-Euclidean rule

cosh(η{N=2}(a, b)) =
m1n1 −m2n2

√
(m1)2 − (m2)2

√
(n1)2 − (n2)2

.

Let us illustrate the material of the present section.

P1

P2

P (s)

C

O

r1

r2

r(s)

v1 P1

P2

P (s)

C

O

aA

{1}

aA

{2}

aA(s)

v1

Figure 1. C is a geodesic curve. The length of the curve from p. P1

to p. P2 is equal to ∆s, and from p. P1 to p. P (s) it is equal to s.

The curve is the solution of the geodesic equation (2.5) (consisted of

the parts (2.6) as (2.7)) in the space A
{+}
N

. The value of the angle

η between the vectors r1 and r2 is presented by the explicit formula

(2.28) and between the vectors aA

{1} and aA

{2} is given by the explicit

formula (2.48).

3. Invariance in A
{+}
N

-space

Let us consider a non-singular, and in general non-linear, transformation

yA = FA(ỹB) (3.1)
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under which the Finslerian metric function remains invariant, that is,

F (y) = F (ỹ). (3.2)

Let us construct from the coefficients FA the derivatives

FA
B

def
=

∂FA

∂ỹB
(3.3)

and

FA
BC

def
=

∂FA
B

∂ỹC
. (3.4)

For our purposes it is worth assuming that the functions FA are C3-smooth and

positively homogeneous of degree 1 with respect to ỹ, so that

FA(kỹ) = kFA(ỹ), k > 0, (3.5)

(for any admissible set of arguments). The last condition guarantees the preser-

vation of the homogeneity property for the Finslerian metric function F under

the transformations (3.1) and allows rewriting them in the form

yA = FA
B (ỹ)ỹB (3.6)

(as this immediately follows from the Euler theorem for homogeneous functions).

Generally speaking, the second derivatives do not vanish identically:

FA
BC 6= 0. (3.7)

Differentiating (3.2) with respect to ỹC leads to the new identity

ỹC = yBF
B
C , (3.8)

which in turn can be differentiated with respect to ỹD, yielding

gCD(ỹ) = FA
C (ỹ)FB

D (ỹ)gAB (F (ỹ)) + yBF
B
CD (3.9)

(the definition (3.3) has been used).

If the transformation (3.1) fulfils also the condition

yBF
B
CD = 0, (3.10)
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then we call it metric, keeping in mind that in such a case the transformation

(3.9) leaves also invariant the Finslerian metric tensor

gCD(ỹ) = FA
C (ỹ)FB

D (ỹ)gAB (F (ỹ)) . (3.11)

Owing to (1.6), the metricity condition (3.10) can be written as

FBF
B
CD ≡ 0 (3.12)

with the functions

FB = 1/FB. (3.13)

Obviously, the metric transformations form a group.

Definition. Under the above conditions, the set of transformations (3.1) is

called the group of Finslerian metric transformations.

In case of the particular Finslerian metric function (1.5), an attentive con-

sideration of the role of the indicatrix variables {ua} (see (1.39)) leads to the

following conclusions.

Theorem 3.1. The Euclidean rotations of the indicatrix variables {ua} give

rise to the nonlinear transformations of the vectors {yA}, which leave the Fins-

lerian metric function (1.5) invariant and simultaneously realize the invariance

transformation (3.11) for the associated Finslerian metric tensor.

The explicit form of the required coefficients FA will be evaluated below in

Appendix A, taking as an example the dimension N = 4. Namely, under the

rotation conditions (A.8)–(A.12) the nonlinear transformations considered prove

to be given explicitly by means of the formulae (A.3)–(A.7). They involve three

angles of rotations. For the transformations obtained the validity of the metric-

ity condition (3.10) can be verified straightforwardly by applying the required

Maple 10-tools (see Appendix B below). The formulae do essentially get sim-

plified in case of one-angle-rotations (see Appendix C below). Additionally, the

translations in the indicatrix:

ũa = ua + na (3.14)

induce obviously the unimodular dilatations

ỹA = yA · kA,

N∏

A=1

kA = 1, (3.15)
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because of the exponential nature of the indicatrix representation (1.39) of unit

vectors.

Appendix A: Coefficients for three-angle rotations

in the four-dimnensional case

Let us take the dimension N = 4 and start with an arbitrary linear nonsin-

gular transformation of the indicatrix variables {ua} entering (1.39). Specifying

them for definiteness to fulfil ln l1 = α+β+γ, ln l2 = −α+β−γ, ln l3 = α−β−γ,
ln l4 = −α− β + γ with {α, β, γ} = {u1, u2, u3}, we have

α = l1α̃+ l2β̃ + l3γ̃, β = m1α̃+m2β̃ +m3γ̃, γ = n1α̃+ n2β̃ + n3γ̃, (A.1)

where

{m1,m2,m3, n1, n2, n3, l1, l2, l3} (A.2)

is a set of constants. This entails

ln y1 = (l1α̃+ l2β̃ + l3γ̃) + (m1α̃+m2β̃ +m3γ̃) + (n1α̃+ n2β̃ + n3γ̃),

ln y2 = −(l1α̃+ l2β̃ + l3γ̃) + (m1α̃+m2β̃ +m3γ̃) − (n1α̃+ n2β̃ + n3γ̃),

ln y3 = (l1α̃+ l2β̃ + l3γ̃) − (m1α̃+m2β̃ +m3γ̃) − (n1α̃+ n2β̃ + n3γ̃),

ln y4 = −(l1α̃+ l2β̃ + l3γ̃) − (m1α̃+m2β̃ +m3γ̃) + (n1α̃+ n2β̃ + n3γ̃),

or

ln y1 = (l1 +m1 + n1)α̃+ (l2 +m2 + n2)β̃ + (l3 +m3 + n3)γ̃,

ln y2 = (−l1 +m1 − n1)α̃+ (−l2 +m2 − n2)β̃ + (−l3 +m3 − n3)γ̃,

ln y3 = (l1 −m1 − n1)α̃+ (l2 −m2 − n2)β̃ + (l3 −m3 − n3)γ̃,

ln y4 = (−l1 −m1 + n1)α̃+ (−l2 −m2 + n2)β̃ + (−l3 −m3 + n3)γ̃,

from which it follows that the coefficients of the sought transformation

yA = FA(ỹB) (A.3)

can explicitly be given by the list

F 1 = (ỹ1)f11

(ỹ2)f12

(ỹ3)f13

(ỹ4)f14

, (A.4)

F 2 = (ỹ1)f21

(ỹ2)f22

(ỹ3)f23

(ỹ4)f24

, (A.5)

F 3 = (ỹ1)f31

(ỹ2)f32

(ỹ3)f33

(ỹ4)f34

, (A.6)
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F 4 = (ỹ1)f41

(ỹ2)f42

(ỹ3)f43

(ỹ4)f44

, (A.7)

with the exponents fAB being linear combinations of the constants (A.2). The

explicit representation (obtainable after lengthy straightforward calculations) for

the coefficients fAB is clear from the right-hand sides of the functions F1, F2,

F , 3, F4 presented below in the Appendix B.

Finally, we are to subject the set (A.2) to the condition that the transfor-

mation (A.1) realizes a Euclidean rotation of the set {α, β, γ}. To this end it is

convenient to accept the (Euler) three angle choice:

c1 = cos θ, c2 = cosψ, c3 = cosφ, (A.8)

s1 = sin θ, s2 = sinψ, s3 = sinφ (A.9)

to have

l1 = c2c3 − c1s2s3, m1 = s2c3 + c1c2s3, n1 = s1s3, (A.10)

l2 = −c2s3 − c1s2c3, m2 = −s2s3 + c1c2c3, n2 = s1c3, (A.11)

l3 = s1s2, m3 = −s1c2, n3 = c1. (A.12)

Appendix B: Three-angle.mws (by Maple 10)

The program presented below (created by means of Maple 10) does evaluate

the metricity condition (3.12) which fulfilment means that the transformation

leaves the Finslerian metric tensor invariant (that is, the equality (3.11) holds).

The variables ỹ1, ỹ2, ỹ3, ỹ4 will be denoted by e1, e2, e3, e4.

> c1:=cos(theta);c2:=cos(psi);c3:=cos(phi);

> s1:=sin(theta);s2:=sin(psi);s3:=sin(phi);

> l1:=c2*c3-c1*s2*s3;l2:=-c2*s3-c1*s2*c3;l3:=s1*s2;

> m1:=s2*c3+c1*c2*s3;m2:=-s2*s3+c1*c2*c3;m3:=-s1*c2;

> n1:=s1*s3;n2:=s1*c3;n3:=c1;

c1 := cos(θ); c2 := cos(ψ); c3 := cos(φ);

s1 := sin(θ); s2 := sin(ψ); s3 := sin(φ);

l1 := c2 c3 − c1 s2 s3 ; l2 := −c2 s3 − c1 s2 c3 ; l3 := s1 s2 ;

m1 := s2 c3 + c1 c2 s3 ; m2 := −s2 s3 + c1 c2 c3 ; m3 := −s1 c2 ;

n1 := s1 s3 ; n2 := s1 c3 ; n3 := c1
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> F1:=(e1)^((l1+m1+n1+l2+m2+n2+l3+m3+n3+1)/4)*

(e2)^((-l1-m1-n1+l2+m2+n2-l3-m3-n3+1)/4)*

(e3)^((l1+m1+n1-l2-m2-n2-l3-m3-n3+1)/4)*

(e4)^((-l1-m1-n1-l2-m2-n2+l3+m3+n3+1)/4):

> F2:=(e1)^((-l1+m1-n1-l2+m2-n2-l3+m3-n3+1)/4)*

(e2)^((l1-m1+n1-l2+m2-n2+l3-m3+n3+1)/4)*

(e3)^((-l1+m1-n1+l2-m2+n2+l3-m3+n3+1)/4)*

(e4)^((l1-m1+n1+l2-m2+n2-l3+m3-n3+1)/4):

> F3:=(e1)^((l1-m1-n1+l2-m2-n2+l3-m3-n3+1)/4)*

(e2)^((-l1+m1+n1+l2-m2-n2-l3+m3+n3+1)/4)*

(e3)^((l1-m1-n1-l2+m2+n2-l3+m3+n3+1)/4)*

(e4)^((-l1+m1+n1-l2+m2+n2+l3-m3-n3+1)/4):

> F4:=(e1)^((-l1-m1+n1-l2-m2+n2-l3-m3+n3+1)/4)*

(e2)^((l1+m1-n1-l2-m2+n2+l3+m3-n3+1)/4)*

(e3)^((-l1-m1+n1+l2+m2-n2+l3+m3-n3+1)/4)*

(e4)^((l1+m1-n1+l2+m2-n2-l3-m3+n3+1)/4):

> a:=array(1..4,1..4):

> for i from 1 to 4

do

for j from 1 to 4

do

a[i,j]:=diff(F||i,e||j);

end do:

end do:

> b:=array(1..4,1..4):

> for i from 1 to 4

do

for j from 1 to 4

do

b[i,j]:=simplify(add(1/F||k*diff(a[k,i],e||j),k=1..4),symbolic);

end do:

end do:

> print(b);
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


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




The result that all the entries of the matrix are zeros means that the metricity

condition (3.12) holds true (in the dimension N = 4).

Appendix C: One-angle rotation

Let us take the particular case

α = α̃ cos η + β̃ sin η, β = −α̃ sin η + β̃ cos η, γ = γ̃ (C.1)

which represents the rotation by one angle, η, in the γ-plane. We get

ln y1 = α̃ cos η + β̃ sin η − α̃ sin η + β̃ cos η + γ̃,

ln y2 = −α̃ cos η − β̃ sin η − α̃ sin η + β̃ cos η − γ̃,

ln y3 = α̃ cos η + β̃ sin η + α̃ sin η − β̃ cos η − γ̃,

ln y4 = −α̃ cos η − β̃ sin η + α̃ sin η − β̃ cos η + γ̃.

The respective generalized rotation coefficients are given by the list:

F 1 = (ỹ1)(2 cos η+1)/4(ỹ2)(2 sin η−1)/4(ỹ3)(−2 sin η−1)/4(ỹ4)(−2 cos η+1)/4, (C.2)

F 2 = (ỹ1)(−2 sin η−1)/4(ỹ2)(2 cos η+1)/4(ỹ3)(−2 cos η+1)/4(ỹ4)(2 sin η−1)/4, (C.3)

F 3 = (ỹ1)(2 sin η−1)/4(ỹ2)(−2 cos η+1)/4(ỹ3)(2 cos η+1)/4(ỹ4)(−2 sin η−1)/4, (C.4)

F 4 = (ỹ1)(−2 cos η+1)/4(ỹ2)(−2 sin η−1)/4(ỹ3)(2 sin η−1)/4(ỹ4)(2 cos η+1)/4. (C.5)

Conclusions

The (N = 2)-dimensional precursor of the space (1.2) is the ordinary hy-

perbolic space A2 := {V2, e1, e2, F
{two-dimensional}(y)} with F {two-dimensional} =√

|y1y2| ≡
√
|t2 − x2|, where t = (y1 + y2)/2 and x = (y1 − y2)/2. The meth-

ods exposed in the previous sections enable one to increase the dimension N and

to arrive at the anisotropic AN -space that differs drastically from the isotropic

conventional pseudo-Euclidean space. Our methods of analysis were adequately
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founded upon use of the indicatrix geometry and indicatrix coordinates. The

conformal nature of the associated Finslerian metric tensor (exhibited by (1.53))

has played a crucial role in Section 2 in our getting explicit solutions to the

A
{+}
N -geodesic equations. They are the solutions that entailed the distance, an-

gle, and scalar product for the A
{+}
N -space. Study of the invariance properties

of the A
{+}
N -space faced us to conclude in Section 3 that the associated group of

invariance is a nonlinear representation of the Euclidean group of rotations and

translations given rise to by the induced Euclidean structure of the generalized

A
{+}
N -hyperboloid (which is the indicatrix of the space under study).

Generally, search for novel physical and other applied aspects produced ten-

tatively by the anisotropic structures seems to be an urgent task for modern

science (see in particular [7]–[9]). It can be hoped that the evidence of the ba-

sic notions revealed in the present paper should make the space with the metric

function considered applicable in various mathematical and physical scenarios.
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