Compatible mappings and a common fixed point theorem of Chang type

By SALVATORE SESSA (Napoli) and YEOL JE CHO (Jinju)

In this paper, using a condition of "compatibility" between the mappings under discussion, due to G. Jungck [5], we generalize a common fixed point theorem of S. S. Chang [1] in complete metric spaces. This theorem extends well-known results of LJ.B. Ciric [2], K.M. Das and K.V. Naik [3], G. Jungck [4] and S. Sessa [8].

1. Two equivalent conditions

Following S. S. Chang [1], let $A:[0,+\infty) \rightarrow[0,+\infty)$ be a real-valued function such that the following conditions $\left(A_{1}\right),\left(A_{2}\right)$ or $\left(A_{1}\right),\left(A_{3}\right)$ hold:
$\left(A_{1}\right) A(t)$ is nondecreasing and right-continuous,
$\left(A_{2}\right)$ for any real number $q \geq 0$, there exists a suitable real number $t(q)$ such that
(a) $t(q)$ is the "upper bound" of the set $A_{q}=\{t \geq 0: t \leq q+A(t)\}$,
(b) $\lim _{n \rightarrow \infty} A^{n}(t(q))=0$,
$\left(A_{3}\right)$ for any $t>0$,
(c) $A(t)<t$,
(d) $\lim _{t \rightarrow \infty}(t-A(t))=\infty$.

Remark 1. S. S. Chang [1] says that $t(q)$ is the "upper bound" of the set A_{q}. Here we assume that $t(q)$ stands for the "least upper bound" of the set A_{q}, i.e., $t(q)=\sup A_{q}$. Presumably, S. S. Chang [1] intended to assume this and, of course, we have $t>q+A(t)$ for any $t>t(q)$.

[^0]In accordance with J. Matkowski [6], B. A. Meade and S. P. Singh [7] and Lemma 2 (i) of S. S. Chang [1], we point out the following simple results:

Lemma 1. If $A(t)$ is nondecreasing, then for any $t>0$ we have $A(t)<t$ if $\lim _{n \rightarrow \infty} A^{n}(t)=0$.

Lemma 2. If A is right-continuous and has the property (c), then we have $\lim _{n \rightarrow \infty} A^{n}(t)=0$ for any $t>0$.

Remark 2. We note that $A_{q} \neq \emptyset$ since q lies in A_{q} for any $q \geq 0$. If $q>0$, then $t(q)>0$ since $t(q) \geq q>0$. If $q=0$ and $A(t)<t$ for any $t>0$, then we have $A_{0}=\{0\}$.

Now we give the following result:
Theorem 1. If A satisfies the condition $\left(A_{1}\right)$, then the conditions $\left(A_{2}\right)$ and $\left(A_{3}\right)$ are equivalent.

Proof. Suppose that (A_{2}) holds. By property (a), then for any $q>0$ there exists a real number $t(q)>0$ such that $t>q+A(t)$ for any $t>t(q)$, which means that property (d) of (A_{3}) holds.

Since $t(q) \geq q$ for any $q>0$ and A is nondecreasing and so is A^{n}, using property (b), we have

$$
0 \leq \lim _{n \rightarrow \infty} A^{n}(q) \leq \lim _{n \rightarrow \infty} A^{n}(t(q))=0
$$

i.e., $\lim _{n \rightarrow \infty} A^{n}(q)=0$. This implies $A(q)<q$ for any $q>0$ by Lemma 1 . Therefore, the property (c) of $\left(A_{3}\right)$ holds.

Conversely, we must show that the properties (c) and (d) of $\left(A_{3}\right)$ imply the properties (a) and (b) of $\left(A_{2}\right)$. Indeed, it suffices to assume that $t(q)=0$ if $q=0$, and in this case the property (b) is clearly satisfied. Since the property (d) holds, if $q>0$ then there exists certainly a real number q^{*} such that $t-A(t)>q$ for any $t>q^{*}$. Assume that $t(q)$ is the infimum of such q^{*} 's. If there exists some $\bar{t} \in A_{q}$ such that $\bar{t}>t(q)$, let q^{*} be such that $t(q) \leq q^{*}<\bar{t}$, which implies that $\bar{t}>q+A(\bar{t})$. This is a contradiction since $\bar{t} \in A_{q}$. Hence $t(q)$ is an upper bound of A_{q}. Let $\bar{q} \geq t$ for any $t \in A_{q}$. We must show that $\bar{q} \geq t(q)$. In fact, if there exists some $\bar{t}>\bar{q}$ such that $\bar{t} \leq q+A(\bar{t})$, then \bar{t} is an A_{q} and hence $\bar{t} \leq \bar{q}$, which is a contradiction. This means that $t>q+A(t)$ for any $t>\bar{q}$, i.e., $\bar{q} \geq t(q)$ by the definition of $t(q)$. Then $t(q)$ is the least upper bound of A_{q}, i.e., the property (a) of $\left(A_{2}\right)$ holds. The property (b) of $\left(A_{2}\right)$ is also satisfied by Lemma 2 since $t(q) \geq q>0$. This completes the proof.

2. Basic preliminaries

Let (X, d) be a complete metric space and \mathbb{N} be the set of the positive integers. Adopting the same notations of S. S. Chang [1], let $f: X \rightarrow X$ be a mapping such that f^{m} is continuous for some $m \in \mathbb{N}$ and let $\left\{g_{i}\right\}_{i=1}^{\infty}$ be a sequence of mappings $g_{i}: f^{m-1}(X) \rightarrow X, i=1,2, \ldots$, such that

$$
\begin{equation*}
g_{i}\left(f^{m-1}(X)\right) \subseteq f^{m}(X) \tag{1}
\end{equation*}
$$

for any $i \in \mathbb{N}$ (if $m=1$, assume $f^{m-1}=$ identity on X). Further, assume that a sequence $\left\{m_{i}\right\}_{i=1}^{\infty}$ of elements of \mathbb{N} exists and is such that the following inequality holds:

$$
\begin{equation*}
d\left(g_{i}^{m_{i}}(x), g_{j}^{m_{j}}(y)\right) \leq A(M(i, j, x, y, f)) \tag{2}
\end{equation*}
$$

for any $i, j \in \mathbb{N}$ and $x, y \in f^{m-1}(X)$, where

$$
\begin{gathered}
M(i, j, x, y, f)=\max \left\{d(f x, f y), d\left(f x, g_{i}^{m_{i}}(x)\right), d\left(f y, g_{j}^{m_{j}}(y)\right),\right. \\
\left.d\left(f y, g_{i}^{m_{i}}(x)\right), d\left(f x, g_{j}^{m_{j}}(y)\right)\right\}
\end{gathered}
$$

and $A:[0,+\infty) \rightarrow[0,+\infty)$ is a real-valued function satisfying the conditions $\left(A_{1}\right)$ and $\left(A_{3}\right)$ (or equivalently $\left(A_{2}\right)$).

As in [1], we observe that the condition (1) implies that

$$
\begin{equation*}
g_{i}^{m_{i}}: f^{m-1}(X) \rightarrow f^{m}(X)=f\left(f^{m-1}(X)\right) \tag{3}
\end{equation*}
$$

for any $i \in \mathbb{N}$. Let x_{1} be a point of $f^{m-1}(X)$ and, in view of the condition (3), let $x_{2} \in f^{m-1}(X)$ be such that $g_{1}^{m_{1}}\left(x_{1}\right)=f\left(x_{2}\right)$. Iterating this process, we can define a sequence $\left\{x_{n}\right\}$ of elements of $f^{m-1}(X)$ such that

$$
\begin{equation*}
y_{n}=g_{n}^{m_{n}}\left(x_{n}\right)=f\left(x_{n+1}\right) \tag{4}
\end{equation*}
$$

for $n=1,2, \ldots$.
S. S. Chang [1] proved the following result, which generalizes the results of Lj.B. Ciric [2], K.M. Das and K.V. Naik [3], G. Jungck [4]:

Theorem 2. Let $f: X \rightarrow X$ be a mapping such that f^{m} is continuous for some $m \in \mathbb{N}$ and let $\left\{g_{i}\right\}_{i=1}^{\infty}$ be a sequence of mappings $g_{i}: f^{m-1}(X) \rightarrow X, i=1,2, \ldots$, such that the condition (1) holds. Suppose that g_{i} commutes with f for any $i \in \mathbb{N}$ and further there exists a sequence $\left\{m_{i}\right\}_{i=1}^{\infty}$ of elements of \mathbb{N} such that the inequality (2) holds for any $i, j \in \mathbb{N}$ and $x, y \in f^{m-1}(X)$, where $A:[0,+\infty) \rightarrow[0,+\infty)$ is a realvalued function satisfying the conditions $\left(A_{1}\right),\left(A_{2}\right)$ or $\left(A_{1}\right),\left(A_{3}\right)$. Then f and $g_{i}, i=1,2, \ldots$, have a unique common fixed point $f^{m}(z)$, where z is the limit of the sequence defined by (4).

Remark 3. In view of Theorem 1, we can say that the function A in Theorem 2 satisfies the conditions $\left(A_{1}\right)$ and $\left(A_{3}\right)$ (or equivalently, $\left(A_{2}\right)$). On the other hand, the proof of S.S. Chang [1] works only under the conditions $\left(A_{1}\right)$ and $\left(A_{3}\right)$.

Remark 4. Lemmas 1 and 3 of S.S. Chang [1] are identical.
We now denote by $\delta\left(O\left(y_{k}, n\right)\right)$ and $\delta\left(O\left(y_{1}, \infty\right)\right)$ the diameters of the sets

$$
O\left(y_{k}, n\right)=\left\{y_{k}, y_{k+1}, \ldots, y_{k+n}\right\}, \quad k \in \mathbb{N},
$$

and

$$
O\left(y_{1}, \infty\right)=\left\{y_{1}, y_{2}, \ldots, y_{n}, \ldots\right\}
$$

respectively.
Slightly modifying in some details Lemma 2 of S. Sessa [8] (cf. also Remark 6 below), it is not hard to prove the following basic lemma:

Lemma 3. Let $f: X \rightarrow X$ be a mapping and $\left\{g_{i}\right\}_{i=1}^{\infty}$ be a sequence of mappings $g_{i}: f^{m-1}(X) \rightarrow X, i=1,2, \ldots$, such that the condition (1) folds for some $m \in \mathbb{N}$. Further, there exists a sequence $\left\{m_{i}\right\}_{i=1}^{\infty}$ of elements of \mathbb{N} such that the inequality (2) holds for any $i, j \in \mathbb{N}$ and $x, y \in f^{m-1}(X)$, where $A:[0,+\infty) \rightarrow[0,+\infty)$ is a real-valued function satisfying the conditions $\left(A_{1}\right)$ and $\left(A_{3}\right)$. If $\delta\left(O\left(y_{k}, n\right)\right)>0$ for any $k, n \in \mathbb{N}$, then we have $\delta\left(O\left(y_{1}, \infty\right)\right)<\infty$ and $\delta\left(O\left(y_{k}, n\right)\right) \leq A^{k-1}(\delta(O(y, \infty)))$.

Remark 5. Note that the continuity of f^{m} in Lemma 3 is not used. For the same reason the hypothesis that f is continuous can be removed from Lemma 2 of [8].

In this work, motivated by a recent paper of G. Jungck [5], we generalize Theorem 2 using the following condition of "compatibility":

Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ be a sequence of mappings $g_{n}: X \rightarrow X, n=1,2, \ldots$, and $f: X \rightarrow X$.

We define $\left\{g_{n}\right\}_{n=1}^{\infty}$ and f to be compatible with respect to a sequence $\left\{m_{n}\right\}_{n=1}^{\infty}$ of elements of \mathbb{N} and $m \in \mathbb{N}$, if for any sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X such that if $g_{n}^{m_{n}}\left(x_{n}\right), f\left(x_{n}\right) \rightarrow t$ for some $t \in X$, then $d\left(f^{h} g_{n}^{m_{n}}\left(x_{n}\right)\right.$, $\left.g_{n}^{m_{n}} f^{h}\left(x_{n}\right)\right), d\left(f g_{n}\left(x_{n}\right), g_{n} f\left(x_{n}\right)\right) \rightarrow 0$, where $h=1, m$.

Note that if $g_{n}=g$ and $m_{n}=m=1$, then we obtain Definition 2.1. of G. Jungek [5], which in turn extends the concept of weak commutativity introduced in [8]. Of course, if f commutes with g_{n} for any $n \in \mathbb{N}$, then they are compatible with respect to any sequence in \mathbb{N} and any $m \in \mathbb{N}$. But the converse is not necessarily true as is shown in the following example:

Example 1. Let $X=[0,1]$ with the Euclidean metric d and define

$$
g_{n}(x)=g(x)=\frac{x}{a+x} \text { and } f(x)=\frac{x}{a}
$$

for any $n \in \mathbb{N}$ and $x \in X$, where $a>1$. Assuming that $m_{n}=1$ for any $n \in \mathbb{N}$, we have for any $m \in \mathbb{N}$,

$$
\begin{gathered}
d\left(g f^{m}(x), f^{m} g(x)\right)=\frac{x}{a^{m+1}+x}-\frac{x}{a^{m+1}+a^{m} x} \\
\quad \leq \frac{x^{2}}{a+x}=\frac{x}{a}-\frac{x}{a+x}=d(g x, f x)
\end{gathered}
$$

for all $x \in X$. Then it is easily seen that the mappings f and g are compatible with respect to the constant sequence $\{1\}$ and any $m \in \mathbb{N}$, but $f g x \neq g f x$ for all $x \in X-\{0\}$.

We shall use the following lemma for our main theorem. The proof of this lemma is identical to that of Proposition 2.2 of G. Jungck [5]:

Lemma 4. Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ and f be compatible with respect to a sequence $\left\{m_{n}\right\}_{n=1}^{\infty}$ in \mathbb{N} and $m \in \mathbb{N}$. Then we have the following:
(a) If $g_{n}^{m_{n}}(t)=f(t)$ for any $n \in \mathbb{N}$, then $f g_{n}^{m_{n}}(t)=g_{n}^{m_{n}} f(t)$ and $f g_{n}(t)=g_{n} f(t)$.
(b) If $g_{n}^{m_{n}}\left(x_{n}\right), f\left(x_{n}\right) \rightarrow t$ for some $t \in X$, then $g_{n}^{m_{n}} f^{m}\left(x_{n}\right) \rightarrow$ $f^{m}(t)$ if f^{m} is continuous at t.

3. Main theorem

The proof of Theorem 2 by S. S. Chang [1] must be modified in the details where compatibility is used in place of commutativity. However, we will exhibit another technical proof along the same lines of [8] in order to prove the following theorem:

Theorem 3. Let $f: X \rightarrow X$ be a mapping such that f^{m} is continuous for some $m \in \mathbb{N}$ and $\left\{g_{i}\right\}_{i=1}^{\infty}$ be a sequence of mappings $g_{i}: f^{m-1}(X) \rightarrow X$, $i=1,2, \ldots$, such that condition (1) holds. Suppose that there exists a sequence $\left\{m_{i}\right\}_{i=1}^{\infty}$ of elements of \mathbb{N} such that the inequality (2) holds for any $i, j \in \mathbb{N}$ and $x, y \in f^{m-1}(X)$, where $A:[0,+\infty) \rightarrow[0,+\infty)$ is a real-valued function satisfying the conditions $\left(A_{1}\right)$ and $\left(A_{3}\right)$.

If $\left\{g_{i}\right\}_{i=1}^{\infty}$ and f are compatible with respect to the above sequence $\left\{m_{i}\right\}_{i=1}^{\infty}$ and m, then the conclusion of Theorem 2 still holds.

Proof. We suppose two cases. Firstly, assume that $\delta\left(O\left(y_{k}, n\right)\right)=0$ for some $k, n \in \mathbb{N}$. Then we have

$$
f\left(x_{k+1}\right)=y_{k}=y_{k+1}=g_{k+1}^{m_{k+1}}\left(x_{k+1}\right)
$$

where x_{k+1} is in $f^{m-1}(X)$. Using the inequality (2), we have

$$
\begin{aligned}
d\left(g_{i}^{m_{i}}\left(x_{k+1}\right), y_{k}\right) & =d\left(g_{i}^{m_{i}}\left(x_{k+1}\right), g_{k+1}^{m_{k+1}}\left(x_{k+1}\right)\right) \\
& \leq A\left(\max \left\{d\left(y_{k}, y_{k}\right), d\left(y_{k}, g_{i}^{m_{i}}\left(x_{k+1}\right)\right)\right\}\right) \\
& =A\left(d\left(g_{i}^{m_{i}}\left(x_{k+1}\right), y_{k}\right)\right)
\end{aligned}
$$

for any $i \in \mathbb{N}$, which implies that

$$
g_{i}^{m_{i}}\left(x_{k+1}\right)=f\left(x_{k+1}\right)
$$

for any $i \in \mathbb{N}$ by the property (c) of $\left(A_{3}\right)$.
Secondly, assume that $\delta\left(O\left(y_{k}, n\right)\right)>0$ for any $k, n \in \mathbb{N}$. By Lemma 3, $\delta\left(O\left(y_{1}, \infty\right)\right)$ is finite. It follows from Lemmas 2 and 3 that, for $p, q \in \mathbb{N}$ with $1<p<q$,

$$
\lim _{p \rightarrow \infty} d\left(y_{p}, y_{q}\right) \leq \lim _{p \rightarrow \infty} \delta\left(O\left(y_{p}, q-p\right)\right) \leq \lim _{p \rightarrow \infty} A^{p-1}\left(\delta\left(O\left(y_{1}, \infty\right)\right)\right)=0
$$

This means that the sequence, defined by (4), is a Cauchy sequence in X and hence it converges to some point $z \in X$ since X is complete. Since f^{m} is continuous, we deduce that, by Lemma 4(b),

$$
g_{n}^{m_{n}} f^{m-1}\left(y_{n-1}\right)=g_{n}^{m_{n}} f^{m}\left(x_{n}\right) \rightarrow f^{m}(z)
$$

It is easily seen that for any $i \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} M\left(n, i, f^{m-1}\left(y_{n-1}\right), f^{m-1}(z), f\right)=d\left(f^{m}(z), g_{i}^{m_{i}} f^{m-1}(z)\right)
$$

Using the inequality (2) and the right continuity of A, then we obtain

$$
\begin{aligned}
d\left(f^{m}(z), g_{i}^{m_{i}} f^{m-1}(z)\right) & =\lim _{n \rightarrow \infty} d\left(g_{n}^{m_{n}} f^{m-1}\left(y_{n-1}\right), g_{i}^{m_{i}} f^{m-1}(z)\right) \\
& \leq \lim _{n \rightarrow \infty} A\left(M\left(n, i, f^{m-1}\left(y_{n-1}\right), f^{m-1}(z), f\right)\right) \\
& =A\left(d\left(f^{m}(z), g_{i}^{m_{i}} f^{m-1}(z)\right)\right)
\end{aligned}
$$

for any $i \in \mathbb{N}$ and hence, by the property (c) of $\left(A_{3}\right)$,

$$
g_{i}^{m_{i}} f^{m-1}(z)=f^{m}(z)=f f^{m-1}(z)
$$

for any $i \in \mathbb{N}$. In both cases, we have proved the existence of a point $w \in f^{m-1}(X)$ such that

$$
g_{i}^{m_{i}}(w)=f w
$$

for any $i \in \mathbb{N}$ and so, by Lemma $4(\mathrm{a})$, we have

$$
g_{i}^{m_{i}}(f w)=f g_{i}^{m_{i}}(w)=f^{2} w \quad \text { and } \quad g_{i}(f w)=f g_{i}(w)
$$

for any $i \in \mathbb{N}$. Since $f w \in f^{m}(X) \subseteq f^{m-1}(X)$, using again the inequality (2), we have also for any $i \in \mathbb{N}$

$$
\begin{aligned}
d\left(f^{2} w, f w\right) & =d\left(g_{i}^{m_{i}}(f w), g_{i}^{m_{i}}(w)\right) \\
& \leq A\left(\max \left\{d\left(f^{2} w, f w\right), d\left(f^{2} w, f^{2} w\right), d(f w, f w)\right\}\right) \\
& =A\left(d\left(f^{2} w, f w\right)\right)
\end{aligned}
$$

which means that $f^{2} w=f w$ by the property (c) of $\left(A_{3}\right)$. We also deduce, from the inequality (2),

$$
\begin{aligned}
d\left(f w, g_{i}(f w)\right) & =d\left(g_{i}^{m_{i}}(w), g_{i} g_{i}^{m_{i}}(w)\right)=d\left(g_{i}^{m_{i}}(w), g_{i}^{m_{i}}\left(g_{i}(w)\right)\right) \\
& \leq A\left(\max \left\{d\left(f w, f g_{i}(w), d(f w, f w), d\left(f g_{i}(w), g_{i}(f w)\right)\right\}\right)\right. \\
& =A\left(d\left(f w, g_{i}(f w)\right)\right)
\end{aligned}
$$

for any $i \in \mathbb{N}$, which means that $g_{i}(f w)=f w$ for any $i \in \mathbb{N}$. Therefore, we have proved that $f w$ is a fixed point of f and g_{i} for any $i \in \mathbb{N}$. The uniqueness of the fixed point is easily proved. This completes the proof.

The following example shows that Theorem 3 is a stronger generalization of Theorem 2.

Example 2. Let $X, f, g_{i}=g$ and $m_{i}=1$ for any $i \in \mathbb{N}$ be as in Example 1 and define $A(t)=t /(t+1)$ for any $t \geq 0$. We have for any $m \in \mathbb{N}$,

$$
f^{m}(X)=\left[0,1 / a^{m}\right] \supseteq\left[0,1 /\left(a^{m}+1\right)\right]=g\left(f^{m-1}(X)\right) .
$$

Of course, A satisfies the conditions $\left(A_{1}\right)$ and $\left(A_{3}\right)$. Further, we have

$$
\begin{aligned}
d(g x, g y) & =\frac{a|x-y|}{(a+x)(a+y)} \leq \frac{|x-y|}{a+|x-y|}=A\left(\frac{|x-y|}{a}\right) \\
& =A(d(f x, f y)) \leq A(M(i, j, x, y, f))
\end{aligned}
$$

for any $i, j, m \in \mathbb{N}$ and $x, y \in f^{m-1}(X)$. Since $\left\{g_{i}\right\}_{i=1}^{\infty}$ and f are compatible with respect to the constant sequence $\{1\}$ and any $m \in \mathbb{N}$ (cf. Example 1), all the conditions of Theorem 3 are satisfied, but Theorem 2 is not applicable since $f g x \neq g f x$ for all $x \in X-\{0\}$.

Remark 6. In Lemma 3 of S.S. Chang [1], it is proved that the sequence defined by (4) has finite diameter as well as in Lemma 3. This is a consequence of the fact that the function A has the property (d), but it is evident that, omitting this condition, Theorem 3 still holds if one assumes the existence of the sequence, defined by (4), with finite diameter in X. For instance, see Lemma 2 of S. Sessa [8]. In this case, assuming $g_{i}=g$ and $m_{i}=m=1$ for any $i \in \mathbb{N}$, Theorem 3 generalizes Theorem 4 of [8].

References

[1] S. S. Chang, A common fixed point theorem for commuting mapping, Proc. Amer. Math. Soc. 83 (1981), 645-652.
[2] Lu. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273.
[3] K. M. Das and K. V. Naik, Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (1979), 369-373.
[4] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly $8 \mathbf{8}$ (1976), 261-263.
[5] G. Jungck, Compatible mappings and common fixed points, Internat, J. Math. \& Math. Sci. 9 (1986), 771-779.
[6] J. Matkowski, Fixed point theorems for the mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 72 (1977), 344-348.
[7] B. A. Meade and S. P. Singh, On common fixed point theorems, Bull. Austral. Math. Soc 16 (1977), 49-53.
[8] S. SESSA, On a week commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) 32 (46) (1982), 149-153.

```
S. SESSA
UNIVERSITÀ DI NAPOLI
FACOLTÀ DI ARCHITETTURA
ISTITUTO DI MATEMATICA
VIE MONTEOLIVETO 3
80134 NAPOLI, ITALY
Y. J. CHO
DEPARTMENT OF MATHEMATICS
GYEONGSANG NATIONAL UNIVERSITY
JINJU 660-701, KOREA
```


[^0]: 1980 Mathematics Subject Classification (1985 Revision): Primary 54H25, Secondary 47H10.
 Keywords: Common fixed points, compatible mappings.

