Factors for generalized absolute Cesàro summability methods

By HÜSEYİN BOR (Kayseri)

Abstract

In this paper a theorem on $\varphi-|\mathrm{C}, \alpha|_{k}(0<\alpha \leq 1)$ summability factors, which contains some results on $|\mathrm{C}, \alpha|_{k}$ and $|\mathrm{C}, \alpha ; \delta|_{k}$ summability factors, has been proved.

1. Introduction. Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers and let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} and t_{n}^{α} the n-th Cesàro means of order $\alpha(\alpha>-1)$ of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, i.e,

$$
\begin{align*}
u_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1.1}\\
t_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \tag{1.2}
\end{align*}
$$

where

$$
\begin{align*}
& A_{n}^{\alpha}=\binom{n+\alpha}{n}=O\left(n^{\alpha}\right), \alpha>-1, \tag{1.3}\\
& A_{o}^{\alpha}=1 \text { and } A_{-n}^{\alpha}=0 \text { for } n>0 .
\end{align*}
$$

The series $\sum a_{n}$ is said to be summable $\varphi-|\mathrm{C}, \alpha|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\varphi_{n}\left(u_{n}^{\alpha}-u_{n-1}^{\alpha}\right)\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

1980 Mathematics Subject Classification (1985 Revision): 40D15, 40F05, 40G05.
Keywords: Absolute Cesàro summability, summability factors.
This paper was supported by the Scientific and Technical Research Council of Turkey (TÜBITAK, TBAG - 42).

But since $t_{n}^{\alpha}=n\left(u_{n}^{\alpha}-u_{n-1}^{\alpha}\right)$ (see [3]) the condition (1.4) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} t_{n}^{\alpha}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

In the special case when $\varphi_{n}=n^{1-1 / k}$ (resp. $\varphi_{n}=n^{\delta+1-1 / k}$) $\varphi-|\mathrm{C}, \alpha|_{k}$ summability is the same as $|\mathrm{C}, \alpha|_{k}$ (resp. $|\mathrm{C}, \alpha ; \delta|_{k}$) summability. Also we know that (see [5]) for $k \geq 1$ and $0<\alpha \leq 1$

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}=O\left\{\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n^{(\alpha-1) k+1}}\right\} . \tag{1.6}
\end{equation*}
$$

2. Mishra and Srivastava [4] have proved the following theorem for $|\mathrm{C}, 1|_{k}$ summability factors of infinite series:

Theorem A. Let $\left(x_{n}\right)$ be a positive non-decreasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{2.1}\\
\beta_{n} \longrightarrow 0 \text { as } n \longrightarrow \infty \tag{2.2}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| x_{n}<\infty \tag{2.3}\\
\left|\lambda_{n}\right| x_{n}=O(1) \text { as } n \longrightarrow \infty \tag{2.4}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{n}\left|s_{n}\right|^{k}=O\left(x_{m}\right) \text { as } m \longrightarrow \infty, \tag{2.5}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|\mathrm{C}, 1|_{k}, k \geq 1$.
3. The aim of this paper is to prove Theorem A for $\varphi_{-}|\mathrm{C}, \alpha|_{k}$ summability provided that $0<\alpha \leq 1$. Now we shall prove the following.

Theorem. Let $0<\alpha \leq 1$. Let $\left(x_{n}\right)$ be a positive non-decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that conditions (2.1)-(2.4) of Theorem A are satisfied. If there exists an $\varepsilon>0$ such that the sequence
$\left(n^{\varepsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is nonincreasing and if the sequence $\left(w_{n}^{\alpha}\right)$, defined by

$$
w_{n}^{\alpha}= \begin{cases}\left|t_{n}^{\alpha}\right| & (\alpha=1) \tag{3.1}\\ \max _{1 \leq u \leq n}\left|t_{u}^{\alpha}\right| & (0<\alpha<1)\end{cases}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{-k}\left(\left|\varphi_{n}\right| w_{n}^{\alpha}\right)^{k}=O\left(x_{m}\right) \text { as } m \longrightarrow \infty \tag{3.2}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|\mathrm{C}, \alpha|_{k}, k \geq 1$.
If we take $\alpha=1, \varepsilon=1$ and $\varphi_{n}=n^{1-1 / k}$ in this theorem, then we get Theorem A. In fact, in this case, by (1.6), we have

$$
\sum_{n=1}^{m} \frac{1}{n}\left(w_{n}\right)^{k}=\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O(1) \sum_{n=1}^{m} \frac{1}{n}\left|s_{n}\right|^{k}
$$

Also, is we take $\varepsilon=1$ and $\varphi_{n}=n^{1-1 / k}$ (resp. $\varepsilon=1$ and $\varphi_{n}=n^{\delta+1-1 / k}$), then we obtain a result for $|\mathrm{C}, \alpha|_{k}$ (resp. $|\mathrm{C}, \alpha ; \delta|_{k}$) summability factors.
4. We need the following lemmas for the proof of our theorem:

Lemma 1 ([2]). If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=1}^{m} A_{m-p}^{\alpha-1} a_{p}\right| \tag{4.1}
\end{equation*}
$$

where A_{n}^{α} is as in (1.3).
Lemma 2 ([4]). Under the conditions on $\left(x_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of Theorem A, the following conditions hold, when (2.3) is satisfied:

$$
\begin{align*}
& n \beta_{n} x_{n}=o(1) \text { as } n \longrightarrow \infty \tag{4.2}\\
& \sum_{n=1}^{\infty} \beta_{n} x_{n}<\infty \tag{4.3}
\end{align*}
$$

5. Proof of the theorem. Let $\left(T_{n}^{\alpha}\right)$ be the n-th (C, α) means, with $0<\alpha \leq 1$, of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1.2), we have

$$
\begin{equation*}
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} \quad v a_{v} \lambda_{v} \tag{5.1}
\end{equation*}
$$

Applying Abel's transformation, we get

$$
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}
$$

so that making use of Lemma 1, we have

$$
\begin{aligned}
\left|T_{n}^{\alpha}\right| & \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| w_{n}^{\alpha}=T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}, \quad \text { say. }
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality for $k>1$, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} T_{n, r}^{\alpha}\right|^{k}<\infty \text { for } r=1,2
$$

by (1.5). Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime} where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get

$$
\begin{gathered}
\sum_{n=2}^{m+1} n^{-k}\left|\varphi_{n} T_{n, 1}^{\alpha}\right|^{k} \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha} \beta_{v}\right\}^{k} \\
\leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha}\right)^{-k}\left|\varphi_{n}\right|^{k} \sum_{v=1}^{n-1} A_{v}^{\alpha}\left(w_{v}^{\alpha}\right)^{k} \beta_{v} \times\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} \beta_{v}\right\}^{k-1} \\
=O(1) \sum_{n=2}^{m+1} n^{-k} n^{-\alpha k}\left|\varphi_{n}\right|^{k}\left(n^{\alpha}\right)^{k-1} \sum_{v=1}^{n-1} v^{\alpha}\left(w_{v}^{\alpha}\right)^{k} \beta_{v} \\
=O(1) \sum_{v=1}^{m} v^{\alpha}\left(w_{v}^{\alpha}\right)^{k} \beta_{v} \sum_{n=v+1}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k+\alpha}}=O(1) \sum_{v=1}^{m} v^{\alpha}\left(w_{v}^{\alpha}\right)^{k} \beta_{v} \sum_{n=v+1}^{m+1} \frac{n^{\varepsilon-k}\left|\varphi_{n}\right|^{k}}{n^{\alpha+\varepsilon}} \\
=O(1) \sum_{v=1}^{m} v^{\alpha}\left(w_{v}^{\alpha}\right)^{k} \beta_{v} v^{\varepsilon-k}\left|\varphi_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{\alpha+\varepsilon}}=O(1) \sum_{v=1}^{m} v \beta_{v} v^{-k}\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k} \\
=O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} r^{-k}\left(w_{r}^{\alpha}\left|\varphi_{r}\right|\right)^{k}+O(1) m \beta_{m} \sum_{v=1}^{m} v^{-k}\left(w_{v}^{\alpha}\left|\varphi_{u}\right|\right)^{k}
\end{gathered}
$$

$$
\begin{aligned}
= & O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| x_{v}+O(1) m \beta_{m} x_{m}=O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| x_{v} \\
& +O(1) \sum_{v=1}^{m-1}\left|\beta_{v+1}\right| x_{v}+O(1) m \beta_{m} x_{m}=O(1) \text { as } m \longrightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses and Lemma 2.
Again, since $\left|\lambda_{n}\right|=O\left(1 / x_{n}\right)=O(1)$, by (2.4) we have

$$
\begin{gathered}
\sum_{n-1}^{m} n^{-k}\left|\varphi_{n} T_{n, 2}^{\alpha}\right|^{k}=\sum_{n=1}^{m} n^{-k}\left|\varphi_{n}\right|^{k}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1}\left(w_{n}^{\alpha}\right)^{k} \\
=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| n^{-k}\left(w_{n}^{\alpha}\left|\varphi_{n}\right|\right)^{k}=O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} v^{-k}\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k} \\
+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} v^{-k}\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}=O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| x_{n}+O(1)\left|\lambda_{m}\right| x_{m} \\
=O(1) \sum_{n=1}^{m-1} \beta_{n} x_{n}+O(1)\left|\lambda_{m}\right| x_{m}=O(1) \text { as } m \longrightarrow \infty
\end{gathered}
$$

by virtue of the hypotheses and Lemma 2 .
Therefore, we get that

$$
\sum_{n=1}^{m} n^{-k}\left|\varphi_{n} T_{n, r}^{\alpha}\right|^{k}=O(1) \text { as } m \longrightarrow \infty, \text { for } r=1,2
$$

This completes the proof of the theorem.

References

[1] M. Balci, Absolute φ-summability factors, Comm. Fac. Sci. Univ. Ankara, Ser. $A_{1} 29$ (1980), 63-68.
[2] L. S. Bosanquet, A mean value theorem, J. London Math. Soc. 16 (1941), 146, 148.
[3] E. Kogbetliantz, Sur les sèries absolument sommables par la mèthode des moyennes arithmetiques, Bull. Sci. Math. 49 (1925), 234-256.
[4] K. N. Mishra and R. S. L. Srivastava, On absolute Cesàro summability factors of infinite series, Portugaliae Math. 42 (1983-1984), 53-61.
[5] I. Szalay, On generalized absolute Cesàro summability factors, Publ. Math. Debrecen 24 (1977), 343-349.

HÜSEYIN BOR
DEPARTMENT OF MATHEMATICS
ERCIYES UNIVERSITY
KAYSERİ 38039
TURKEY

