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Reduced ideals, the divisor function, continued
fractions and class numbers of real quadratic fields

By R. A. MOLLIN (Calgary) and L.-C. ZHANG (Springfield)

Abstract. The aim of this paper is to give lower bounds for class numbers of
real quadratic fields in terms of the divisor function, and to develop useful criteria for
reduced ideals in terms of both continued fractions and the solvability of diophantine
equations, which we then relate back to the aforementioned class number bounds.

§1. Introduction

The purpose of this paper is to explore the relationships between
reduced ideals, continued fractions, solutions of diophantine equations, the
divisor function and class number of real quadratic fields.

We set the stage by developing the machinery necessary for the rest
of the paper in section 2. Section 3 deals with developing criteria for lower
bounds on the class number h(d) of real quadratic fields Q(

√
d). The first

such result, Theorem 3.1, is a general lower bound achieved through a
(combinatorial) count of certain ideals. This generalizes results of the first
author in [4]–[7], of Halter–Koch in [1]–[2] and of Mollin–Williams
in [10]. Thereafter we look at the consequences of Theorem 3.1 including
a complete result for extended Richaud–Degert types which corrects and
generalizes result in the literature.

In section 4 we explore new and old criteria for reduced ideals and
develop necessary and sufficient conditions for reduced ideals to be equiv-
alent in terms of the solvability of certain diophantine equations. This
leads to a connection with the results of section 3, and we conclude with
an open problem concerning that interface.

1991 Mathematics Subject Classification: 11R11, 11R09, 11R29.
The first author’s research is supported by NSERC Canada grant # A8484.



316 R. A. Mollin and L.-C. Zhang

§2. Notation and preliminaries

Throughout d will be a square-free positive integer, and K = Q(
√

d),
the real quadratic field with radicand d. Let [α, β] be the Z–module {αx+
βy : x, y ∈ Z}. Thus the maximal order (or ring of integers) OK of K is
[1, ω] where ω = (σ − 1 +

√
d )/σ with σ = 2 if d ≡ 1 (mod 4), and σ = 1

otherwise. The discriminant of K is then ∆ = (ω − ω̄)2 where ω̄ is the
algebraic conjugate of ω. For α ∈ K, the norm of α is N(α) = αᾱ.

It is well-known (eg. see [18, §3]), that I is an ideal of OK if and only
if I has a representation as I = [a, b + cω] where a > 0, c > 0, c | b, c | a
and ac | N(b + cω). In fact for a given I in OK , the integers a and c
are unique, with a being the least positive integer in I, denoted L(I) = a.
If c = 1 then I is called primitive, and in this case a = L(I) = N(I) =
norm of I. Furthermore, since I = (c)[a/c, b/c + ω], (where (c) denotes
the principal ideal generated by c), then we shall restrict our attention
to primitive ideals henceforth. Note furthermore that the conjugate ideal
Ī = [a, b + ω̄].

An ideal I is called reduced if I is primitive and there does not exist
a non-zero α ∈ I with both |α| < N(I) and |ᾱ| < N(I).

Theorem 2.1. I is a reduced ideal in OK if and only if there exists
some β ∈ I such that I = [N(I), β] with β > N(I), and – N(I) < β̄ < 0.

Proof. This is Theorem 3.5 of [18].

We will use Theorem 2.1 in section 4 to find some more useful criteria
for reduced ideals. Now we discuss the continued fraction expansion of ω
which we will need throughout the paper. We denote this expansion by

ω = 〈a, a1, a2, . . . , ak〉 of

period lenght k, where a = a0 = bωc, (here b c denotes the greatest integer
function), ai = b(Pi +

√
d )/Qic for i ≥ 1 with (P0, Q0) = (σ − 1, σ) and

recursively for i ≥ 0 we have Pi+1 = aiQi − Pi and Qi+1Qi = d− P 2
i+1.

For further details on reduced ideals and continued fractions the reader
is referred to [11], [17] and [18].

§3. The divisor function

In this section we develop several criteria for the class number of
K to be bounded below by the divisor function of a certain canonical
integer. The following extends and generalizes work of Halter–Koch in
[1]–[2], and continues work of Mollin in [4]–[7] as well as that of Mollin–
Williems in [10]. Our first result is quite general and so has a high degree
of applicability as we shall see.

In what follows τ(x) denotes the number of positive divisors of x ∈ N.
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Theorem 3.1. Let A > 0 be the norm of a primitive principal ideal
in OK and A <

√
∆ . Assume furthermore that no divisor m of A with

1 < m < A is the norm of a principal reduced ideal in OK . Thus, h(d) ≥
τ(A)− 2s−1 where s is the number of distinct prime divisors of A.

Proof. Let A =
s∏

i=1

Pi
ei be the prime factorization of A and let

N(A) = A where 1 ∼ A =
s∏

i=1

Pei
i where Pi sits above pi for each i.

We now fix these ideals Pi, (since we observe that we are not, in general,
allowed a choice of either Pi or P̄i).

Assume

(∗) 1 6=
s∏

i=1

Pfi

i ∼
s∏

i=1

Pgi

i 6= 1

where 0 ≤ fi ; gi ≤ ei and let I0 be the set of all indices in I={1, 2, 3, . . . , s}
such that pi is unramified for all i ∈ I0, and let I1 and I2 be subsets of
I0 such that fi ≥ gi for all i ∈ I1 whereas fi < gi for all i ∈ I2. Also let
I3 ⊆ I be all those indices i such that pi is ramified and fi 6= gi. Thus (∗)
becomes

(∗∗) 1 ∼
∏

i∈I
Pfi−gi

i ∼
∏

i∈Ii

Pfi−gi

i

∏

i∈I2

P̄gi−fi

i

∏

i∈I3

Pi = I

If m = N(I) >
√

∆/2 then since m divides A <
√

∆ then m = A is
forced; whence, we must have fi = ei and gi = 0 for all i ∈ I1, gi = ei and
fi = 0 for all i ∈ I2, and I3 = I − I0, where ei = 1 for all i ∈ I3. Hence
(∗∗) becomes

1 ∼
∏

i∈I1

Pei
i

∏

i∈I2

P̄ei
i

∏

i∈I3

Pi

or equivalently, (since Pi = P̄i for all i ∈ I3),

(∗ ∗ ∗)
∏

i∈I2

Pei
i

∏

i∈I3

Pi ∼
∏

i∈I1

Pei
i

The number of distinct possible such equivalences in (∗ ∗ ∗) is clearly
2s−1.

Now assume m <
√

∆/2; whence, I is a principal reduced ideal whose
norm divides A. By hypothesis m = 1 or A. If m = A then we proceed as
above. If m = 1 then fi = gi for all i = I, which secures the result.
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Corollary 3.1. With the hypothesis as in the statement of Theorem
3.1, if s > 1 then h(d) > 1.

Proof. τ(A) =
s∏

i=1

(ei + 1) ≥ 2s; whence, h(d) ≥ τ(A) − 2s−1 ≥
2s − 2s−1 = 2s−1 > 1.

Remark 3.1. There are several palatable consequences of Theorem
3.1 not the least of which is the following application which corrects The-
orems 2.1–2.2 of [4]. Although we gave what we called corrected versions
of the latter in [5]–[7], the assumptions used in Theorem 2.1 of [6] and
Theorems 1–3 of [7] were very strong, whereas those of Theorem 3.1 above
are minimal and maintain the intention of [4] to get a very general lower
bound for h(d) in terms of the divisor function. To see that our bound in
the above is in fact sharp, we cite the following example which also has
two other purposes: to give a counterexample to Theorem 2.2 of [4] and
to motivate the next result which explicitly corrects [4].

Example 3.1. Let d = 385 = 202 − 15 = 5 · 7 · 11. Consider the
continued fraction expansion of (1 +

√
d )/2:

i 0 1 2 3 4 5 6 7
Pi 1 19 17 15 5 13 11 11

Qi 2 12 8 20 18 12 22
...

ai 10 3 4 1 1 2 1
...

Hence the hypothesis of Theorem 3.1 is satisfied for A = 6. Here
h(d) = 2 = τ(A)− 2s−1.

Corollary 3.2. Let d = b2 + r with |r| < 2b and set

A =

{
2b/σ − |r/σ2 − 1| if r is even

(2b− |r − 1|)/σ2 if r is odd

}
.

Assume that no divisor m of A with 1 < m < A is the norm of a
principal reduced ideal. Thus h(d) ≥ τ(A) − 2s−1 where s is the number
of distinct prime divisors of A.

Proof. By Theorem 3.1 we need only show that A <
√

∆ and that
A is the norm of a primitive principal ideal.

If r > 0 is even then
A = 2b/σ − (r/σ2 − 1) ≤ 2b/σ <

√
∆.

If r < 0 is even then
A = 2b/σ + r/σ2 − 1 ≤ 2(b− 1)/σ <

√
∆.
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If r > 0 is odd then
A = (2b− (r − 1))/σ2 ≤ 2b/σ2 <

√
∆, and if r < 0 is odd then

A = (2b + r − 1)/σ2 ≤ 2(b− 1)/σ2 <
√

∆.
Finally, we have

σ2αA =

{
(b + ασ)2 − d if r is even
(b + α)2 − d if r is odd

, where α =
{−1 if r < 0

1 if r > 0

}
. ¤

Remark 3.2. Although Theorems 2.1–2.2 of [4] are false as they stand,
and although Corollary 3.2 gives the (intended) correct version, Applica-
tions I–II of [4] are correct since they refer to ERD–types; (i.e., extended
Richaud–Degert types: d = b2 + r where 4b ≡ 0 (mod r)). It turns out
that the assumption of Corollary 3.2 holds for ERD–types; i.e., we have

Corollary 3.3. If d,A and s are as in Corollary 3.2 and d is of ERD–
type then

h(d) ≥ τ(A)− 2s−1 .

Proof. In view of Theorem 1.1 of [10] we need only check the con-
tinued fraction expansion of ω for each case. In what follows A ∼ 1 with
N(A) = A.

Case 1. d 6≡ 1 (mod 4).

(a) r > 0.

i 0 1 2
Pi 0 b b

Qi 1 r 1
ai b 2b/r 2b

Here A = 2b−r+1 >
√

∆/2 and
A is not reduced.

(b) r < 0.

i 0 1 2 3
Pi 0 b− 1 b + r b + r

Qi 1 2b + r − 1 −r
...

ai b− 1 1 −2(b + r)/r
...

Here A = 2b + r − 1 and A is reduced.
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Case 2. d ≡ 1 (mod 4).
(a) r > 0, even.

i 0 1 2
Pi 1 b b

Qi 2 r/2 2
ai (b + 1)/2 4b/r b

Here A = b− r/4 + 1 >
√

∆/2 and A is not reduced.

(b) r > 0, odd.

i 0 1 2 3 4
Pi 1 b− 1 (r + 1)/2 b− r b− r

Qi 2 b + (r − 1)/2 b− (r − 1)/2 2r
...

ai b/2 1 1 b/r − 1
...

Here A = (2b− (r − 1))/4 and A is reduced.

(c) r < 0, r even.

i 0 1 2 3
Pi 1 b− 2 b + r/2 b + r/2

Qi 2 2b + r/2− 2 −r/2
...

ai (b− 1)/2 1 −4b/r − 2
...

Here A = b + r/4− 1 and A is reduced.

(d) r < 0, odd.

i 0 1 2 3
Pi 1 b− 1 b + r b + r

Qi 2 b + (r − 1)/2 −2r
...

ai b/2 2 −b/r − 1
...

Here A = (2b + r − 1)/4 and A is reduced.
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In each and every one of the above cases we see that there is no divisor
m of A with 1 < m < A such that m is the norm of a principal reduced
ideal.

Remark 3.3. The choice of A in Corollaries 3.2–3.3 is no accident. It
is in fact a very natural one as the following elucidation will show.

Definition 3.1. If I = [a, (c +
√

∆)/2] is a primitive ideal then the
Lagrange neighbour I+ = [a+, (c+ +

√
∆)/2] is defined by c+ = −c +

2ab(c +
√

∆)/2ac and a+ = (∆ − (c+)2)/4a. In fact I ∼ I+ and if I is
reduced then so is I+.

Remark 3.4. Now consider the A in Corollaries 3.2–3.3. If r is even
then

I = [2b/σ−|r/σ2−1|, (b+ασ+
√

d)/σ] and I+ = [|r|/σ2, (b−|r|+
√

d)/σ] .

If r is odd then

I = [(2b− |r − 1|)/σ2, (b + α +
√

d )/σ]

and
I+ = [|r|, (b− |r|+

√
d )/σ] .

In the case where d is an ERD–type then, as seen in the proof of
Corollary 3.3, when I is reduced then I and I+ are the only reduced
principal ideals (other than I), except when r > 0 is odd and d ≡ 1
(mod 4) in which case we have the additional reduced ideal of norm (2b +
(r − 1))/4. This is why the hypothesis of Corollary 3.2 is satisfied for
ERD–types.

The following illustrates Corollaries 3.2–3.3.

Example 3.2.
(i) Let d = 777 = 3 · 7 · 37 = 282 − 7. Here A = 12 and h(d) = 4 =

τ(A)− 2
(ii) If d = 5482 = 742 + 6 then A = 143 = 11 · 13. Here the period

length of
√

d is 53 and neither 11 nor 13 appears as a Qi therein. We have
h(d) = 2 = τ(A)− 2.

(iii) If d = 21037 = 1452 + 12 then A = 143 and the period length of
(1+

√
d)/2 is 31 with neither 11 nor 13 appearing as a Qi/2 therein. Here

h(d) = 2 = τ(A)− 2.
It is conceivable that we could construct infinitely many such d’s with

h(d) = 2 and A a product of 2 primes. In Example 3.1, d = 385 is also of
this type and A = (2b − |r − 1|)/σ2 which along with Examples (i)–(iii)
above are the forms in Theorems 2.1–2.2 of [4]. The reason that Examples
3.1–3.2 are counterexamples to the latter is that the assumptions in Theo-
rems 2.1–2.2 of [4] are too weak by taking into account only relationships
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generated by the ramified primes (in (∗ ∗ ∗) of the proof of Theorem 3.1).
Thus the latter fail to hold whenever there is a non-principal ambiguous
ideal with norm dividing A, as is the case with the above 3 examples.
Observe that, for example, if d = 385 then the ideal above 2 generates the
class group, is non-principal, ambiguous and divides A. This motivates
the next result ensuing from Theorem 3.1.

Theorem 3.2. Let A > 0 be the norm of a primitive principal ideal
and assume that no divisor m of A <

√
∆ with 1 < m < A is the norm

of a reduced ideal which is in an ambiguous class (including the principal
class). Thus,

h(d) ≥ τ(A)− 2n

where n is the number of distinct primes dividing A, which ramify in K.

Proof. We proceed as in the proof of Theorem 3.1 and we get (∗∗∗)
which implies

∏

i∈I1

Pei
i

∏

i∈I2

P̄ei
i

∏

i∈I3

Pi ∼ 1 ∼
∏

i∈I1

Pei
i

∏

i∈I2

Pei
i

∏

i∈I3

Pi

which in turn implies that
∏

i∈I2

P2ei
i ∼ 1. Therefore J =

∏
i∈I2

Pei
i is an

ambiguous ideal and N(J) divides A. If N(J) >
√

∆/2 then since N(J)
divides A <

√
∆ we must have N(J) = A. Thus I1 = ∅ = I3 which means

fi = 0 for all i ∈ I, contradicting the non-triviality of
s∏

i=1

Pfi

i .

If N(J) <
√

∆/2 then by hypothesis N(J) = 1 or A. If N(J) = A
then we have a contradiction as above. If N(J) = 1 then I2 = ∅ and so
(∗ ∗ ∗) generates only the relationships

∏

i∈I−I0

Pi ∼
∏

i∈I0

Pei
i .

There are 2n such relationships.

Example 3.3. If d = 145 = 5 ·29 and A = 6 then neither 2 nor 3 is the
norm of an ideal in an ambiguous class because CK = 〈P2〉 = 〈P3〉 where
P2 | 2 and P3 | 3. Moreover neither P2

2 ∼ 1 nor P 2
3 ∼ 1. In fact h(d) = 4 >

τ(A)− 1 = 3. Theorem 3.2 has, however, such a strong hypothesis that it
cannot give any information if the class group has exponent 2 because in
such a case, if m divides A and 1 < m < A then m is necessarily a norm of
an ambiguous reduced ideal. However ERD–types satisfy the conclusion
of Theorem 3.2 without the restriction on ambiguous ideals.
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Theorem 3.3. If = b2 + r is of ERD–type and A is as in Corollary
3.2 then

h(d) ≥ τ(A)− 2n

where n is the number of ramified prime divisors of A.

Proof. We proceed exactly as in the proof of Theorem 3.2 except
that when N(J) <

√
∆/2 we do not invoke the hypothesis of Theorem 3.2,

but rather we observe that from the analysis in the proof of Corollary 3.3,
for each ERD case we must have N(J) = 1 or A.

Remark 3.5. Theorem 3.3 shows that Theorems 2.1–2.2 of [4] are cor-
rect for ERD–types and it was this fact that led to the more general albeit
incorrect versions given (without proof) in [4].

Remark 3.6. For narrow RD–types (i.e., those d = b2 + r with |r| = 1
or 4), there are much stronger bounds as given in [5]. These much stronger
bounds come from Lemma 1.1 of [8] which only has real substance for the
narrow RD–types. It does point to more general relevance via the following
result which we proved in [6].

In what follows an element α ∈ OK is said to be primitive if (α) 6= 1
is not divisible by any rational ideal except (1); i.e., α = (x + y

√
d)/σ

satisfies gcd(x, y) divides σ.

Proposition 3.1. If A > 0 is any real number then the following are
equivalent

(1) |x2 − dy2| = σ2m for 1 < m < A implies that m = t2 with
gcd(x, y) = t.

(2) |N(α)| ≥ A for all primitive α ∈ OK .

Remark. It turns out that for narrow RD–types, the A given in Corol-
lary 3.2 satisfies Proposition 3.1. In fact for narrow RD–types this A is
exactly B = (2td/σ − N(εd) − 1)/ud

2 where εd = (td + ud

√
d)/σ is the

fundamental unit of K. It is clear that this bound will not be very useful
as the fundamental unit becomes “large”. In [12]–[13] we explored this
bound further to completely solve a problem of H. Yokoi involving cer-
tain real quadratic fields of class number 1 (which it turns out includes all
of the ERD–types). Furthermore, as we proved in [14]; if h(d) = 1 then p
is inert in K for all primes p < B. For narrow RD–types this means p is
inert for all primes p <

√
∆/2. In [14] we proved that the latter condition

can only hold for narrow RD–types. In [15] we showed that p is inert for
all primes p with 2 < p <

√
∆/2 if and only if h(d) = 1 and d = b2 ± 2.

There are conjectures which remain open (as given in [9]) pertaining to
the exact list of such d’s with h(d) = 1. In [15] we completely classified
those d’s such that there is exactly one non-inert prime p <

√
∆/2. In [3]
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we classified those d’s for which there are no split primes p <
√

∆/2. In
the latter case the the d’s are forced to be of ERD–type, but not in the
former case. In just completed work the authors of [3] have classified and
listed all ERD–types with class groups of exponent 2. Previously in [16]
we solved the class number 1 problem for ERD–types (with one possible
exceptional value remaining whose existence would be a counterexample
to the Riemann hypothesis).

§4. Reduced ideals

In this section we develop criteria for ideals to be reduced in a way
heretofore not exploited in the literature. Moreover we then establish
necessary and sufficient conditions for two reduced ideals to be equivalent
in terms of the solution of certain diophantine equations. We then link the
latter to the results of section 3, and conclude with an open problem.

Theorem 4.1. Let I = [a, c + ω] be a primitive ideal in OK , then I is
reduced if and only if b−(c + ω̄)/aca > a− c− ω.

Proof. If I is reduced then by Theorem 2.1 there is a β ∈ I with
I = [a, β] and both β > a and −a < β̄ < 0. From the definition of equality
for ideals (see [18, §3, p.410]), we have that β = ta+c+ω for some rational
integer t; whence,

(1) ta + c + ω > a

and

(2) −a < ta + c + ω̄ < 0 .

From (2) we get that −(c + ω̄)/a − 1 < t < −(c + ω̄)/a; whence,
t = b−(c + ω̄)/ac. From (1) then

(3) b−(c + ω̄)/aca > a− c− ω .

Conversely assume that (3) holds and set β = b−(c+ω̄)/aca+c+ω ∈ I;
whence, I = [a, β]. Since (3) implies that β > a− c− ω + c + ω = a, and
0 = (−(c + ω̄)/a)a + c + ω̄ > β̄ > (−(c + ω̄)/a− 1)a + c + ω̄ = −a then by
Theorem 2.1 I is reduced.

As applications of Theorem 4.1 we easily achieve the well-known re-
sults [18, Corollary 3.5.1, and Theorem 3.6, p.412] as follows.

Corollary 4.1. If I = [a, c + ω] is reduced then a <
√

∆.

Proof. By Theorem 4.1 we achieve −c − ω̄ = (−(c + ω̄)/a) >

b−(c + ω̄)/aca > a− c− ω; whence, a < ω − ω̄ =
√

∆.
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Corollary 4.2. If I = [a, c + ω] is a primitive ideal with a <
√

∆/2
then I is reduced.

Proof. We have that

b−(c + ω̄)/aca > (−(c + ω̄)/a− 1)a = −c− ω̄ − a =

= (a− c− ω) + (ω − ω̄ − 2a) > a− c− ω ,

where the latter inequality holds because ω− ω̄− 2a =
√

∆− 2a > 0.

The following is not well-known and is valuable since it is often difficult
to determine when primitive ideals with norms between

√
∆ and

√
∆/2

are reduced.

Corollary 4.3. Let I = [a, c + ω] be a primitive ideal with 0 ≤ c < a

and
√

∆/2 ≤ a <
√

∆. Then I is reduced if and only if a− ω < c < −ω̄.

Proof. If I is reduced then Theorem 4.1 implies b−(c + ω̄)/aca >
a− c− ω.

Claim 1. b−(c + ω̄)/ac ≥ 0.
If b−(c + ω̄)/ac ≤ −1 then −a > a− c− ω; whence, ω − a > a− c >√

∆/2 − c; i.e., ω + c > a +
√

∆/2. If d 6≡ 1 (mod 4) this says c > a, a
contradiction. If d ≡ 1 (mod 4) this says that (1 +

√
d)/2 + c > a +

√
d/2;

i.e., c+1/2 > a, again a contradiction. Claim 1 then implies that −c−ω̄ >
0; i.e., c < −ω̄.

Claim 2. −(c + ω̄)/a < 1.
Since a + c + ω̄ ≥ a + ω̄ >

√
∆/2 + ω̄ > 0 then the result follows.

Claims 1 and 2 imply that b−(c + ω̄)/ac = 0. By (3) we get 0 >
a− c− ω; i.e., c > a− ω.

Conversely assume that a− ω < c < −ω̄. Thus, 0 < −(c + ω̄)/a < 1;
whence, b−(c + ω̄)/ac = 0 > a − c − ω. Theorem 4.1 now says that I is
reduced.

Now we develop necessary and sufficient conditions for two reduced
ideals to be equivalent in terms of the solutions of certain diophantine
equations.

Theorem 4.2. Let Ii = [ai, ci + ω] for i = 1, 2 be primitive ideals
in OK . Thus I1 ∼ I2 if and only if there are coprime integers x and y
satisfying the following three conditions.

(1) (σa1x + (σc1 + σ − 1)y)2 − dy2 = ±σ2a1a2.
(2) a2 | a1x + (c1 + c2 + σ − 1)y.
(3) σ2a1a2 | σ2a1(c2 − c1)x + (d− (σc1 + σ − 1)2)y.

Proof. We will only address the case where d 6≡ 1 (mod 4) since
similar arguments apply in the remaining cases.
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I1 ∼ I2 if and only if there exists a γ = a1x+(c1 +ω)y ∈ I1 such that

(γ)I2 = (a2)I1; i.e.

a1a2x + a2c1y + a2yω, a1c2x + c1c2y + dy + (a1x + (c1 + c2)y)ω]

= [a1a2, a2c1 + a2ω]; i.e., there exists an

M =
(

c11 c12
c21 c22

)
∈ SL2(Z)

such that
(

c11 c12
c21 c22

)(
a1 a2 0
a2 c1 a2

)
=

(
a1a2x + a2c2y a2y
a1c2x + c1c2y + dy a1x + (c1 + c2)y

)
.

It is clear that
i) a1a2c11 + a2c1c12 = a1a2x + a2c2y,
ii) a2c12 = a2y,
iii) a1a2c21 + a2c1c22 = a1c2x + c1c2y + dy,
iv) c22a2 = a1x + (c1 + c2)y,

and
v) c11c22 − c12c21 = ±1.

By ii) and i), we see that c12 = y and c11 = x.

From iv) c22 =
a1x + (c1 + c2)y

a2
∈ Z .

By iii) and iv), we find that

c21 =
a1(c2 − c1)x− (d− c2

1)y
a1a2

∈ Z .

Substitutions for c11, c12, c21, c22 in v) give

(a1x + c1y)2 − dy2 = ±a1a2, and

(x, y) = 1 . ¤

Corollary 4.4. With the hypothesis as in Theorem 4.2 any prime p | d
with p ≡ 1 (mod 4) satisfies (a1a2/p) = 1.

Proof. From the conclusion of Theorem 4.2 we have ((±σ2a1a2)/p)
= 1. Since p ≡ 1 (mod 4) the result follows.
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Corollary 4.5. Let Qi for 0 < i < k be those appearing in the con-
tinued fraction expansion of ω; then for any p | d with p ≡ 1 (mod 4) we
must have ((Qi/σ)/p) = 1.

Proof. Since [Qi/σ, (Pi − (σ − 1))/σ + ω] ∼ [1, ω] then by Corol-
lary 4.4 the result follows.

Now we link the above with the results of the previous section.

Remark. Let d = b2 + r with |r| < 2b and

A =

{
2b/σ − |r/σ2 − 1| if r is even

(2b− |r − 1|)/σ2 if r is odd

}
.

If ai denotes a divisor of A then

Ii =

{
[ai, (b + ασ +

√
d)/σ], r even

[ai, (b + α +
√

d)/σ], r odd

where α =
{

1 if r > 0
−1 if r < 0

}
is reduced.

The results of section 3 tell us that, for example, when d is of ERD–
type Ii 6∼ Ij for any divisors of A unless aiaj = A. Thus the conditions of
Theorem 4.2 cannot hold unless a1a2 = A. It would be valuable to find a
direct proof of this fact. We have not been able to do so, and we leave it is
an interesting open problem. Moreover it would be valuable to investigate
this question for non–ERD–types.
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