The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement

By USHANGI GOGINAVA (Tbilisi)

Abstract

The main aim of this paper is to prove that the maximal operator $\sigma^{* \chi}$ of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement is bounded from the Hardy space $H_{1 / 2}$ to the space weak- $L_{1 / 2}$ and is not bounded from the Hardy space $H_{1 / 2}\left(G_{p}\right)$ to the space $L_{1 / 2}\left(G_{p}\right)$.

1. Introduction

The first result with respect to the a.e. convergence of the Walsh-Fejér means $\sigma_{n} f$ is due to Fine [1]. Later, Schipp [5] showed that the maximal operator $\sigma^{*} f$ is of weak type $(1,1)$, from which the a.e. convergence follows by standard argument. Schipp's result implies by interpolation also the boundedness of σ^{*} : $L_{\alpha} \rightarrow L_{\alpha}(1<\alpha \leq \infty)$. This fails to hold for $\alpha=1$ but Fujir [2] proved that σ^{*} is bounded from the dyadic Hardy space H_{1} to the space L_{1} (see also Simon [6]). Fujii's theorem was extened by Weisz [10]. Namely, he proved that the maximal operator of the Fejér means of the one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space $H_{\alpha}(I)$ to the space $L_{\alpha}(I)$ for $\alpha>$ $1 / 2$. Simon [7] gave a counterexample, which shows that this boundedness does not hold for $0<\alpha<1 / 2$. In the endpoint case $\alpha=1 / 2$ Weisz [13] proved that σ^{*} is bounded from the Hardy space $H_{1 / 2}(I)$ to the space weak- $L_{1 / 2}(I)$.

If the Walsh system is taken in the Kaczmarz ordening, the analogue of the statement of Schipp [5] is due to GÁt [3]. Moreover he proved an (H_{1}, L_{1})-type estimation. Gát's result was extended to the Hardy space by Simon [8], who

[^0]proved that σ^{*} is of type $\left(H_{\alpha}, L_{\alpha}\right)$ for $\alpha>1 / 2$. Weisz [13] showed that in the endpoint case $\alpha=1 / 2$ the maximal operator is of weak type $\left(H_{1 / 2}, L_{1 / 2}\right)$.

GÁt and Nagy [4] proved the a.e. convergence $\sigma_{n}^{\chi} f \rightarrow f(n \rightarrow \infty)$ for an integrable function $f \in L_{1}\left(G_{p}\right)$, where $\sigma_{n} f$ is the Fejér means of the function f with respect to the character system in the Kaczmarz rearrangement. They also proved that the maximal operator $\sigma^{* \chi}$ is of type (α, α) for all $1<\alpha \leq+\infty$, of weak type $(1,1)$ and $\left\|\sigma^{*} f\right\|_{1} \leq c\|f\|_{H_{1}}$.

The main aim of this paper is to generalize the results of GÁt and NAGY [4] and we prove that the maximal operator $\sigma^{* \chi}$ of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement is bounded from the Hardy space $H_{1 / 2}\left(G_{p}\right)$ to the space weak- $L_{1 / 2}\left(G_{p}\right)$ and is not bounded from the Hardy space $H_{1 / 2}\left(G_{p}\right)$ to the space $L_{1 / 2}\left(G_{p}\right)$.

2. Definitions and notation

Let \mathbb{P} denote the set of positive integers, $\mathbb{N}:=\mathbb{P} \cup\{0\}$. Let $2 \leq p \in \mathbb{N}$ and denote by \mathbb{Z}_{p} the pth cyclic group, that is, \mathbb{Z}_{p} can be represented by the set $\{0,1, \ldots, p-1\}$, where the group operation is mod p addition and every subset is open. The Haar measure on \mathbb{Z}_{p} is given so that

$$
\mu_{k}(\{j\}):=\frac{1}{j} \quad(j \in \mathbb{Z})
$$

The group operation on G_{p} is coordinate-wise addition, the normalized Haar measure μ is the product measure. The topology on G_{p} is the product topology, a base for the neighborhoods of G_{p} can be given thus:

$$
\begin{gathered}
I_{0}(x):=G_{p}, \quad I_{n}(x):=\left\{y \in G_{p}: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\} \\
\left(x \in G_{p}, n \in \mathbb{N}\right) .
\end{gathered}
$$

Let $0=(0: i \in \mathbb{N}) \in G_{p}$ denote the null element of $G_{p}, I_{n}:=I_{n}(0)(n \in \mathbb{N})$. Let

$$
\Delta:=\left\{I_{n}(x): x \in G_{p}, n \in \mathbb{N}\right\}
$$

The elements of Δ are intervals of G_{p}. Set $e_{i}:=(0, \ldots, 0,1,0, \ldots) \in G_{p}$ the i th coordinate of which is 1 , the rest are zeros.

The norm (or quasinorm) of the space $L_{\alpha}\left(G_{p}\right)$ is defined by

$$
\|f\|_{\alpha}:=\left(\int_{G_{p}}|f(x)|^{\alpha} d \mu(x)\right)^{1 / \alpha} \quad(0<\alpha<+\infty) .
$$

Let $\Gamma(p)$ denote the character group of G_{p}. We arrange the elements of $\Gamma(p)$ as follows: For $k \in \mathbb{N}$ and $x \in G_{p}$ denote by r_{k} the k-th generalized Rademacher function:

$$
r_{k}(x):=\exp \left(\frac{2 \pi i x_{k}}{p}\right) \quad\left(i:=\sqrt{-1}, x \in G_{p}, k \in \mathbb{N}\right)
$$

Let $n \in \mathbb{N}$. Then

$$
n=\sum_{i=0}^{\infty} n_{i} p^{i}, \quad \text { where } 0 \leq n_{i}<p \quad\left(n_{i}, i \in \mathbb{N}\right)
$$

where n is expressed in the number system with base p. Put

$$
|n|:=\max \left(j \in \mathbb{N}: n_{j} \neq 0\right) \quad \text { i.e., } p^{|n|} \leq n<p^{|n|+1} .
$$

Now we define the sequence of functions $\psi:=\left(\psi_{n}: n \in \mathbb{N}\right)$ by

$$
\psi_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}} \quad\left(x \in G_{p}, n \in \mathbb{N}\right)
$$

We remark that $\Gamma(p)=\left\{\psi_{n}: n \in \mathbb{N}\right\}$ is a complete orthogonal system with respect to the normalized Haar measure on G_{p}.

The character group $\Gamma(p)$ can be given in the Kaczmarz rearrangement as follows: $\Gamma(p)=\left\{\chi_{n}: n \in \mathbb{N}\right\}$, where

$$
\begin{gathered}
\chi_{n}(x):=r_{|n|}^{n_{|n|}}(x) \prod_{k=0}^{|n|-1}\left(r_{|n|-1-k}(x)\right)^{n_{k}} \quad\left(x \in G_{p}, n \in \mathbb{P}\right), \\
\chi_{0}(x)=1 \quad\left(x \in G_{p}\right) .
\end{gathered}
$$

Let the transformation $\tau_{A}: G_{p} \rightarrow G_{p}$ be defined as follows:

$$
\tau_{A}(x):=\left(x_{A-1}, x_{A-2}, \ldots, x_{0}, x_{A}, x_{A+1}, \ldots\right)
$$

The transformation is measure-preserving and $\tau_{A}\left(\tau_{A}(x)\right)=x$. By the definition of τ_{A}, we have

$$
\chi_{n}(x)=r_{|n|}^{n_{|n|}}(x) \psi_{n-n_{|n|} p^{n}}\left(\tau_{|n|}(x)\right) \quad\left(n \in \mathbb{N}, x \in G_{p}\right) .
$$

For a function f in $L_{1}\left(G_{p}\right)$ the Fourier coefficients, the partial sums of Fourier series, the Dirichlet kernels, the Fejér means and the Fejér kernels are defined as follows:

$$
\begin{gathered}
\hat{f}^{\gamma}(n):=\int_{G_{p}} f \gamma_{n}, \quad S_{n}^{\gamma}(f, x):=\sum_{k=0}^{n-1} \hat{f}^{\gamma}(k) \gamma_{k}(x), \quad D_{n}^{\gamma}:=\sum_{k=0}^{n-1} \gamma_{k}, \\
\\
\sigma_{n}^{\gamma}(f):=\frac{1}{n} \sum_{k=1}^{n} S_{k}^{\gamma}(f), \quad K_{n}^{\gamma}:=\frac{1}{n} \sum_{k=1}^{n} D_{k}^{\gamma \alpha}(x),
\end{gathered}
$$

where $\gamma_{n}=\psi_{n}$ or χ_{n}.
Let

$$
K_{a, b}:=\sum_{j=a}^{a+b-1} D_{j}^{\gamma} \quad(a, b \in \mathbb{N})
$$

and

$$
n^{(s)}:=\sum_{i=s}^{\infty} n_{i} p^{i} \quad(n, s \in \mathbb{N})
$$

By a simple calculation we get

$$
\begin{equation*}
n K_{n}^{\gamma}=\sum_{s=0}^{|n|} \sum_{l=0}^{n_{s}-1} K_{n^{(s+1)}+l p^{s}, p^{s}}^{\gamma}+D_{n}^{\gamma} \tag{1}
\end{equation*}
$$

The p^{n} th Dirichlet kernels have a closed form:

$$
D_{p^{n}}^{\psi}(x)=D_{p^{n}}^{\chi}(x)=\left\{\begin{array}{ll}
p^{n} & \text { if } x \in I_{n}, \tag{2}\\
0 & \text { if } x \notin I_{n},
\end{array} \quad \text { where } x \in G_{p}\right.
$$

We define the maximal operator

$$
\sigma^{* \gamma} f:=\sup _{n \in \mathbb{P}}\left|\sigma_{n}^{\gamma} f\right| \quad\left(f \in L_{1}\left(G_{p}\right)\right.
$$

The space weak- $L_{\alpha}\left(G_{p}\right)$ consists of all measurable functions f for which

$$
\|f\|_{\text {weak }-L_{\alpha}\left(G_{p}\right)}:=\sup _{\rho>0} \rho \mu(|f|>\rho)^{1 / \alpha}<+\infty
$$

The σ-algebra generated by the intervals I_{k} of length p^{-k} will be denoted by $F_{k}(k \in N)$.

Denote by $f=\left(f^{(n)}, n \in \mathbb{N}\right)$ the one-parameter martingale with respect to ($F_{n}, n \in N$) (for details see, e.g., [9]-[12]) The maximal function of a martingale f is defined by

$$
f^{*}=\sup _{n \in N}\left|f^{(n)}\right|
$$

In case $f \in L_{1}\left(G_{p}\right)$, the maximal function can also be given by

$$
f^{*}(x)=\sup _{n \geq 1} \frac{1}{\mu\left(I_{n}(x)\right)}\left|\int_{I_{n}(x)} f(u) d \mu(u)\right|, \quad x \in G_{p}
$$

For $0<\alpha \leq \infty$ the Hardy martingale space $H_{p}\left(G_{p}\right)$ consists all martingales for which

$$
\|f\|_{H_{\alpha}}:=\left\|f^{*}\right\|_{\alpha}<\infty
$$

If $f \in L_{1}\left(G_{p}\right)$ then it is easy to show that the sequence $\left(S_{p^{n}}(f): n \in \mathbb{N}\right)$ is a martingale. If f is a martingale, that is $f=\left(f^{(0)}, f^{(1)}, \ldots\right)$, then the Fourier coefficients must be defined in a slightly different way:

$$
\widehat{f}(j)=\lim _{k \rightarrow \infty} \int_{G_{p}} f^{(k)}(x) \gamma_{j}(x) d x
$$

The Fourier coefficients of $f \in L_{1}\left(G_{p}\right)$ are the same as those of the martingale $\left(S_{p^{n}}(f): n \in \mathbb{N}\right)$ obtained from f.

A bounded measurable function a is an α-atom, if there exists an interval I, such that
a) $\int_{I} a d \mu=0$;
b) $\|a\|_{\infty} \leq \mu(I)^{-1 / \alpha}$;
c) $\operatorname{supp} a \subset I$.

3. Formulation of the main results

Theorem 1. The maximal operator $\sigma^{* \chi}$ is bounded from the Hardy space $H_{1 / 2}\left(G_{p}\right)$ to the space weak- $L_{1 / 2}\left(G_{p}\right)$.

Theorem 2. The maximal operator $\sigma^{* \chi}$ is not bounded from the Hardy space $H_{1 / 2}\left(G_{p}\right)$ to the space $L_{1 / 2}\left(G_{p}\right)$.

4. Auxiliary propositions

We shall need the following lemmas (see [4], [13]).
Lemma 1 (Weisz). Suppose that an operator V is sublinear, and for some $0<\alpha<1$

$$
\sup _{\rho>0} \rho^{\alpha} \mu\left\{x \in C_{p} \backslash I:|V a(x)|>\rho\right\} \leq c_{\alpha}<\infty
$$

for every α-atom a, where I denotes the support of the atom. If V is bounded from $L_{\alpha_{1}}$ to $L_{\alpha_{1}}$ for a fixed $1<\alpha_{1} \leq \infty$, then

$$
\|V f\|_{\text {weak- } L_{\alpha}\left(G_{p}\right)} \leq c_{\alpha}\|f\|_{H_{\alpha}}
$$

Lemma 2 (Gát, Nagy). Suppose that $s, b, n \in \mathbb{N}$ and $x \in I_{b} \backslash I_{b+1}$. If $s \leq b \leq|n|$, then

$$
\left|K_{n^{(s+1)}+l p^{s}, p^{s}}^{\psi}(x)\right| \leq c p^{s+b}
$$

while if $b<s \leq|n|$, then

$$
K_{n^{(s+1)}+l p^{s}, p^{s}}^{\psi}(x)= \begin{cases}0 & \text { if } x-x_{b} e_{b} \notin I_{s} \\ \omega_{n^{(s+1)}}(x) p^{s+b-1} & \text { if } x-x_{b} e_{b} \in I_{s}\end{cases}
$$

Lemma 3 (Gát, Nagy). Let $A \in \mathbb{N}$ and $n:=n_{A} p^{A}+n_{A-1} p^{A-1}+\ldots+n_{0} p^{0}$. Then

$$
\begin{aligned}
n K_{n}^{\chi}(x)= & 1+\sum_{j=0}^{A-1} \sum_{i=1}^{p-1} r_{j}^{i}(x) p^{j} K_{p^{j}}^{\psi}\left(\tau_{j}(x)\right)+\sum_{j=0}^{A-1} p^{j} D_{p^{j}}^{\psi}(x) \sum_{l=1}^{p-1} \sum_{i=0}^{l-1} r_{j}^{l}(x) \\
& +p^{A} \sum_{l=1}^{n_{A}-1} r_{A}^{l}(x) K_{p^{A}}^{\psi}\left(\tau_{A}(x)\right)+r_{A}^{n_{A}}(x)\left(n-n_{A} p^{A}\right) K_{n-n_{A} p^{A}}^{\psi}\left(\tau_{A}(x)\right) \\
& +\left(n-n_{A} p^{A}\right) \sum_{i=0}^{n_{A}-1} r_{A}^{i}(x) D_{p^{A}}^{\psi}(x)+p^{A} \sum_{j=1}^{n_{A}-1} \sum_{i=0}^{j-1} r_{A}^{i}(x) D_{p^{A}}^{\psi}(x)
\end{aligned}
$$

Corollary 1. We have

$$
\sup _{n} \int_{G_{p}}\left|K_{n}^{\chi}(x)\right| d \mu(x)<+\infty
$$

Lemma 4. Let $n<p^{A+1}, A>N$ and $x \in I_{N}\left(x_{0}, \ldots, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq\right.$ $0,0, \ldots, 0), m=-1,0, \ldots, l-1, l=0, \ldots, N-1$. Then

$$
\int_{I_{N}} n\left|K_{n}^{w}\left(\tau_{A}(x-t)\right)\right| d \mu(t) \leq c \frac{p^{A}}{p^{m+l}}
$$

where

$$
\begin{aligned}
& I_{N}\left(x_{0}, \ldots, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right) \\
:= & I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right), \quad \text { for } m=-1
\end{aligned}
$$

Proof. It is evident that for $x \in I_{N}\left(x_{0}, \ldots, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)$ we have

$$
\begin{equation*}
\int_{I_{N}}\left|D_{n}^{\chi}(x-t)\right| d \mu(t) \leq c \sum_{j=0}^{A} \int_{I_{N}}\left|D_{p^{j}}^{\psi}\left(\tau_{A}(x-t)\right)\right| d \mu(t) \leq c \sum_{j=0}^{A-l} \frac{p^{j}}{p^{A}} \leq \frac{c}{p^{l}} \tag{3}
\end{equation*}
$$

From Lemma 2 we obtain that $K_{n^{(s+1)}+l p^{s}, p^{s}}^{w}\left(\tau_{A}(x-t)\right)=0$ for $s \geq A-m$. Hence we can suppose that $s<A-m$.

Using Lemma $2 K_{n^{(s+1)}+l p^{s}, p^{s}}^{w}\left(\tau_{A}(x-t)\right) \neq 0$ implies that

1) $t \in I_{N}\left(0, \ldots, 0, x_{N}, \ldots, x_{A-1}\right) \quad$ if $0 \leq s<A-m$;
2) $t \in I_{A}\left(0, \ldots, 0, x_{N}, \ldots, x_{q-1}, t_{q} \neq x_{q}, x_{q+1}, \ldots, x_{A-1}\right)$ if $A-N<s<A-l$;
3) $t \in I_{A}\left(0, \ldots, 0, t_{N}, \ldots, t_{A-s-1}, x_{A-s}, \ldots, x_{q-1}, t_{q} \neq x_{q}, x_{q+1}, \ldots, x_{A-1}\right)$ if $1 \leq s \leq A-N$;
4) $t \in I_{A}\left(0, \ldots, 0, t_{N}, \ldots, t_{q-1}, t_{q} \neq x_{q}, x_{q+1}, \ldots, x_{A-s}, \ldots, x_{A-1}\right)$ if $1 \leq s<A-N$;
consequently, from (1) and (3) we can write

$$
\begin{array}{rl}
\int_{I_{N}} & n\left|K_{n}^{w}\left(\tau_{A}(x-t)\right)\right| d \mu(t) \\
\leq & \sum_{s=0}^{A-m} \sum_{l=0}^{n_{s}-1} \int_{I_{N}}\left|K_{n^{(s+1)}+l p^{s}, p^{s}}^{w}\left(\tau_{A}(x-t)\right)\right| d \mu(t)+\int_{I_{N}}\left|D_{n}^{\chi}(x-t)\right| d \mu(t) \\
\leq & c\left\{\sum_{s=0}^{A-m} \frac{p^{s+A-l}}{p^{A}}+\sum_{s=A-N}^{A-l} \sum_{q=N}^{A} \frac{p^{s+A-q}}{p^{A}}\right. \\
& \left.+\sum_{s=0}^{A-N} \sum_{q=A-s}^{A} \frac{p^{s+A-q} p^{A-s-N}}{p^{A}}+\sum_{s=0}^{A-N} \sum_{q=N}^{A-s} \frac{p^{s+A-q} p^{q-N}}{p^{A}}\right\} \\
\leq & c\left\{\frac{p^{A}}{p^{m+l}}+\frac{p^{A}}{p^{N+l}}+\frac{p^{A}}{p^{2 N}}+\sum_{s=0}^{A-N} \frac{p^{s}(A-s-N+1)}{p^{2 N}}\right\} \leq c \frac{p^{A}}{p^{m+l}} .
\end{array}
$$

Lemma 4 is proved.
Lemma 5. Let $n \in \mathbb{N}$. Then

$$
\int_{G_{p}} \max _{1 \leq N \leq 2^{n}}\left(N\left|K_{N}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \geq c \frac{n+1}{\log (n+2)} .
$$

Proof. It is evident that

$$
\int_{G_{p}} D_{j}^{\psi}\left(\tau_{n}(x)\right) D_{i}^{\psi}\left(\tau_{n}(x)\right) d \mu(x)=\int_{G_{p}} D_{j}^{\psi}(x) D_{i}^{\psi}(x) d \mu(x)=\min \{i, j\} .
$$

Then we can write

$$
\begin{align*}
\int_{G_{p}}\left(\sum_{j=1}^{N} D_{j}^{\psi}\left(\tau_{n}(x)\right)\right)^{2} d \mu(x) & =\sum_{j=1}^{N} \sum_{i=1}^{N} \int_{G_{p}} D_{j}^{\psi}\left(\tau_{n}(x)\right) D_{i}^{\psi}\left(\tau_{n}(x)\right) d \mu(x) \\
& =\sum_{j=1}^{N} \sum_{i=1}^{N} \min \{i, j\} \geq c_{0} N^{3} \tag{4}
\end{align*}
$$

It is well-known that

$$
\begin{equation*}
\int_{G_{p}}\left|K_{N}^{\psi}\left(\tau_{n}(x)\right)\right| d \mu(x) \leq c_{1}<\infty, \quad N=1,2, \ldots, p^{n}, n=0,1, \ldots \tag{5}
\end{equation*}
$$

Denote

$$
A_{N_{i}}:=\left\{x \in G_{p}:\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right| \leq \frac{c_{0}}{2 c_{1}} N_{i}\right\}
$$

and

$$
B_{N_{i}}:=G_{p} \backslash A_{N_{i}}
$$

where

$$
N_{i}:=\frac{p^{n}}{n^{3 i}}, \quad i=1,2, \ldots,\left[\frac{n}{3 \log _{2} n}\right], n \geq 2
$$

By (5) and from the fact that $\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|=O\left(N_{i}\right)$ we can write

$$
\begin{aligned}
c_{0} N^{3} \leq & \int_{G_{p}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{2} d \mu(x)=\int_{A_{N_{i}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{2} d \mu(x) \\
& +\int_{B_{N_{i}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{2} d \mu(x) \leq \frac{c_{0}}{2 c_{1}} N_{i}^{3} \int_{A_{N_{i}}}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right| d \mu(x) \\
& +\int_{B_{N_{i}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{3 / 2}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \\
\leq & \frac{c_{0}}{2} N_{i}^{3}+c_{2} N_{i}^{3} \int_{B_{N_{i}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x),
\end{aligned}
$$

consequently

$$
\begin{equation*}
\int_{B_{N_{i}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \geq c_{3}>0 \tag{6}
\end{equation*}
$$

Denote

$$
C_{N_{i}}:=B_{N_{i}} \backslash \bigcup_{j=1}^{i-1} B_{N_{j}} .
$$

From the definition of the set $B_{N_{i}}$ we obtain

$$
\frac{c_{0}}{2 c_{1}} N_{i} \mu\left(B_{N_{j}}\right)<\int_{B_{N_{i}}}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right| d \mu(x) \leq \int_{G_{p}}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right| d \mu(x) \leq c_{1}
$$

hence

$$
\begin{equation*}
\mu\left(B_{N_{j}}\right) \leq \frac{c_{4}}{N_{i}} \tag{7}
\end{equation*}
$$

Combining (6) and (7) we get

$$
\begin{aligned}
& \int_{C_{N_{i}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \geq \int_{B_{N_{i}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \\
& \quad-\sum_{j=1}^{i-1} \int_{C_{N_{j}}}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \geq c_{3}-c_{4} N_{i} \sum_{j=1}^{i-1} \operatorname{mes}\left(C_{N_{j}}\right) \\
& \quad \geq c_{3}-c_{5} N_{i} \sum_{j=1}^{i-1} \frac{1}{N_{j}} \geq c_{3}-\frac{c_{6}}{n^{3}} \geq c_{7}, \quad \text { for } n \geq n_{0} .
\end{aligned}
$$

Consequently we can write

$$
\begin{aligned}
& \int_{G_{p}} \max _{1 \leq N \leq 2^{n}}\left(N\left|K_{N}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \\
& \quad \geq \sum_{j=1}^{[n /(3 \log n)]} \int_{C_{N_{i}}} \max _{1 \leq N \leq 2^{n}}\left(N\left|K_{N}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \\
& \quad \geq \sum_{j=1}^{[n /(3 \log n)]}\left(N_{i}\left|K_{N_{i}}^{\psi}\left(\tau_{n}(x)\right)\right|\right)^{1 / 2} d \mu(x) \geq c_{8} \frac{n}{\log n}
\end{aligned}
$$

which completes the proof of Lemma 5.

5. Proofs of the main results

Proof of Theorem 1. Let a be an arbitrary atom with support I and $\mu(I)=p^{-N}$. We may assume that $I=I_{N}$. It is easy to see that $\sigma_{n}(a)=0$ if $n \leq p^{N}$. Therefore we can suppose that $n>p^{N}$.

From Lemma 3 and (2) we write

$$
\sigma_{n}^{\chi} a(x)=\int_{G_{p}} a(t) K_{n}^{\chi}(x-t) d \mu(t)=\int_{I_{N}} a(t) K_{n}^{\chi}(x-t) d \mu(t)
$$

$$
\begin{align*}
= & \frac{1}{n} \sum_{j=N+1}^{A-1} p^{j} \sum_{l=1}^{p-1} \int_{I_{N}} a(t) r_{j}^{l}(x-t) K_{p^{j}}^{\psi}\left(\tau_{j}(x-t)\right) d \mu(t) \\
& +\frac{p^{A}}{n} \sum_{l=1}^{n_{A}-1} \int_{I_{N}} a(t) r_{j}^{l}(x-t) K_{p^{A}}^{\psi}\left(\tau_{A}(x-t)\right) d \mu(t) \\
& +\frac{1}{n} \int_{I_{N}} a(t) r_{A}^{n_{A}}(x-t) n^{(A-1)} K_{n^{(A-1)}}^{\psi}\left(\tau_{A}(x-t) d \mu(t t)\right. \\
= & \sigma_{n}^{1, \chi} a(x)+\sigma_{n}^{2, \chi} a(x)+\sigma_{n}^{3, \chi} a(x) . \tag{8}
\end{align*}
$$

Since $|a| \leq c p^{N / \alpha}$, we have

$$
\begin{equation*}
\left|\sigma_{n}^{1, \chi} a(x)+\sigma_{n}^{2, \chi} a(x)\right| \leq \frac{c p^{N / \alpha}}{n} \sum_{j=N+1}^{A} p^{j} \int_{I_{N}}\left|K_{p^{j}}^{\psi}\left(\tau_{j}(x-t)\right)\right| d \mu(t) \tag{9}
\end{equation*}
$$

Let

$$
\begin{aligned}
& x \in I_{N}\left(x_{0}, \ldots, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right) \\
& \text { for some } m=-1,0, \ldots, l-1, l=0, \ldots, N-1
\end{aligned}
$$

Then using Lemma $2 K_{p^{j}}^{\psi}\left(\tau_{j}(x-t)\right) \neq 0$ implies that

$$
t \in I_{j}\left(0, \ldots, 0, x_{N}, \ldots, x_{j-1}\right), \quad m=l, x_{0}=\cdots=x_{m-1}=0
$$

Consequently we can write

$$
\begin{align*}
\left|\sigma_{n}^{1, \chi} a(x)+\sigma_{n}^{2, \chi} a(x)\right| & \leq \frac{c p^{N / \alpha}}{p^{A}} \sum_{j=N+1}^{A} p^{j} \frac{p^{j-l}}{p^{j}} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x) \\
& \leq \frac{c p^{N / \alpha}}{p^{l}} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x) \tag{10}
\end{align*}
$$

From Lemma 4 we have

$$
\begin{align*}
\left|\sigma_{n}^{3, \chi} a(x)\right| & \leq \frac{c p^{N / \alpha}}{p^{A}} \int_{I_{N}}\left(n-n_{A} p^{A}\right)\left|K_{n-n_{A} p^{A}}^{\psi}\left(\tau_{A}(x-t)\right)\right| d \mu(t) \\
& \leq \frac{c p^{N / \alpha}}{p^{A}} \frac{p^{A}}{p^{m+l}} \leq \frac{c p^{N / \alpha}}{p^{m+l}} \tag{11}
\end{align*}
$$

Combining (8)-(11) we get

$$
\begin{equation*}
\sigma^{* \chi} a(x) \leq \frac{c p^{N / \alpha}}{p^{l}} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x)+\frac{c p^{N / \alpha}}{p^{m+l}} \tag{12}
\end{equation*}
$$

for

$$
\begin{gathered}
x \in I_{N}\left(x_{0}, \ldots, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right) \\
m=-1,0, \ldots, l-1, l=0, \ldots, N-1
\end{gathered}
$$

Now we apply Lemma 1. We may suppose that $a \in L_{\infty}\left(G_{p}\right)$ is a $1 / 2$-atom with respect to $I_{N}(n \in \mathbb{N})$. Denote

$$
\begin{gathered}
I_{N}^{m, l}:=I_{N}\left(x_{0}, \ldots, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right), \\
m=-1,0, \ldots, l-1, l=0, \ldots, N-1
\end{gathered}
$$

Then it is evident that

$$
G_{p} \backslash I_{N}=\bigcup_{l=0}^{N-1} \bigcup_{m=-1}^{l-1} \bigcup_{x_{0}=0}^{p-1} \cdots \bigcup_{x_{m-1}=0}^{p-1} \bigcup_{x_{m}=1}^{p-1} \bigcup_{x_{l}=1}^{p-1} I_{N}^{m, l}
$$

Suppose that $\rho=c p^{\lambda}$ for some $\lambda \in \mathbb{N}$. Then from (10) we have

$$
p^{\lambda / 2} \mu\left\{x \in G_{p} \backslash I_{N}: \sup _{n}\left|\sigma_{n}^{1, \chi} a(x)+\sigma_{n}^{2, \chi} a(x)\right|>c p^{\lambda}\right\}=0
$$

for $\lambda>2 N-l$. Hence we can suppose that $\lambda \leq 2 N-l$ and $x \in I_{N}\left(0, \ldots, x_{l} \neq\right.$ $0,0, \ldots, 0)$ for some $l=0, \ldots, N-1$. Now we get

$$
\begin{aligned}
& p^{\lambda / 2} \mu\left\{x \in G_{p} \backslash I_{N}: \sup _{n}\left|\sigma_{n}^{1, \chi} a(x)+\sigma_{n}^{2, \chi} a(x)\right|>p^{\lambda}\right\} \\
& \leq c p^{\lambda / 2} \sum_{l=0}^{2 N-\lambda} \sum_{x_{l}=1}^{p-1} \frac{1}{p^{N}} \leq c \frac{N-\lambda / 2}{p^{N-\lambda / 2}} \leq c<\infty
\end{aligned}
$$

Using the estimation (11) we have

$$
p^{\lambda / 2} \mu\left\{x \in G_{p} \backslash I_{N}: \sup _{n}\left|\sigma_{n}^{3, \chi} a(x)\right|>c p^{\lambda}\right\}=0
$$

for $\lambda>2 N-m-l$. Therefore we can suppose that $\lambda \leq 2 N-m-l$. Then we obtain

$$
\begin{aligned}
& p^{\lambda / 2} \mu\left\{x \in G_{p} \backslash I_{N}: \sup _{n}\left|\sigma_{n}^{3, \chi} a(x)\right|>c p^{\lambda}\right\} \\
\leq & c p^{\lambda / 2} \sum_{l=0}^{N-1} \sum_{m=-1}^{l-1} \sum_{x_{0}=0}^{p-1} \ldots \sum_{x_{m-1}=0}^{p-1} \sum_{x_{m}=1}^{p-1} \sum_{x_{l}=1}^{p-1} \mu\left\{x \in I_{N}^{m, l}: \sup _{n}\left|\sigma_{n}^{3, \chi} a(x)\right|>c p^{\lambda}\right\} \\
\leq & c p^{\lambda / 2}\left\{\sum_{l=0}^{N-\lambda / 2} \sum_{m=0}^{l} \frac{p^{m}}{p^{N}}+\sum_{l=N-\lambda / 2}^{2 N-\lambda} \sum_{m=0}^{2 N-\lambda-l} \frac{p^{m}}{p^{N}}\right\} \leq c<\infty .
\end{aligned}
$$

Theorem 1 is proved.

Proof of Theorem 2. Let $n \in \mathbb{P}$ and

$$
f_{n}(x):=D_{p^{n+1}}^{\chi}(x)-D_{p^{n}}^{\chi}(x)=D_{p^{n+1}}^{\psi}(x)-D_{p^{n}}^{\psi}(x)
$$

It is evident that

$$
\widehat{f}_{n}^{\chi}(v)= \begin{cases}1 & \text { if } v=p^{n}, \ldots, p^{n+1}-1 \\ 0 & \text { otherwise }\end{cases}
$$

Now we can write that

$$
S_{k}^{\chi}\left(f_{n} ; x\right)= \begin{cases}0, & \text { if } k=0, \ldots, p^{n} \tag{13}\\ D_{k}^{\chi}(x)-D_{p^{n}}^{\chi}(x), & \text { if } k=p^{n}+1, \ldots, p^{n+1}-1, \\ f_{n}(x), & \text { if } k \geq p^{n+1}\end{cases}
$$

We have

$$
\begin{gather*}
f_{n}^{* \chi}(x)=\sup _{k}\left|S_{p^{k}}^{\chi}\left(f_{n} ; x\right)\right|=\left|f_{n}(x)\right| \\
\left\|f_{n}\right\|_{H_{\alpha}}=\left\|f_{n}^{*}\right\|_{\alpha}=\left\|D_{p^{n}}^{\chi}(x)\right\|_{\alpha}=p^{n(1-1 / \alpha)} \tag{14}
\end{gather*}
$$

Since

$$
D_{k+p^{n}}^{\chi}(x)-D_{p^{n}}^{\chi}(x)=w_{p^{n}}(x) D_{k}^{\psi}\left(\tau_{n}(x)\right), \quad k=1,2, \ldots, p^{n}
$$

from (13) we obtain

$$
\begin{aligned}
\sigma^{* \chi} f_{n}(x) & \geq \max _{1 \leq N \leq p^{n}}\left|\sigma_{p^{n}+N}^{\chi}\left(f_{n} ; x\right)\right| \\
& =\max _{1 \leq N \leq p^{n}} \frac{1}{p^{n}+N}\left|\sum_{k=p^{n}+1}^{p^{n}+N} S_{k}^{\chi}\left(f_{n} ; x\right)\right| \\
& \geq \frac{1}{2 p^{n}} \max _{1 \leq N \leq p^{n}}\left|\sum_{k=p^{n}+1}^{p^{n}+N}\left(D_{k}^{\chi}(x)-D_{p^{n}}^{\chi}(x)\right)\right| \\
& =\frac{1}{2 p^{n}} \max _{1 \leq N \leq p^{n}}\left|\sum_{k=1}^{N}\left(D_{k+p^{n}}^{\chi}(x)-D_{p^{n}}^{\chi}(x)\right)\right| \\
& =\frac{1}{2 p^{n}} \max _{1 \leq N \leq p^{n}}\left|\sum_{k=1}^{N} D_{k}^{\psi}\left(\tau_{n}(x)\right)\right| .
\end{aligned}
$$

From Lemma 5 we get

$$
\begin{align*}
\frac{\left\|\sigma^{*} \chi f_{n}\right\|_{1 / 2}}{\left\|f_{n}\right\|_{1 / 2}} & \geq \frac{1}{2 p^{n} p^{-n}}\left(\int_{I^{d}} \max _{1 \leq N \leq 2^{n}}\left(N\left|K_{N}(x)\right|\right)^{1 / 2} d \mu(x)\right)^{2} \\
& \geq c\left(\frac{n+1}{\log (n+2)}\right)^{2} \rightarrow \infty \text { as } n \rightarrow \infty \tag{15}
\end{align*}
$$

Combining (14) and (15) we complete the proof of Theorem 2.

References

[1] J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA 41 (1955), 558-591.
[2] N. J. Fujir, Cesàro summability of Walsh-Fourier series, Proc. Amer. Math. Soc. 77 (1979), 111-116.
[3] G. GÁt, On $(C, 1)$ summability of integrable function with respect to the Walsh-Kaczmarz system, Studia Math. 130 (1998), 135-148.
[4] G. GÁt and K. Nagy, Cesàro summability of the character system of the p-series field in the Kaczmarz rearrangement, Analysis. Math. 28 (2002), 1-23.
[5] F. Schipp, Certain rearrangements of series in the Walsh series, Mat. Zametki 18 (1975), 193-201.
[6] P. Simon, Investigation with respect to the Vilenkin system, Ann. Univ. Sci. Sect. Math. (Budapest) 27 (1985), 87-101.
[7] P. Simon, Cesàro summability with respect to two-parameter Walsh system, Monatsh. Math. 131 (2000), 321-334.
[8] P. Simon, On the Cesàro summability with respect to the Walsh-Kaczmarz system, J. Approx. Theory 106 (2000), 249-261.
[9] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Springer, Berlin - Heidelberg - New York, 1994.
[10] F. Weisz, Cesàro summability of one and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), 229-242.
[11] F. Weisz, Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory § its Appl. 17,2 (2001), 32-44.
[12] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces, Kluwer Academic, Dordrecht, 2002.
[13] F. Weisz, ϑ-summability of Fourier series, Acta Math. Hungar. 103(1-2) (2004), 139-176.
USHANGI GOGINAVA
DEPARTMENT OF MECHANICS AND MATHEMATICS
TBILISI STATE UNIVERSITY
CHAVCHAVADZE STR. 1
TBILISI 0128
GEORGIA
E-mail: z_goginava@hotmail.com

[^0]: Mathematics Subject Classification: 42C10.
 Key words and phrases: character system, weak type inequality.

