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On the set of the largest prime divisors

By IGOR E. SHPARLINSKI (Sydney) and DANIEL SUTANTYO (Sydney)

Abstract. In this paper we obtain lower bounds on the set of the largest prime

divisors P (a(n)) of various sequences a(n) for n ≤ x. In particular we obtain such

results for polynomial sequences and for linear recurrence sequences.

1. Introduction

For an integer k we use P (k) to denote the largest prime divisor of k (we
also put P (0) = 0 and P (±1) = 1).

Give an integer-valued sequence A = (a(n))∞n=1 and a real positive x, we
denote

SA(x) = {P (a(n)) : n ≤ x}.
Certainly studying the size and other properties of P (a(n)) for various sequences
A is a classical number theoretic question, which has been studied for various
sequences including shifted primes, polynomials and linear recurrence sequences,
for example, see [1], [3], [7]–[9], [11]–[17] and references therein. On the other
hand, the question about the cardinality of set SA(x) appears to be new. We
however mention a result of [10] about

{P (a1 + · · ·+ ak) : ai ∈ Ai, i = 1, . . . , k}
where A1, . . . ,Ak are k arbitrary sufficiently dense sets of integers.

It also follows immediately from the result of [2] that for the sequence Pa =
(`(n) + a)∞n=1 of consecutive shifted prime numbers (where `(n) denotes the nth
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prime) the corresponding set SPa
(x) consists of all primes in the interval [1, xγ ]

for any γ < 17/33.
Throughout the paper, any implied constants in the symbols ‘O’, ‘¿’ and

‘À’ may depend (where obvious) on the sequence A and are absolute otherwise.
We recall that the statements A ¿ B and B À A are equivalent to A = O(B)
for positive functions A and B.

2. Auxiliary results

We employ some well known results on the distribution of the values of the
largest prime divisor for various sequences.

For a given nonconstant polynomial g(X) ∈ Z[X], we use ψg(x, y) to denote
the number of positive integers n ≤ x with P (g(n)) ≤ y, that is,

ψg(x, y) = #{n ≤ x : P (g(n)) ≤ y}.

We have the following bound from [18], which in turn improves some results
from [5]:

Lemma 1. Let g(X) ∈ Z[X] be a polynomial of degree deg g = k ≥ 2
having t irreducible divisors over Z. Then, for any fixed ε > 0 and all sufficiently

large x, we have

ψg(x, y) ≤ (t + ε)bvc x

k(k − 1)bvc−1vbvc

for y = x1/v, and 1 ≤ v ≤
√

log x/(2 + ε).

Let U = (u(n))∞n=1 be a linear recurrence sequence of integers satisfying a
homogeneous linear recurrence relation

cku(n + k) + ck−1u(n + k − 1) + · · ·+ c0u(n) = 0, k = 1, 2, . . . ,

with the characteristic polynomial

ckxk + ck−1x
k−1 + · · ·+ c1x + c0 ∈ Z[X].

where ck 6= 0 and c0 6= 0. We recall that U is called non-degenerate if αs
i 6= αs

j ,
1 ≤ i < j ≤ m, s = 1, 2, . . . , where α1, . . . , αm are pairwise distinct roots of the
characteristic polynomial.

For an integer q and a real x we denote by RU (x, q) the number of positive
integers n ≤ x with u(n) ≡ 0 (mod q). We need the following bound from [11].
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Lemma 2. If the linear recurrent sequence U = (u(n))∞n=1 is non-degenerate

then for any integer q ≥ 2 and real x ≥ 0,

RU (x, q) ¿ x/ log q + 1.

Let L be an arbitrary set of primes and let AU (L, x) be the number of n ≤ x

such that u(n) is composed only out of primes from L. The following bound is
given in [12].

Lemma 3. If the linear recurrent sequence U = (u(n))∞n=1 is non-degenerate

then for any set L of r = #L primes and real x ≥ 0,

AU (L, x) ¿ r(log x)2.

For an integer q and a real x we denote by T (x, q) the number positive
integers n ≤ x with n! + 1 ≡ 0 (mod q). We need the following bound which is a
partial case of a more general estimate from [9].

Lemma 4. For any prime p and real x with p > x ≥ 1, we have

T (x, p) ¿ x2/3.

Let V = (v(n)) where

v(n) =
n∏

j=1

`(n) + 1 (1)

and `(n) denotes the nth prime. For a prime p and a real x, let W (x, p) be the
number of positive integers n ≤ x such that v(n) ≡ 0 (mod p). We have the
following bound which is a special case of a more general result from [6].

Lemma 5. For any prime p and real x ≥ 3, we have

W (x, p) ¿ x
log log x

log x
.

3. Main results

We now derive lower bounds for the sets SA(x) for various sequences A. We
start with polynomial sequences.
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Theorem 6. Let g(X) ∈ Z[X] be polynomial of degree k ≥ 2 which does

not split completely over Z. Then for the sequence G = (g(n))∞n=1 we have

#SG(x) À x

4k2
− 1.

Proof. We partition the set of integers n ≤ x into the set N1 consisting of
those n ≤ x such that P (g(n)) ≤ x, and N2 consisting of those n ≤ x such that
P (g(n)) > x.

Since g(X) does not split over Z we see that the number t of its irreducible
divisors satisfies t ≤ k − 1. It immediately follows from from Lemma 1, applied
with ε = 1/2 and v = 1, that for a sufficiently large x,

#N1 ≤ k − 1/2
k

x.

Hence
#N2 ≥ x−#N1 − 1 =

x

2k
− 1.

LetQ = {P (g(n)) : n ∈ N2}. Then for some p ∈ Q and p ≥ x, the congruence

g(n) ≡ 0 (mod p), n ∈ N2,

has at least #N2/#Q solutions. On the other hand, there can be at most
k(x/p + 1) solutions to this congruence. Therefore we have

#N2

#Q ≤ k

(
x

p
+ 1

)
≤ 2k.

This leads us to the inequality

#SG(x) ≥ #Q ≥ #N2

2k
>

x

4k2
− 1

and the result now follows. ¤

Clearly, one can easily improve the constant 1/4k2. It is also clear that if
g(X) splits completely over Z then #SG(x) ¿ x/ log x and one can easily prove
a matching lower bound.

Theorem 7. Let U = (u(n))∞n=1 be a non-degenerate linear recurrent se-

quence. Then

#SU (x) À log x.
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Proof. Let y = x/(log x)2. We partition the set of integers n ≤ x into the
set M1 consisting of those n ≤ x such that P (u(n)) ≤ y, and M2 consisting of
those n ≤ x such that P (u(n)) > y.

By Lemma 3, applied to the set L of the first r = π(y) ∼ x/(log x)3 primes,
we obtain #M1 ¿ x/ log x. Thus #M2 = (1 + o(1))x.

As in the proof of Theorem 6 we conclude that there is a prime p > y such
that the congruence

u(n) ≡ 0 (mod p), n ∈M2,

has at least #M2/#R solutions, whereR= {P (u(n)) : n∈M2}. Using Lemma 2,
we derive

#M2

#R ¿ x

log p
+ 1 ¿ x

log y
¿ x

log x

and the result now follows. ¤

Theorem 8. Let F = (n! + 1)∞n=1. Then

#SF (x) ≥ x1/3.

Proof. Clearly, there is a prime p such that the congruence

n! + 1 ≡ 0 (mod p), 1 ≤ n ≤ x,

has at least bxc/#SF (x) solutions. We have two possible cases; one when p > x,
and the second when p ≤ x. If p > x, we can apply Lemma 4 directly. If p ≤ x,
we see that P (n! + 1) = p only when n < p, and we can use Lemma 4 with x = p.
Therefore bxc

#SF (x)
¿ min{x2/3, p2/3} ¿ x2/3

and the result now follows. ¤

Theorem 9. Let V = (v(n))∞n=1 where v(n) is given by (1). We have

#SV(x) ≥ log x

log log x
.

Proof. As before, we note that there is a prime p such that the congruence

v(n) ≡ 0 (mod p), 1 ≤ n ≤ x,

has at least bxc/#SV(x) solutions. Using Lemma 5, we finish the proof. ¤

References

[1] R. C. Baker and G. Harman, Shifted primes without large prime factors, Acta Arith. 83
(1998), 331–361.



100 I. E. Shparlinski and D. Sutantyo : On the set of the largest prime divisors

[2] W. D. Banks and I. E. Shparlinski, On values taken by the largest prime factor of shifted
primes, J. Aust. Math. Soc. (to appear).

[3] G. Everest, A. J. van der Poorten, I. E. Shparlinski and T. B. Ward, Recurrence
sequences, Amer. Math. Soc. (2003).

[4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.

[5] N. A. Hmyrova, On polynomials with small prime divisors, II, Izv. Akad. Nauk SSSR Ser.
Mat. 30 (1966), 1367–1372.

[6] E. Levieil, F. Luca and I. Shparlinski, Bounding the number of solutions of some con-
gruences, Bol. Soc. Matem. Mexicana 11 (2005), 3057–3073.

[7] F. Luca, Divisibility properties of binary recurrent s equences, Bull. Lond. Math. Soc. 37
(2005), 809–817.

[8] F. Luca, Arithmetic properties of members of a binary recurrence sequence, Acta Arith.
109 (2003), 81–107.

[9] F. Luca and I. Shparlinski, Prime divisors of shifted factorials, Bull. Lond. Math. Soc.
37 (2005), 809–817.
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Trudy No. 548, Voprosy Mat., Taškent, 1977, 87–91 (in Russian).

IGOR E. SHPARLINSKI

DEPARTMENT OF COMPUTING

MACQUARIE UNIVERSITY

SYDNEY, NSW 2109

AUSTRALIA

E-mail: igor@ics.mq.edu.au

DANIEL SUTANTYO

DEPARTMENT OF COMPUTING

MACQUARIE UNIVERSITY

SYDNEY, NSW 2109

AUSTRALIA

E-mail: daniels@ics.mq.edu.au

(Received November 10, 2005; revised February 16, 2006)


