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Light-like homogeneous geodesics and the geodesic lemma
for any signature

By ZDENĚK DUŠEK (Olomouc) and OLDŘICH KOWALSKI (Prague)

Abstract. Homogeneous geodesics on homogeneous Riemannian manifolds have

been studied by many authors. The fundamental tool is the so-called geodesic lemma.

On pseudo-Riemannian manifolds, a generalization of the geodesic lemma is necessary.

Physicists already know and use the generalized version. However, the present authors

are not aware of any reference to the detailed and correct mathematical proof. The aim

of the present paper is to provide such a proof and illustrate the generalized lemma with

an example. We also correct a minor error which occurred in the original proof of the

standard geodesic lemma.

1. Introduction

Let M be a pseudo-Riemannian manifold. If there is a connected Lie group
G ⊂ I0(M) which acts transitively on M as a group of isometries, then M is
called a homogeneous pseudo-Riemannian manifold . Let p ∈ M be a fixed point.
If we denote by H the isotropy group at p, then M can be identified with the
homogeneous space G/H. In general, there may exist more than one such group
G ⊂ I0(M). For any fixed choice M = G/H, G acts effectively on G/H from
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the left. The pseudo-Riemannian metric g on M can be considered as a G-
invariant metric on G/H. The pair (G/H, g) is then called a pseudo-Riemannian
homogeneous space.

If the metric g is positive definite, then (G/H, g) is always a reductive homo-
geneous space: We denote by g and h the Lie algebras of G and H respectively
and consider the adjoint representation Ad : H×g → g of H on g. There exists a
direct sum decomposition (reductive decomposition) of the form g = m + h where
m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. If the metric g is indefinite,
the reductive decomposition may not exist (see for instance [6] for an example
of nonreductive pseudo-Riemannian homogeneous space). For a fixed reductive
decomposition g = m + h there is a natural identification of m ⊂ g = TeG with
the tangent space TpM via the projection π : G → G/H = M . Using this natural
identification and the scalar product gp on TpM we obtain a scalar product 〈 , 〉
on m. This scalar product is obviously Ad(H)-invariant.

The definition of a homogeneous geodesic is well-known in the Riemannian
case (see, e.g., [10]). In the pseudo-Riemannian case it must be modified as
follows:

Definition 1.1. The geodesic γ(s) through the point p defined in an open
interval J (where s is an affine parameter) is said to be homogeneous if there
exists

1) a diffeomorphism s = ϕ(t) between the real line and the open interval J ;

2) a vector X ∈ g such that γ(ϕ(t)) = exp(tX)(p) for all t ∈ (−∞, +∞).

The vector X is then called a geodesic vector.

For results on homogeneous geodesics in homogeneous Riemannian manifolds
we refer for example to [1], [2], [8], [10]–[14]. A homogeneous Riemannian manifold
all of whose geodesics are homogeneous is called a Riemannian g.o. manifold . For
some results and further references on Riemannian g.o. manifolds see for example
[4], [5], [9]. The basic formula characterizing geodesic vectors in the Riemannian
case was derived in [12]: The vector X ∈ g is geodesic if and only if

〈[X, Z]m, Xm〉 = 0 for all Z ∈ m. (1)

Homogeneous geodesics are interesting also in pseudo-Riemannian geometry and
light-like homogeneous geodesics are of particular interest. In [6] and [15], the
authors study plane-wave limits (Penrose limits) of homogeneous spacetimes along
light-like homogeneous geodesics. In these papers, there is a characterization of
the geodesic vector X by the formula

〈[X, Z]m, Xm〉 = k〈Xm, Z〉 for all Z ∈ m, where k ∈ R is some constant. (2)
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In [3], this formula is also used for the computations. However, we are not aware
of any work containing a detailed mathematical proof of this formula. We give
a proof in Section 2 of this work. In Section 3, we give an example with an uni-
modular Lorentzian Lie group, which simply illustrates the interesting behaviour
of light-like geodesics.

2. The geodesic lemma

Let us formulate the generalization of the “geodesic lemma” from [12] (Propo-
sition 2.1 there) to the pseudo-Riemannian setting. Let M = G/H be a homoge-
neous pseudo-Riemannian space, denote by g, h the corresponding Lie algebras.
Let g = m+h be a reductive decomposition. Denote by p the basic point of G/H.

Lemma 2.1. Let X ∈ g. Then the curve γ(t) = exp(tX)(p) (the orbit of

a one-parameter group of isometries) is a geodesic curve with respect to some

parameter s if and only if

〈[X, Z]m, Xm〉 = k〈Xm, Z〉 for all Z ∈ m, where k ∈ R is some constant. (3)

Further, if k = 0, then t is an affine parameter for this geodesic. If k 6= 0, then

s = e−kt is an affine parameter for the geodesic. The second case can occur only

if the curve γ(t) is a light-like curve in a (properly) pseudo-Riemannian space.

Proof. For k = 0, the lemma was proved in [12], but with a small gap. For
k 6= 0, the proof has to be modified. We shall give a correct proof valid for an
arbitrary k. Let X, Z ∈ g. Denote gt = exp(tX), hs = exp(sZ) and denote by
X∗, Z∗ the corresponding fundamental vector fields on M , that is

X∗
x =

d

dt

∣∣∣
0
gt(x), Z∗x =

d

ds

∣∣∣
0
hs(x) (4)

for each x ∈ M . Let us consider the orbit gt(p) (which is the integral curve of the
field X∗ through p) and choose some value u of the parameter t. Then we get

(dgu)
∣∣
p
X∗

p = (dgu)
∣∣
p

d

dt

∣∣
0
gt(p) =

d

dt

∣∣
0
gt(gu(p)) =

d

dt

∣∣
0
gu+t(p) = X∗

gu(p) (5)

which means X∗
γ(u) = dγ(t+u)

dt

∣∣
t=0

. Hence X∗
γ(t) = dγ(t)

dt for all values of t. It is
also well-known that the covariant derivative ∇X∗

γ(u)
X∗ depends, for each u, only

on the values of the vector field X∗ along the curve γ(t). Since gu is an isometry,
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and hence an affine diffeomorphism with respect to the Levi–Civita connection
∇, we get easily

(dgu)
∣∣
gt(p)

(∇X∗X∗∣∣
gt(p)

) = ∇X∗X∗∣∣
gt+u(p)

for arbitrary t. (6)

Now we use the formulas

X∗
xg(X∗, Z∗) = g(X∗, [X∗, Z∗])(x),

Z∗xg(X∗, X∗) = 2g(X∗, [Z∗, X∗])(x) (7)

derived in [12] (see the formulas on the top of the page 194) and valid also in
the pseudo-Riemannian case. From the standard formula for the Riemannian
connection (see for example [7], Chapter IV, Proposition 2.3)

2g(∇X∗X∗, Z∗) = 2X∗g(X∗, Z∗)− Z∗g(X∗, X∗) + 2g([Z∗, X∗], X∗) (8)

we obtain (by using (7)) the formula

g(∇X∗X∗, Z∗) = g(X∗, [X∗, Z∗]) = −g(X∗, [X, Z]∗). (9)

Suppose now that the curve γ(t) = exp(tX)(p) is the trajectory of a geodesic for
which t is not necessarily an affine parameter. (An example of such a situation
will be given below.) Then, at any t, it holds

∇X∗X∗∣∣
gt(p)

= c(t) ·X∗
gt(p). (10)

From the formulas (5) and (6) it follows that c(t) is a constant function. According
to the formulas (9) and (10), at p it holds

g(cX∗
p , Z∗p ) = −g(X∗

p , [X, Z]∗p) (11)

and from the identification of Tp(M) with m we obtain

−c〈Xm, Z〉 = 〈Xm, [X,Z]m〉. (12)

On the other hand, let the formula (3) hold for some k. Then

g(X∗
p , [X,Z]∗p) = kg(X∗

p , Z∗p ). (13)

Using the formula (9) at p, we obtain

g(∇X∗X∗ + kX∗, Z∗)(p) = 0 (14)
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for every vector Z ∈ m. Hence we obtain

g((dgt)(∇X∗X∗ + kX∗)p, (dgt)Z∗p ) = g((∇X∗X∗ + kX∗)gt(p), (dgt)Z∗p ) = 0 (15)

for all Z. Here the vectors (dgt)Z∗p fill in all the tangent space Tgt(p)M , and
the metric g is non-degenerate. Hence (∇X∗X∗ + kX∗)gt(p) = 0 for all t and
the trajectory γ(t) = exp(tX)(p) is a geodesic with some parametrization. If
k = 0, then t is an affine parameter. If k 6= 0, a routine calculation shows that
s = e−kt is an affine parameter. Finally, if the curve γ(t) = exp(tX)(p) is a
space-like or time-like geodesic with some parametrization, then the vector X∗

p

has nonzero norm. From the formulas (5), (10) and the fact that gt is an isometry,
it follows that t is an affine parameter for γ and hence k = 0. This proves the
last statement. ¤

Let us recall that the whole proof is a bit delicate because the fundamental
vector fields on M are, in general, not invariant with respect to the isometries.
In [12] this fact was not respected at the very end of the proof of Proposition 2.1.
Our formula (15) gives now the correct way to finish the proof.

3. An unimodular Lorentzian Lie group

Let us consider the 3-dimensional unimodular Lie group G = E(1, 1) with
a left-invariant Lorentzian metric. Its Lie algebra g (named g1 in [3]) admits
the pseudo-orthonormal basis {E1, E2, E3} with E3 timelike and the brackets are
given by the formulas

[E1, E2] = E1, [E1, E3] = −E1, [E2, E3] = E2 + E3. (16)

We consider G acting on itself as group of isometries by left translations. We see
easily that the vectors X = E2+E3

2 and Z = E2−E3
2 are geodesic vectors, if we

put, in the formula (3), k = 0 or k = −1, respectively. Both vectors are light-
like (and, according to [3], each geodesic vector is proportional to one of them).
We are going to investigate the orbits of the 1-parameter groups exp(tX) and
exp(tZ).

First, let us change the basis of the Lie algebra in the following way:

X =
E3 + E2

2
, Y = E1, Z =

E3 − E2

2
. (17)
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The matrix of the scalar product with respect to the basis {X,Y, Z} is




0 0 − 1
2

0 1 0
− 1

2 0 0


 . (18)

Hence X and Z are light-like geodesic vectors. For the Lie bracket operation of
the new vectors we obtain

[X, Y ] = 0, [X, Z] = X, [Y, Z] = −Y. (19)

We can identify the generators X,Y, Z with the matrices

X =




0 0 1
0 0 0
0 0 0


 , Y =




0 0 0
0 0 1
0 0 0


 , Z =



−1 0 0
0 1 0
0 0 0


 . (20)

The group G can thus be identified with the matrices of the form



e−c 0 a

0 ec b

0 0 1


 , (21)

where (a, b, c) form a global coordinate system. The left-invariant vector fields
(we denote it again by X, Y , Z) are given (see [8]) by the formulas

X = e−c ∂

∂a
, Y = ec ∂

∂b
, Z =

∂

∂c
. (22)

Let us consider the coordinates a, b, c on G and express the Lorentzian metric.
At any point (a, b, c), the matrix of the scalar product of vector fields X, Y , Z

is given by the formula (18) and hence the matrix of the scalar product of the
coordinate vector fields ∂

∂a , ∂
∂b ,

∂
∂c is




0 0 − 1
2ec

0 e−2c 0
− 1

2ec 0 0


 . (23)

Hence the pseudo-Riemannian metric is

ds2 = e−2cdb2 − ec da dc, (24)
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so the nonzero components of the Levi–Civita connection are

Γ1
22 = −2e−3x3

, Γ2
23 = Γ2

32 = −Γ3
33 = −1. (25)

Let us come back to the geodesic vectors X and Z. The 1-parameter subgroups
of G generated by the vectors X and Z are the following:

exp(tX) =




1 0 t

0 1 0
0 0 1


 , exp(tZ) =




e−t 0 0
0 et 0
0 0 1


 . (26)

The unit matrix corresponds to the origin p = (0, 0, 0) of the coordinate system
(x1, x2, x3) = (a, b, c). The orbits of the subgroups (26) starting at the origin are

γ1(t) = exp(tX)(p) = (t, 0, 0), γ2(t) = exp(tZ)(p) = (0, 0, t). (27)

For the tangent vectors γ′1(t) = dγ1
dt = ∂

∂x1 and γ′2(t) = dγ2
dt = ∂

∂x3 we obtain

∇γ′1(t)γ
′
1(t) = ∇ ∂

∂x1

∂

∂x1
= Γk

11

∂

∂xk
= 0

∇γ′2(t)γ
′
2(t) = ∇ ∂

∂x3

∂

∂x3
= Γk

33

∂

∂xk
=

∂

∂x3
= γ′2(t). (28)

We see that the curve γ1 is a geodesic with the affine parameter t. Now we shall
find the corresponding affine parameter for the geodesic γ2. Let us define the
curve γ3(t) by the formula

γ3(t) = (0, 0, log(t)). (29)

For the tangent vector field we have γ′3(t) = dγ3
dt = 1

t
∂

∂x3 and for the covariant
derivative we obtain

∇γ′3(t)γ
′
3(t) = ∇ dγ3

dt

1
t

∂

∂x3
=

d

dt

(
1
t

)
∂

∂x3
+

1
t
∇ dγ3

dt

∂

∂x3

= − 1
t2

∂

∂x3
+

1
t
∇ 1

t
∂

∂x3

∂

∂x3
=

(
− 1

t2
+

1
t2

)
∂

∂x3
= 0. (30)

We see that the curve γ3 is the same as the curve γ2 reparametrized by an affine
parameter. It is defined on the open interval (0,∞).
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[9] O. Kowalski and S. Ž. Nikčević, On geodesic graphs of Riemannian g.o. spaces, Archiv
der Math. 73 (1999), 223–234, Appendix: Archiv der Math. 79 (2002), 158–160.
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