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An isomorphism theorem for group
pairs of finite abelian groups

By PAUL HILL (Auburn)

Two subgroups A and B of a group G are said to be equivalent if
there is an automorphism of G that maps A onto B. The equivalence
theory of subgroups is a rapidly emerging subject that plays an important
role in the structure of abelian groups; see, for example, [H1], [H2] and
[HM1]–[HM4]. A solution to the following problem is a basic goal in the
equivalence theory.

Problem. Find necessary and/or sufficient conditions for subgroups A
and B of an abelian group G to be equivalent.

In this note, we restrict our attention to the case that G is finite.
Although well-known classical results determine when two finite abelian
groups are isomorphic in terms of numerical invariants (namely, the invari-
ant factors or elementary divisors), there is no known test that can deter-
mine by means of numerical invariants when two subgroups are equivalent.
Essentially the same problem as that stated above has been studied by E.
Szabó [S], but Szabó, as well as K. Búzási [B], treats the problem as
the isomorphism of group pairs: given (G, A) and (H,B), where A and
B are subgroups of G and H, respectively, when is there an isomorphism
π : G ½→H that maps A onto B? Since the isomorphism problem has been
solved for finite abelian groups (but not for subgroups) there is no loss of
generality in the present context in assuming that G = H.

Let A and B be subgroups of the finite abelian group G. In studying
the isomorphism of the group pairs (G,A) and (G,B) it is enough to
consider the case that G is p-primary, that is, all the elements of G have
order a power of a fixed prime p. The reason for this is that the p-primary
components of a finite abelian group are fully invariant and appear as
direct summands.
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Henceforth, we let A and B denote subgroups of a finite abelian p-
group G. We want to know under what conditions is there an automor-
phism of G that maps A onto B, that is, when are A and B equivalent as
subgroups. There are two obvious necessary conditions for A and B to be
equivalent, which we call the S and Q Test.

(S) The subgroups are isomorphic, A ∼= B.
(Q) The quotients are isomorphic, G/A ∼= G/B.

The S and Q Test is not sufficient except in special circumstances.
We remark that the test is clearly sufficient when G is cyclic. However, as
is well known, it already fails for a simple example like G = 〈a〉⊕〈b〉⊕〈c〉,
where a, b, and c are elements of order p, p2, and p3, respectively. Here,
we can take A = 〈a〉 ⊕ 〈pc〉 and B = 〈pb〉 ⊕ 〈a + pc〉. On the other hand,
E. Szabó [S] has found some special cases where the S and Q Test is
sufficient.

Realizing the S and Q Test has severe limitations as it applies to the
isomorphism of group pairs, we consider the problem from a somewhat
different perspective. In order to describe our approach, we first need to
establish some notation and terminology. In this connection, first recall
that pnG = {pnx : x ∈ G} and G[pn] = {x ∈ G : pnx = 0}. If x is an
element of the (additively written) finite abelian group G, we define the
value of x (usually called the height of x) in G as follows:

|x| = n if x ∈ pnG\pn+1G (and |x| = ∞ if x = 0).

Dually, we define the covalue of x (usually called the exponent of x) in G
as follows:

x = n if x ∈ G[pn]\G[pn−1] (and x = 0 if x = 0).

We shall need to employ not only the covalue of an element but also the
covalue of a coset. If H is a subgroup of G and x is an element of G, we
define the covalue of the coset x + H as follows:

x + H = min{x + h : h ∈ H}.
If ϕ : G/A ½→G/B preserves covalues of cosets (in the sense that x + A =
ϕ(x + A) ) we often say that ϕ preserves coset orders; this means that the
coset x+A contains an element of minimal order pn if and only if the coset
ϕ(x + A) = y + B contains an elements of the same minimal order pn.

Our main result is that the group pairs (G, A) and (G,B) are isomor-
phic, for a finite abelian p-group G, if and only if the following condition
holds:

(Q∗) There is an order-preserving isomorphism ϕ : G/A ½→G/B
between the quotient groups.

Actually, we can prove a little more, but first we need a technical
lemma.
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Lemma. Suppose that A and B are subgroups of the finite abelian p-
group G and suppose that ϕ : G/A ½→G/B is an isomorphism between the
quotients that preserves orders. Furthermore, suppose that π : M ½→M ′ is
an isomorphism between certain summands M and M ′ of G, and consider
the conditions:

(1) A ⊆ M + G
[
pn−1

]
, (1′) B ⊆ M ′ + G

[
pn−1

]
,

(2) A [pn] ⊆ M + G
[
pn−1

]
, (2′) B [pn] ⊆ M ′ + G

[
pn−1

]
.

If π is compatible with ϕ in the sense that, for all x ∈ M , π(x) + B =
ϕ(x + A) and if pn(G/M) = 0 = pn(G/M ′), then (1) ⇐⇒ (1′) and
(2) ⇐⇒ (2′).

Proof. First, observe that ϕ((M+G[pn−1]+A)/A) = (M ′+G[pn−1]+
B)/B because π : M ½→M ′ is compatible with ϕ (which yields ϕ((M +
A)/A) = (M ′ + B)/B) and because ϕ preserves coset orders (which yields
ϕ((G

[
pn−1

]
+ A)/A) = (G[pn−1] + B)/B). Therefore, we conclude that ϕ

induces an isomorphism between the quotients,

(i) (G/A)/(M + G
[
pn−1

]
+ A)/A ∼= (G/B)/(M ′ + G

[
pn−1

]
+ B)/B.

Consequently,

G/
(
M + G

[
pn−1

])
/

(
M + G

[
pn−1

]
+ A

)
/

(
M + G

[
pn−1

]) ∼=(ii)
∼= G/

(
M ′ + G

[
pn−1

])
/

(
M ′ + G

[
pn−1

]
+ B

)
/

(
M ′ + G

[
pn−1

])
.

Now, G/
(
M + G

[
pn−1

])
and G/

(
M ′ + G

[
pn−1

])
are annihilated by p

becasue pn(G/M) = 0 = pn(G/M ′). Indeed, if M ⊕ D = G = M ′ ⊕ D′,
we have that D ∼= D′ and

G/
(
M + G

[
pn−1

]) ∼= D/D
[
pn−1

] ∼=
∼= D′/D′ [pn−1

] ∼= G/
(
M ′ + G

[
pn−1

])
.

Thus G/
(
M + G

[
pn−1

])
and G/

(
M ′ + G

[
pn−1

])
are vector spaces over

Z/pZ having the same finite dimension k = dim
(
D/D

[
pn−1

])
=

= dim
(
D′/D′ [pn−1

])
; recall that pnD ∼= pn(G/M) = 0 = pn(G/M ′) =

pnD′, so p
(
D/D

[
pn−1

])
= 0 = p

(
D′/D′ [pn−1

])
. Since G/

(
M+G

[
pn−1

])
and G/

(
M ′ + G

[
pn−1

])
are isomorphic finite dimensional vector spaces,

the isomorphism of the quotient spaces in (ii) implies that the subspaces
must also be isomorphic,

(iii)
(
M + G

[
pn−1

]
+ A

)
/

(
M + G

[
pn−1

]) ∼=
∼=

(
M ′ + G

[
pn−1

]
+ B

)
/

(
M ′ + G

[
pn−1

])
.
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But (iii) immediately implies that (1) and (1’) are equivalent, (1) ⇐⇒
(1′).

In order to verify that (2) ⇐⇒ (2′), we note that ϕ : (G [pn] +A) /A ½→
(G [pn] + B) /B, which induces an order-preserving map

ϕn : G [pn] /A [pn] ½→G [pn] /B [pn] .

Notice that M [pn] and M ′ [pn] are direct summands of G [pn] and that
π : M [pn] ½→M ′ [pn] is compatible with ϕn. Therefore, if we replace G
by G [pn], M and M ′ by M [pn] and M ′ [pn], respectively, and finally A
and B by A [pn] and B [pn], we retain all the hypotheses of the lemma and
conclude from the equivalence of (1) and (1′) that

A [pn] ⊆ M [pn] + G
[
pn−1

] ⇐⇒ B [pn] ⊆ M ′ [pn] + G
[
pn−1

]
.

Obviously, in the preceding it is immaterial whether we use M [pn] and
M ′ [pn] or simply M and M ′, respectively. Therefore, we conclude that
(2) ⇐⇒ (2′), which completes the proof of the lemma.

Theorem. Let A and B be subgroups of a finite abelian p-group G.
There is an automorphism π of G that maps A onto B if and only if there
exists an isomorphism ϕ : G/A ½→G/B between the quotient groups that

preserves coset orders (in the sense that x + A = ϕ(x + A) for all x in G).

Moreover, given any isomorphism ϕ : G/A ½→G/B that preserves coset
orders, there exists an automorphism π of G that not only maps A onto
B but also induces ϕ.

Proof. An automorphism π of G that maps A onto B clearly yields a
coset order-preserving map ϕ : G/A ½→G/B. Therefore, we shall concen-
trate entirely on the converse, where ϕ : G/A ½→G/B is an isomorphism
that preserves coset orders. As we have indicated in the statement of the
theorem, the key to the proof that the group pairs (G,A) and (G,B) are
isomorphic is to prove more; namely, that there is an automorphism of G
that induces ϕ.

Suppose that we have already constructed an isomorphism π : M ½→M ′
that satisfies
(∗) π(x) + B = ϕ(x + A)

for all x ∈ M , where M and M ′ are summands of G. In this connection,
two quick observations should be made. We can certainly do this for
M = 0 = M ′, and we will have finished the proof if we can accomplish this
for M = G = M ′. Thus, assume that M and M ′ are proper summands of
G, and let n ≥ 1 be the smallest positive integer for which pn(G/M) = 0.
The strategy is to extend π to a mapping from M ⊕〈x〉 to M ′⊕〈y〉, where
M ⊕〈x〉 and M ′⊕〈y〉, are themselves direct summands of G with x, y 6= 0
and where π continues to satisfy (∗) for the larger summands. In order to
find the appropriate x and y, we distinguish three cases.
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Case 1 : condition (2) of the lemma does not hold. Since (1) =⇒ (2),
condition (1) also fails. The lemma asserts that (1′) and (2′) must also
fail. Hence, in Case 1, none of the conditions (1), (1′), (2), nor (2′) is
valid. Let M ⊕ D = G = M ′ ⊕ D′. Choose a ∈ A [pn] \ (

M + G
[
pn−1

])
and b ∈ B [pn] \ (

M ′ + G
[
pn−1

])
, and let a = m + d, b = m′ + d′, where

m ∈ M , m′ ∈ M ′, d ∈ D and d′ ∈ D′. Clearly, d = n = d′ because
a /∈ M + G

[
pn−1

]
and b /∈ M ′ + G

[
pn−1

]
. Hence, 〈d〉 and 〈d′〉 are

summands of D and D′, respectively, due to the fact that pnD = 0 = pnD′;
see, for example, [F], p.77. Letting D = 〈d〉 ⊕ C and D′ = 〈d′〉 ⊕ C ′, we
notice that since pnm = 0 = pnm′ it follows immediately that

M ⊕ 〈a〉 ⊕ C = M ⊕ 〈d〉 ⊕ C = G = M ′ ⊕ 〈d′〉 ⊕ C ′ = M ′ ⊕ 〈b〉 ⊕ C ′.

Therefore, if we let x = a and y = b, the following conditions hold.
(a) x ∈ A.
(b) y ∈ B.
(c) G = M ⊕ 〈x〉 ⊕ C for some subgroup C of G.
(d) G = M ′ ⊕ 〈y〉 ⊕ C ′ for some subgroup C ′ of G.
(e) x = n = y, that is, the order of x and y is pn.
Clearly, in the case at hand, we can simply map x onto y and obtain

the desired extension of π that continues to satisfy condition (∗), because
x + A and y + B are zero and ϕ(x + A) = y + B.

Case 2 : condition (1) of the lemma fails, but (2) is valid. As before, let
M⊕D = G = M ′⊕D′ and choose a ∈ A\ (

M+G
[
pn−1

])
. Write a = m−x

where m ∈ M and x is an element of D order pn that satisfies condition
(c) of Case 1, G = M ⊕ 〈x〉 ⊕ C. Observe that m + A = x + A = n, for
x + A < n implies that there exists a0 ∈ A for which pn−1 (x− a0) = 0.
But this leads to a+a0 = m− (x− a0) ∈ M +G

[
pn−1

]
. Since a0 ∈ A [pn]

and since condition (2) holds, this would imply that a ∈ M + G
[
pn−1

]

contrary to the choice of a. Therefore, m + A = n = π(m) + B because π

is compatible with ϕ, by virture of condition (∗), and because ϕ preserves
coset orders. This means that there exist b ∈ B and y ∈ G such that b =
π(m) − y, where pny = 0. Indeed, we know that y + B = π(m) + B = n,
so y has order exactly pn but we want to show even more; we claim that
y /∈ M ′ + G

[
pn−1

]
.

Assume, by way of contradiction, that y ∈ M ′ + G
[
pn−1

]
. Then

we can write y as y = π (m1) + z, where m1 ∈ M and z ∈ G
[
pn−1

]
.

Actually, m1 ∈ M [pn] since pny = 0 = pnz. Since ϕ (x−m1 + A) =
ϕ (m−m1 + A) = π(m)−π (m1)+B = y−π (m1)+B = z +B and since
pn−1 = 0, there exists an element a1 ∈ A such that x−m1+a1 ∈ G

[
pn−1

]
.

Recall that x and m1 are both in G [pn], so a1 ∈ A [pn]. Since condition
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(2) is satisfied, we conclude that a1 ∈ M + G
[
pn−1

]
. But this implies

that x ∈ M + G
[
pn−1

]
. This, however, is impossible because a = m −

x /∈ M + G
[
pn−1

]
. Now that we have shown that y /∈ M ′ + G

[
pn−1

]
and that y has order pn, we can assume that y satisfies condition (d) of
Case 1, G = M ′ ⊕ 〈y〉 ⊕ C ′. In fact, if y = m′ + d′, where m′ ∈ M ′
and d′ ∈ D′ we know that D′ = 〈d′〉 ⊕ C ′ and that G = M ′ ⊕ 〈y〉 ⊕ C ′
since pnm′ = 0. Since ϕ(x + A) = ϕ(m + A) = π(m) + B = y + B and
M ⊕ 〈x〉 ⊕C = G = M ′⊕ 〈y〉 ⊕C ′, we can obtain the desired extension of
π that continues to satisfy (∗) by mapping x onto y.

We remark that it would be easy to extend π in all cases if we did not
have to be concerned with condition (∗).

Case 3 : conditions (1) and (2), as well as (1′) and (2′), are satisfied.
Choose an element x ∈ D of order pn, where G = M⊕D, so that condition
(c) of Case 1 is satisfied. Since x /∈ M + G

[
pn−1

]
and since A ⊆ M +

G
[
pn−1

]
, it quickly follows that x + A = x = n. Indeed, x− a ∈ G

[
pn−1

]
with a ∈ A immediately implies, under the special hypothesis of Case 3,
that x ∈ M + G[pn−1]. Since ϕ preserves coset orders, we know we can
choose an element y in G of order pn so that ϕ(x + A) = y + B. In
fact, we can easily demonstrate that y /∈ M ′ + G

[
pn−1

]
. If y were in

M ′+G
[
pn−1

]
, then certainly we would have x ∈ M +G

[
pn−1

]
+A. But,

in Case 3, A ⊆ M+G
[
pn−1

]
. Hence, we would have x ∈ M+G

[
pn−1

]
, but

this is impossible since x has order pn and satisfies G = M⊕〈x〉⊕C. Now,
since y /∈ M ′ + G

[
pn−1

]
we can write, as in Case 2, G = M ′ ⊕ 〈y〉 ⊕ C ′,

and we can once again obtain the desired extension of π by mapping x
onto y.

We have demonstrated in all cases that we can extend π so that it
continues to satisfy condition (∗), which enables us to construct an auto-
morphism of G that induces ϕ. Since any such automorphism necessarily
takes A onto B, the proof is finished.

Corollary 1. Suppose that A and B are subgroups of the finite abelian
p-group G. The following conditions are equivalent.

(S∗) There is an isomorphism between the subgroups which pre-
serves values (heights).

(Q∗) There is an isomorphism between the quotient groups which
preserves coset covalues (orders).

Proof. If the group pairs (G,A) and (G, B) are isomorphic, that is,
if there is an automorphism π of G that takes A onto B, then both (S∗)
and (Q∗) must hold (by virtue of isomorphisms induced by π).

If (S∗) holds, let π : A ½→B be a value-preserving map. It is well
known (the proof essentially goes back at least to Zippin [Z]) that π can
be extended to an automorphism of G, from whence (Q∗) follows.
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Conversely, if (Q∗) holds, our theorem demonstrates that there is an
automorphism of G that maps A onto B, so (Q∗) also implies (S∗).

Corollary 2. Let G = ⊕〈gi〉 be a finite abelian p-group written as
a direct sum of cyclic groups 〈gi〉 and let A be an arbitrary subgroup of
G. There exists stacked bases for G and A, in the sense that G = ⊕〈xi〉
and A = ⊕〈nixi〉 for suitable nonnegative integers ni if and only if there
exist an order-preserving isomorphism between G/A and G/B, where B =
⊕〈nigi〉.

Proof. One direction is trivial. If we have stacked bases xi and nixi
for G and A, then we can arrange the xi’s so that xi and gi have the same
order. If B = ⊕〈nigi〉, clearly the automorphism of G that maps xi onto
gi maps A onto B and yields an order-preserving isomorohism from G/A
onto G/B.

Conversely, if B = ⊕〈nigi〉 and ϕ : G/A ½→G/B is an order-preserving
isomorphism, then our theorem states there is an automorphism π of G
that induces ϕ. Letting xi = π−1 (gi), we obtain stacked bases, {xi} and
{nixi}, for G and A.

We conclude with the following problem.
Problem. Find other necessary and sufficient conditions for a group

pair (G, A) to have stacked bases when G is a finite abelian p-group.

References

[B] K. B�uz�asi, Invariants of pairs of finite abelian groups, Publ. Math. Debrecen 28
(3-4) (1981), 317–326, (Russian).

[F] L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York, 1970.
[H1] P. Hill, On the structure of abelian p-groups, Trans. Amer. Math. Soc. 288

(1985), 505–525.
[H2] P. Hill, Equivalence theorems, Rocky Mountain Jour. of Mathematics 23 (1993),

203–221.
[HM1] P. Hill and C. Megibben, On the theory and classification of abelian p-groups,

Math. Zeit. 190 (1985), 17–38.
[HM2] P. Hill and C. Megibben, The local equivalence theorem, Contemporary Math-

ematics, Amer. Math. Soc. 87 (1989), 201–220.
[HM3] P. Hill and C. Megibben, Generalization of the stacked bases theorems, Trans.

Amer. Math. Soc. 312 (1989), 377–402.
[HM4] P. Hill and C. Megibben, Mixed groups, Trans. Amer. Math. Soc. 334 (1992),

121–142.
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