Publ. Math. Debrecen **71/3-4** (2007), 413–424

Hardy spaces and convergence of vector-valued Vilenkin–Fourier series

By FERENC WEISZ (Budapest)

Abstract. The atomic decomposition of a vector-valued martingale Hardy space is given. A classical inequality of Marcinkiewicz is generalized for UMD lattice valued (bounded) Vilenkin–Fourier series. It is proved that the Vilenkin–Fourier series of $f \in L_p(X)$ (1) converges to <math>f in $L_p(X)$ norm if and only if X is a UMD space. Moreover, a lacunary sequence of the UMD lattice valued Vilenkin–Fourier series of $f \in H_1(X)$ converges almost everywhere to f in X norm.

1. Introduction

For trigonometric and Walsh–Fourier series the partial sum operators are bounded on L_p (1 \infty) spaces. An ℓ_r -valued version of this theorem is due to Marcinkiewicz and Zygmund for trigonometric Fourier series (see e.g. ZYGMUND [28, II. p. 225]), to SUNOUCHI [19] for Walsh–Fourier series and to YOUNG [27] for Vilenkin–Fourier series.

LADHAWALA and PANKRATZ [9] (see also WEISZ [24]) proved that if f is in the dyadic Hardy space H_1 and $(n_k, k \in \mathbb{N})$ is a lacunary sequence of positive integers, then $s_{n_k}f$, the partial sums of the Walsh–Fourier series of f, converges a.e. to f. Moreover, SCHIPP and SIMON [17] verified that if $\Phi(u) = o(\log \log u)$ $(u \to \infty)$ then there exists a function in $H_1\Phi(H_1)$ whose full sequence of partial sums

Mathematics Subject Classification: Primary: 42C10, 60G42, 60G46; Secondary: 46B42, 46E40. Key words and phrases: Vector-valued Hardy spaces, atomic decomposition, UMD spaces, vector-valued Vilenkin–Fourier series.

This paper was written while the author was researching at University of Vienna (NuHAG) supported by Lise Meitner fellowship No M733-N04. This research was also supported by the Hungarian Scientific Research Funds (OTKA) No T043769, T047128, T047132.

diverges everywhere. Especially, if $\Phi(u) = 1$ ($u \ge 1$) then we get $H_1\Phi(H_1) = H_1$, i.e. it follows the existence of $f \in H_1$ such that $s_n f$ diverges everywhere (see LADHAWALA and PANKRATZ [9]). The analogous results for trigonometric Fourier series can be found in ZYGMUND [28, II. p. 235] and for Vilenkin–Fourier series in YOUNG [26].

In this paper we extend these results to vector-valued, more exactly to UMD space valued Walsh- and Vilenkin–Fourier series. The UMD (unconditionality property of martingale differences) Banach spaces were introduced by BURK-HOLDER [2]. Since that time these spaces itself and their applications to Fourier analysis has been studied very intensively in the literature (e.g. BURKHOLDER [3], [4], RUBIO DE FRANCIA [15], [16], TOZONI [20], [21], MISHURA and WEISZ [13], [14], MARTINEZ and TORREA [12] and GIRARDI and WEIS [8]). Hardy spaces of scalar-valued martingales are investigated in the books LONG [11] and WEISZ [23].

Here we consider Walsh and Vilenkin martingales and give the atomic decomposition of a Banach space valued martingale Hardy space. We generalize the Marcinkiewicz inequality on partial sums for UMD space valued (bounded) Vilenkin–Fourier series. From this it follows that if X is a UMD space then the X valued Vilenkin–Fourier series of $f \in L_p(X)$ (1) converges to f in norm. $The converse is also true: if the Vilenkin–Fourier series converges in <math>L_p(X)$ norm then X is a UMD space. For Walsh–Fourier series this was proved in WENZEL [25] and TOZONI [20].

It is known that if $f \in L_p(X)$ $(1 and X is UMD then <math>s_n f \to f$ a.e. in X norm (see RUBIO DE FRANCIA [15] for trigonometric Fourier series and WEISZ [22] for Vilenkin–Fourier series). Finally, we extend this result to Hardy spaces, more exactly we prove that if f is in the Hardy space $H_1(X)$ and $(n_k, k \in \mathbb{N})$ is a lacunary sequence of positive integers, then the partial sums of the Vilenkin–Fourier series $s_{n_k}f$ converge a.e. to f in X norm. In the proofs of these results martingale techniques are used.

2. Vilenkin systems

In this paper we consider the unit interval [0, 1), the σ -algebra \mathcal{A} of the Borel sets and the Lebesgue measure λ . Let $(p_n, n \in \mathbb{N})$ be a sequence of natural numbers with entries at least 2. Introduce the notations $P_0 = 1$ and $P_{n+1} :=$ $\prod_{k=0}^{n} p_k \ (n \in \mathbb{N})$. Every point $x \in [0, 1)$ can be written in the following way:

$$x = \sum_{k=0}^{\infty} \frac{x_k}{P_{k+1}}, \qquad 0 \le x_k < p_k, \ x_k \in \mathbb{N}.$$

In case there are two different forms, we choose the one for which $\lim_{k\to\infty} x_k = 0$. The functions

 $r_n(x) := \exp \frac{2\pi i x_n}{p_n} \qquad (n \in \mathbb{N})$

are the generalized Rademacher functions where $i := \sqrt{-1}$. The product system generated by these functions is called a *Vilenkin system*:

$$w_n(x) := \prod_{k=0}^{\infty} r_k(x)^{n_k}$$

where $n = \sum_{k=0}^{\infty} n_k P_k$, $0 \le n_k < p_k$ and $n_k \in \mathbb{N}$. If $p_n = 2$ for every $n \in \mathbb{N}$ then it is called *Walsh system*. In this paper we suppose that the Vilenkin system is *bounded*, i.e. the sequence (p_n) is bounded. For a detailed investigation of the Walsh- and Vilenkin systems see SCHIPP, WADE, SIMON and PÁL [18].

Let \mathcal{F}_n be the σ -algebra generated by $\{r_0, \ldots, r_{n-1}\}$. It is easy to see that

$$\mathcal{F}_n = \sigma\{[kP_n^{-1}, (k+1)P_n^{-1}) : 0 \le k < P_n\}$$

where $\sigma(\mathcal{H})$ denotes the σ -algebra generated by an arbitrary set system \mathcal{H} . By a Vilenkin interval we mean one of the form $[kP_n^{-1}, (k+1)P_n^{-1})$ for some $k, n \in \mathbb{N}$, $0 \leq k < P_n$.

For a Banach space X, the space $L_p(X)$ consists of all strongly measurable functions $f: [0,1) \to X$ for which

$$\|f\|_{L_p(X)} := \left(\int_0^1 \|f\|_X^p \, d\lambda\right)^{1/p} \qquad (0$$

If $f \in L_p(X)$ $(p \ge 1)$ then the Bochner integral $\int_0^1 f \, d\lambda$ exists (see DIESTEL and UHL [6] and GARCIA-CUERVA and RUBIO DE FRANCIA [7]). The expectation and the conditional expectation operators relative to \mathcal{F}_n are denoted by E and E_n , respectively. We investigate the class of X-valued (Vilenkin) martingales $f = (f_n, \in \mathbb{N})$ with respect to $(\mathcal{F}_n, \in \mathbb{N})$. For a stopping time $\nu : [0, 1) \to \mathbb{N} \cup \{\infty\}$ the stopped martingale $(f_n^{\nu}, \in \mathbb{N})$ is defined by

$$f_n^\nu := \sum_{k=0}^n \mathbf{1}_{\{\nu \ge k\}} d_k f,$$

where $d_k f := f_k - f_{k-1}, f_{-1} := 0.$

If $f \in L_1(X)$ then $\hat{f}(n) := E(f\overline{w}_n)$ is said to be the *n*th Vilenkin-Fourier coefficient of $f \in \mathbb{N}$. Denote by $s_n f$ the *n*th partial sum of the Vilenkin-Fourier series of f, namely,

$$s_n f := \sum_{k=0}^{n-1} \hat{f}(k) w_k$$

It is easy to see that $(s_{P_n} f \in \mathbb{N})$ is an X-valued martingale.

We will suppose that X is a Banach lattice. As usual, $|\cdot|$ will denote the absolute value in X: $|x| := \sup\{x, -x\}$. For more about Banach lattices see LIN-DENSTRAUSS and TZAFRIRI [10]. A Banach lattice X is a UMD (unconditionality property for martingale differences) space, if for all 1 , all X-valued $martingale difference sequences <math>(d_1, d_2, ...)$ and all numbers $\epsilon_1, \epsilon_2, \ldots \in \{-1, 1\}$ there exists a positive real number C_p such that

$$\left\|\sum_{k=1}^{n} \epsilon_k d_k\right\|_{L_p(X)} \le C_p \left\|\sum_{k=1}^{n} d_k\right\|_{L_p(X)} \quad (\in \mathbb{N})$$
(1)

(see BURKHOLDER [2]). It is enough to assume (1) for some 1 and for $all X-valued martingale difference sequences <math>(d_1, d_2, \ldots)$ with respect to (\mathcal{F}_n) , because each \mathcal{F}_n is atomic (see RUBIO DE FRANCIA [16] or GIRARDI and WEIS [8]).

The maximal function of an X-valued martingale $f = (f_n, \in \mathbb{N})$ is defined by

$$M_n f := \sup_{k \le n} \|f_k\|_X, \qquad M f := \sup_{k \in \mathbb{N}} \|f_k\|_X.$$

The following theorem can be found in BOURGAIN [1], RUBIO DE FRANCIA [16] and TOZONI [21].

Theorem 1. If X is a UMD lattice and $f \in L_p(X)$ then

$$\rho\lambda(Mf > \rho) \le C \|f\|_{L_1(X)}, \qquad (\rho > 0)$$

and

$$\|f\|_{L_p(X)} \sim \|Mf\|_{L_p[0,1)} \sim \left\| \left(\sum_{n=0}^{\infty} |d_n f|^2 \right)^{1/2} \right\|_{L_p(X)}$$
$$\sim \left\| \left(\sum_{n=0}^{\infty} E_{n-1} |d_n f|^2 \right)^{1/2} \right\|_{L_p(X)}$$

for all 1 , where ~ denotes the equivalence of the norms.

Note that the sequence (\mathcal{F}_n) is regular. In this paper the positive constants C_p depend only on p and may denote different constants in different contexts.

3. Hardy spaces and atomic decomposition

The Hardy space $H_p(X)$ $(1 \le p \le \infty)$ consists of all X-valued martingales f for which

$$||f||_{H_p(X)} := ||Mf||_{L_p(\mathbb{R})} < \infty.$$

By Theorem 1, if X is UMD then $H_p(X) \sim L_p(X)$ for all 1 . Moreover, $if <math>(f_n) \in H_p(X)$ for some $1 \le p < \infty$ then there exists $f \in L_p(X)$ such that $f = \lim_{n \to \infty} f_n$ in $L_p(X)$ norm and $f_n = E_n f$ (see e.g. DIESTEL and UHL [6]).

The atomic decomposition is a useful characterization of Hardy spaces (for scalar valued martingales see e.g. WEISZ [23]). Let us introduce first the concept of atoms. A function a is an *atom* if there exists a Vilenkin interval I such that

$$\int_{I} a \, d\lambda = 0, \qquad \|a\|_{L_{\infty}(X)} \le \lambda(I)^{-1}, \qquad \{a \neq 0\} \subset I.$$

Though the proof of the next atomic decomposition is similar to the scalar valued case, for the sake of completeness we present a short proof.

Theorem 2. Assume that X is a UMD lattice. Then $f \in H_1(X)$ if and only if there exist a sequence $(a^k, k \in \mathbb{N})$ of atoms and a sequence $(\mu_k, k \in \mathbb{N})$ of real numbers such that

$$\sum_{k=0}^{\infty} \mu_k a^k = f \qquad \text{a.e. in } X \text{ norm and} \qquad \sum_{k=0}^{\infty} |\mu_k| < \infty.$$
 (2)

Moreover,

$$||f||_{H_1(X)} \sim \inf \sum_{k=0}^{\infty} |\mu_k|$$

where the infimum is taken over all decompositions of f of the form (2).

PROOF. Assume that $f \in H_1(X)$. Define the stopping time ν_k by

$$\nu_k(x) := \inf\{n \in \mathbb{N} : E_n \mathbf{1}_{\{M_{n+1}f > 2^k\}}(x) \ge 1/d\}, \qquad (k \in \mathbb{Z}),$$

where $d = \sup_{n} p_n$. From this it follows that $\nu_k \leq \nu_{k+1}$, $(k \in \mathbb{Z})$,

$$\{Mf > 2^k\} \subset \{\nu_k < \infty\}, \qquad \lambda(\nu_k < \infty) \le d\lambda(Mf > 2^k)$$
(3)

and $M_{\nu_k}f \leq 2^k$ for all $k \in \mathbb{Z}$, where $M_{\nu_k}f := M_n f$ if $\nu_k = n$. It is easy to see that

$$f = \sum_{k \in \mathbb{Z}} (f_{\nu_{k+1}} - f_{\nu_k}) \qquad \text{a.e. in } X \text{ norm.}$$

Indeed, $\lambda(\nu_k < \infty) \to 0$ by (3) and so $f_{\nu_{k+1}} \to f$ a.e. in X norm as $k \to \infty$ and $\|f_{\nu_k}\|_X \leq 2^k \to 0$ as $k \to -\infty$. We decompose $\{\nu_k = l\} = \bigcup_n I_{k,n}^l$, where $I_{k,n}^l \in \mathcal{F}_l$ are Vilenkin intervals. If we define

$$\mu_{k,n}^{l} := 3 \cdot 2^{k} \lambda(I_{k,n}^{l}), \qquad a_{k,n}^{l} := (\mu_{k,n}^{l})^{-1} \mathbf{1}_{I_{k,n}^{l}} (f_{\nu_{k+1}} - f_{\nu_{k}})$$

then

$$f = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{N}} \sum_{n} \mu_{k,n}^{l} a_{k,n}^{l} \qquad \text{a.e. in } X \text{ norm.}$$
(4)

Since $\nu_{k+1} \ge \nu_k = l$ on $I_{k,n}^l$, by the martingale property

$$\int_{I_{k,n}^{l}} (f_{\nu_{k+1}} - f_{\nu_{k}}) \, d\lambda = \int_{I_{k,n}^{l}} (f_{\nu_{k+1}} - f_{l}) \, d\lambda = 0.$$

This and

$$\|a_{k,n}^{l}\|_{X} \leq |\mu_{k,n}^{l}|^{-1} (\|f_{\nu_{k+1}}\|_{X} + \|f_{\nu_{k}}\|_{X}) \leq \lambda (I_{k,n}^{l})^{-1}$$

imply that $a_{k,n}^l$ are atoms. By (3),

$$\sum_{k\in\mathbb{Z}}\sum_{l\in\mathbb{N}}\sum_{n}|\mu_{k}|=3\sum_{k\in\mathbb{Z}}2^{k}\lambda(\nu_{k}<\infty)\leq 3d\sum_{k\in\mathbb{Z}}2^{k}\lambda(Mf>2^{k})\leq CE(Mf).$$

Since $E(||a||_X) \leq 1$, the sum

$$\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{N}} \sum_{n} |\mu_{k,n}^l| \|a_{k,n}^l\|_X$$

is convergent a.e. Thus the sum in (4) can be rearranged to get (2).

Conversely, suppose that f has a decomposition of the form (2). Since the sum in (2) converges in $L_1(X)$ norm, we have

$$E_n f = \sum_{k=0}^{\infty} \mu_k E_n a^k$$

and so we conclude

$$E(|Mf|) \le \sum_{k=0}^{\infty} |\mu_k| E(\sup_n \|E_n a^k\|_X) \le \sum_{k=0}^{\infty} |\mu_k| \int_{I_k} \sup_{n \ge n_k} E_n \|a^k\|_X d\lambda \le \sum_{k=0}^{\infty} |\mu_k|,$$

where the Vilenkin interval $I_k \in \mathcal{F}_{n_k}$ is the support of a_k .

Note that the same proof works if we suppose only that X is a Banach space having the Radon–Nikodym property.

4. Marcinkiewicz inequality

Now we generalize the classical Marcinkiewicz inequality, mentioned in the Introduction, for UMD valued functions.

Theorem 3. Assume that X is a UMD lattice and n_k is an arbitrary natural number for each $k \in \mathbb{N}$. If $(f^k, k \in \mathbb{N}) \in L_p(\ell_r(X))$ for some $1 < p, r < \infty$ then

$$\left\| \left(\sum_{k=0}^{\infty} \| s_{n_k} f^k \|_X^r \right)^{1/r} \right\|_p \le C_{p,r} \left\| \left(\sum_{k=0}^{\infty} \| f^k \|_X^r \right)^{1/r} \right\|_p.$$
(5)

If $(f^k, k \in \mathbb{N}) \in L_1(\ell_r(X))$ for some $1 < r < \infty$ then

$$\rho\lambda\bigg(\bigg(\sum_{k=0}^{\infty} \|s_{n_k}f^k\|_X^r\bigg)^{1/r} > \rho\bigg) \le C_r \bigg\|\bigg(\sum_{k=0}^{\infty} \|f^k\|_X^r\bigg)^{1/r}\bigg\|_1, \qquad (\rho > 0).$$
(6)

PROOF. It is known that

$$\overline{w}_n s_n f = \sum_{j=0}^{\infty} \overline{w}_n T_j^n \Big(w_n \big(E_{j+1}(f\overline{w}_n) - E_j(f\overline{w}_n) \big) \Big) =: \sum_{j=0}^{\infty} d_j^n, \tag{7}$$

where the operator T_j^n is linear,

$$|T_j^n f|^2 \le CE_j |f|^2, \qquad (j, n \in \mathbb{N})$$
(8)

and $(d_j^n, j \in \mathbb{N})$ is a martingale difference sequence with respect to (\mathcal{F}_{j+1}) (see WEISZ [23]). Note that (7) is a finite sum. Since ℓ_r $(1 < r < \infty)$ is a UMD lattice, so is $\ell_r(X)$ (see RUBIO DE FRANCIA [16]). Then we may apply Theorem 1 and (8) to obtain

$$\begin{split} \left\| \left(\sum_{k=0}^{\infty} \|s_{n_{k}}f^{k}\|_{X}^{r} \right)^{1/r} \right\|_{p} &= \left\| \left(\sum_{k=0}^{\infty} \|\sum_{j=0}^{\infty} d_{j}^{n_{k}}\|_{X}^{r} \right)^{1/r} \right\|_{p} \\ &\leq C_{p,r} \left\| \left(\sum_{k=0}^{\infty} \|\left(\sum_{j=0}^{\infty} |d_{j}^{n_{k}}|^{2} \right)^{1/2} \right\|_{X}^{r} \right)^{1/r} \right\|_{p} \\ &\leq C_{p,r} \left\| \left(\sum_{k=0}^{\infty} \|\left(\sum_{j=0}^{\infty} E_{j} |E_{j+1}(f^{k}\overline{w}_{n_{k}}) - E_{j}(f^{k}\overline{w}_{n_{k}})|^{2} \right)^{1/2} \right\|_{X}^{r} \right)^{1/r} \right\|_{p} \\ &\leq C_{p,r} \left\| \left(\sum_{k=0}^{\infty} \|\left(\sum_{j=0}^{\infty} |E_{j+1}(f^{k}\overline{w}_{n_{k}}) - E_{j}(f^{k}\overline{w}_{n_{k}})|^{2} \right)^{1/2} \right\|_{X}^{r} \right)^{1/r} \right\|_{p} \end{split}$$

$$\leq C_{p,r} \left\| \left(\sum_{k=0}^{\infty} \left\| f^k \overline{w}_{n_k} \right\|_X^r \right)^{1/r} \right\|_p, \tag{9}$$

which proves (5). Note that in the last step we have used that

$$(E_{j+1}(f^k\overline{w}_{n_k}) - E_j(f^k\overline{w}_{n_k}), j \in \mathbb{N})$$

is a martingale difference sequence.

To prove (6) let us define the stopping time

$$\nu(x) := \inf\{n \in \mathbb{N} : E_n \mathbf{1}_{\{(\sum_{k=0}^{\infty} \|E_{n+1}(f^k \overline{w}_{n_k})\|_X^r)^{1/r} > \rho\}}(x) \ge 1/d\}.$$

Then

$$\lambda(\nu < \infty) \le d\lambda \bigg(\sup_{\in \mathbb{N}} \bigg(\sum_{k=0}^{\infty} \|E_n(f^k \overline{w}_{n_k})\|_X^r \bigg)^{1/r} > \rho \bigg)$$
(10)

and

$$\sup_{n \le \nu} \left(\sum_{k=0}^{\infty} \| E_n(f^k \overline{w}_{n_k}) \|_X^r \right)^{1/r} \le \rho.$$
(11)

Obviously,

$$\left(\sum_{k=0}^{\infty} \|s_{n_k} f^k\|_X^r\right)^{1/r} = \left(\sum_{k=0}^{\infty} \left\|\sum_{j=0}^{\infty} d_j^{n_k} \mathbf{1}_{\{\nu \ge j+1\}} \right\|_X^r\right)^{1/r} + \left(\sum_{k=0}^{\infty} \left\|\sum_{j=0}^{\infty} d_j^{n_k} \mathbf{1}_{\{\nu < j+1\}} \right\|_X^r\right)^{1/r} = (A) + (B).$$

Using the definition of stopped martingales and (11) we get similarly to (9) that

$$\lambda((A) > \rho) \leq \frac{1}{\rho^2} E((A)^2)$$

$$\leq \frac{C_r}{\rho^2} E\left(\sum_{k=0}^{\infty} \left\|\sum_{j=0}^{\infty} (E_{j+1}(f^k \overline{w}_{n_k}) - E_j(f^k \overline{w}_{n_k})) \mathbf{1}_{\{\nu \geq j+1\}} \right\|_X^r\right)^{2/r}$$

$$\leq \frac{C_r}{\rho^2} E\left(\sum_{k=0}^{\infty} \|E_\nu(f^k \overline{w}_{n_k})\|_X^r\right)^{2/r} \leq \frac{C_r}{\rho} E\left(\sum_{k=0}^{\infty} \|E_\nu(f^k \overline{w}_{n_k})\|_X^r\right)^{1/r}$$

$$\leq \frac{C_r}{\rho} E\left(\sum_{k=0}^{\infty} \|f^k\|_X^r\right)^{1/r}.$$
(12)

It is easy to see that (B) = 0 if $\nu = \infty$, and so $\{(B) > \rho\} \subset \{\nu < \infty\}$. Since $\left(\sum_{k=0}^{\infty} \|E_n(f^k \overline{w}_{n_k})\|_X^r\right)^{1/r}$ is a non-negative submartingale, we obtain

$$\lambda(\nu < \infty) \le d\lambda \bigg(\sup_{\in \mathbb{N}} \bigg(\sum_{k=0}^{\infty} \|E_n(f^k \overline{w}_{n_k})\|_X^r \bigg)^{1/r} > \rho \bigg) \le \frac{d}{\rho} E \bigg(\sum_{k=0}^{\infty} \|f^k\|_X^r \bigg)^{1/r}.$$

This together with (12) implies (6).

$$\square$$

If we apply Theorem 3 for one k, only, then we get

Corollary 1. If X is a UMD lattice and $f \in L_p(X)$ for some 1 then

$$\|s_n f\|_{L_p(X)} \le C_p \|f\|_{L_p(X)} \quad (\in \mathbb{N})$$
(13)

and $s_n f \to f$ in $L_p(X)$ norm as $n \to \infty$.

The converse of this result easily follows from the proof of Theorem 3:

Theorem 4. Assume that X is a Banach lattice. Inequality (13) holds for some (or equivalently for all) 1 if and only if X is UMD.

PROOF. One can show that

$$T_j^n(w_n(E_{j+1}(f\overline{w}_n) - E_j(f\overline{w}_n))) = n_j(w_n(E_{j+1}(f\overline{w}_n) - E_j(f\overline{w}_n)))$$

if $n_j = 0$ or 1, where $n = \sum_{j=0}^{\infty} n_j P_j$, $0 \le n_j < p_j$ (see WEISZ [23]). Consider only such numbers n for which $n_j = 0$ or 1 for each j. Then

$$\overline{w}_n s_n f = \sum_{j=0}^{\infty} n_j \left(E_{j+1}(f\overline{w}_n) - E_j(f\overline{w}_n) \right).$$

Inequality (13) implies

$$\left\|\sum_{j=0}^{\infty} n_j \left(E_{j+1}(f\overline{w}_n) - E_j(f\overline{w}_n) \right) \right\|_{L_p(X)} \le C_p \|f\|_{L_p(X)}.$$

Writing fw_n instead of f we obtain

$$\left\|\sum_{j=0}^{\infty} n_j (E_{j+1}f - E_j f)\right\|_{L_p(X)} \le C_p \|f\|_{L_p(X)}$$

and this implies that X is UMD (see (1)).

For other versions of this theorem see also WENZEL [25], TOZONI [20] and CLÉMENT at al. [5].

5. Almost everywhere convergence

It is known (see WEISZ [22]) that $s_n f \to f$ a.e. in X norm as $n \to \infty$, whenever $f \in L_p(X)$ for some $1 . However, this does not hold for <math>L_1(X)$ or $H_1(X)$ even if $X = \mathbb{R}$ (see LADHAWALA and PANKRATZ [9] or SCHIPP and SIMON [17]). We say that an increasing sequence $(n_k, k \in \mathbb{N})$ of positive integers is *lacunary* if $n_{k+1}/n_k > \alpha > 1$ for all $k \in \mathbb{N}$. Now we are ready to prove our main result.

Theorem 5. Assume that X is a UMD lattice and $(n_k, k \in \mathbb{N})$ is a lacunary sequence of positive integers. If $f \in H_1(X)$ then

$$\rho\lambda\left(\sup_{k}\|s_{n_{k}}f\|_{X}>\rho\right)\leq C\|f\|_{H_{1}(X)},\qquad(\rho>0).$$

PROOF. It is well known that every lacunary sequence $(n_k, k \in \mathbb{N})$ can be split into a finite number of lacunary subsequences $(n_k^j, k \in \mathbb{N})$ with $n_{k+1}^j \ge dn_k^j$ $(k \in \mathbb{N})$. Thus we may assume that $P_k \le n_k < P_{k+1}$. Then $s_{n_k}f = s_{P_k}f + s_{n_k}(d_kf)$, where $d_kf := s_{P_{k+1}}f - s_{P_k}f$. Since $(s_{P_k}f)$ is a martingale, Theorem 1 implies

$$\rho\lambda\big(\sup_{k} \|s_{P_{k}}f\|_{X} > \rho\big) \le C\|f\|_{L_{1}(X)} \le C\|f\|_{H_{1}(X)} \qquad (\rho > 0).$$
(14)

On the other hand, by Theorem 3,

$$\rho\lambda\Big(\sup_{k} \|s_{n_k}(d_k f)\|_X > \rho\Big) \le \rho\lambda\bigg(\bigg(\sum_{k=0}^{\infty} \|s_{n_k}(d_k f)\|_X^q\bigg)^{1/q} > \rho\bigg)$$
$$\le C_q \left\|\bigg(\sum_{k=0}^{\infty} \|d_k f\|_X^q\bigg)^{1/q}\bigg\|_1$$

for all $\rho > 0$ and $1 < q < \infty$. If we take an atomic decomposition of f as in (2) then

$$d_k f = \sum_{j=0}^{\infty} \mu_j d_k a^j$$
 a.e. in X norm.

It is easy to show that

$$\rho\lambda\Big(\sup_{k} \|s_{n_{k}}(d_{k}f)\|_{X} > \rho\Big) \le C_{q} \sum_{j=0}^{\infty} |\mu_{j}| E\bigg(\sum_{k=0}^{\infty} \|d_{k}a^{j}\|_{X}^{q}\bigg)^{1/q}.$$
 (15)

Since every UMD lattice is superreflexive (see e.g. RUBIO DE FRANCIA [16]), X is q-concave for some $1 < q < \infty$. We may suppose that q > 2. Hence X has

cotype q (see LINDENSTRAUSS and TZAFRIRI [10]). This means that

$$\left(\sum_{k=0}^{N} \|d_k a^j\|_X^q\right)^{1/q} \le C \int_0^1 \left\|\sum_{k=0}^{N} r_k(t) d_k a^j\right\|_X dt$$

for every $N, j \in \mathbb{N}$, where r_k denote now the original Rademacher functions with $p_n = 2 \ (\in \mathbb{N})$. If I_j denotes the support of the atom a^j , then we obtain by the UMD property and by the definition of the atom that for each fixed t,

$$E \left\| \sum_{k=0}^{N} r_{k}(t) d_{k} a^{j} \right\|_{X} = \int_{I_{j}} \left\| \sum_{k=0}^{N} r_{k}(t) d_{k} a^{j} \right\|_{X} d\lambda$$
$$\leq \lambda (I_{j})^{1/2} \left(\int_{I_{j}} \left\| \sum_{k=0}^{N} r_{k}(t) d_{k} a^{j} \right\|_{X}^{2} d\lambda \right)^{1/2} \leq C \lambda (I_{j})^{1/2} \left(\int_{I_{j}} \|a^{j}\|_{X}^{2} d\lambda \right)^{1/2} \leq C.$$

Now Theorem 2, (14) and (15) finishes the proof of the theorem.

By the usual density argument of Marcinkiewicz and Zygmund we obtain

Corollary 2. Assume that X is a UMD lattice and $(n_k, k \in \mathbb{N})$ is a lacunary sequence of positive integers. If $f \in H_1(X)$ then $\lim_{k\to\infty} s_{n_k} f = f$ a.e. in X norm.

References

- J. BOURGAIN, Extension of a result of Benedek, Calderon and Panzone, Ark. Mat. 22 (1984), 91–95.
- [2] D. BURKHOLDER, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Annals of Prob. 9 (1981), 997–1011.
- [3] D. BURKHOLDER, Martingales and Fourier analysis in Banach spaces, In C.I.M.E. Lectures, Italy, (1985), vol. 1206 of *Lecture Notes in Math.*, pages 61–108, *Springer, Berlin*, 1986.
- [4] D. BURKHOLDER, Explorations in martingale theory and its applications, In Saint-Flour Lectures (1989), vol. 1464 of *Lecture Notes in Math.*, pages 1–66, Springer, Berlin, 1991.
- [5] P. CLÉMENT, B. DE PAGTER, F. A. SUKOCHEV and H. WITVLIET, Schauder decomposition and multiplier theorems, *Studia Math.* 138 (2000), 135–163.
- [6] J. DIESTEL and J. J. UHL, Vector Measures, vol. 15 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 1977.
- [7] J. GARCIA-CUERVA and J. L. RUBIO DE FRANCIA, Weighted Norm Inequalities and Related Topics, vol. 116 of *Mathematics Studies*, North-Holland, Amsterdam, 1985.
- [8] M. GIRARDI and L. WEIS, Operator-valued martingale transforms and R-boundedness, *Ill. J. Math.* 49 (2005), 487–516.
- N. R. LADHAWALA and D. C. PANKRATZ, Almost everywhere convergence of Walsh Fourier series of H¹ functions, Studia Math. 59 (1976), 85–92.
- [10] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces I and II, Classics in Mathematics, Springer, Berlin, 1996.

- [11] R. LONG, Martingale Spaces and Inequalities, Peking University Press and Vieweg Publishing, 1993.
- [12] T. MARTINEZ and J. L. TORREA, Operator-valued martingale transforms, *Tohoku Math. J.* 52 (2000), 449–474.
- [13] Y. S. MISHURA and F. WEISZ, Atomic decompositions and inequalities for vector-valued discrete-time martingales, *Theory of Probab. Appl.* 43 (1998), 487–496.
- [14] Y. S. MISHURA and F. WEISZ, Inequalities for vector-valued martingales with continuous time, *Theory of Prob. Math. Stat.* 58, 8–23 yr 1998.
- [15] J. L. RUBIO DE FRANCIA, Fourier series and Hilbert transforms with values in UMD Banach spaces, *Studia Math.* 81 (1985), 95–105.
- [16] J. L. RUBIO DE FRANCIA, Martingale and integral transforms of Banach space valued functions, In Conference on Probability and Banach spaces (Zaragoza, 1985), vol. 1221 of *Lecture Notes in Math.*, pages 195–222, Springer, Berlin, 1986.
- [17] F. SCHIPP and P. SIMON, Remarks on a theorem of A. N. Kolmogorov, Matematikai Lapok 31 (1978–83), 117–123 (in Hungarian).
- [18] F. SCHIPP, W. R. WADE, P. SIMON and J. PÁL, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, New York, 1990.
- [19] G.-I. SUNOUCHI, Strong summability of Walsh-Fourier series, Tohoku Math. J. 16 (1969), 228–237.
- [20] S. A. TOZONI, Weighted inequalities for vector operators on martingales, J. Math. Anal. Appl. 191 (1995), 229–249.
- [21] S. A. TOZONI, Vector-valued extensions of operators on martingales, J. Math. Anal. Appl. 201 (1996), 128–151.
- [22] F. WEISZ, Almost everywhere convergence of Banach space-valued Vilenkin–Fourier series, Acta Math. Hungar. (to appear).
- [23] F. WEISZ, Martingale Hardy Spaces and their Applications in Fourier Analysis, vol. 1568 of Lecture Notes in Math., Springer, Berlin, 1994.
- [24] F. WEISZ, Almost everywhere convergence of Ciesielski-Fourier series of H_1 functions, Archiv der Math. 83 (2004), 135–145.
- [25] J. WENZEL, Mean convergence of vector-valued Walsh series, Math. Nachr. 162 (1993), 117–124.
- [26] W.-S. YOUNG, Almost everywhere convergence of Vilenkin–Fourier series of H¹ functions, Proc. Amer. Math. Soc. 108 (1990), 433–441.
- [27] W.-S. YOUNG, Littlewood-Paley and multiplier theorems for Vilenkin–Fourier series, Can. J. Math. 46 (1994), 662–672.
- [28] A. ZYGMUND, Trigonometric Series, Cambridge Press, London, 2002, 3th edition.

FERENC WEISZ DEPARTMENT OF NUMERICAL ANALYSIS EÖTVÖS L. UNIVERSITY PÁZMÁNY P. SÉTÁNY 1/C. H-1117 BUDAPEST HUNGARY

E-mail: weisz@ludens.elte.hu

(Received May 3, 2006; revised November 13, 2006)