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Hardy spaces and convergence of vector-valued

Vilenkin–Fourier series

By FERENC WEISZ (Budapest)

Abstract. The atomic decomposition of a vector-valued martingale Hardy space

is given. A classical inequality of Marcinkiewicz is generalized for UMD lattice valued

(bounded) Vilenkin–Fourier series. It is proved that the Vilenkin–Fourier series of f ∈

Lp(X) (1 < p < ∞) converges to f in Lp(X) norm if and only if X is a UMD space.

Moreover, a lacunary sequence of the UMD lattice valued Vilenkin–Fourier series of

f ∈ H1(X) converges almost everywhere to f in X norm.

1. Introduction

For trigonometric and Walsh–Fourier series the partial sum operators are

bounded on Lp (1 < p < ∞) spaces. An ℓr-valued version of this theorem

is due to Marcinkiewicz and Zygmund for trigonometric Fourier series (see e.g.

Zygmund [28, II. p. 225]), to Sunouchi [19] for Walsh–Fourier series and to

Young [27] for Vilenkin–Fourier series.

Ladhawala and Pankratz [9] (see also Weisz [24]) proved that if f is in the

dyadic Hardy space H1 and (nk, k ∈ N) is a lacunary sequence of positive integers,

then snk
f , the partial sums of the Walsh–Fourier series of f , converges a.e. to f .

Moreover, Schipp and Simon [17] verified that if Φ(u) = o(log log u) (u → ∞)

then there exists a function in H1Φ(H1) whose full sequence of partial sums
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diverges everywhere. Especially, if Φ(u) = 1 (u ≥ 1) then we get H1Φ(H1) = H1,

i.e. it follows the existence of f ∈ H1 such that snf diverges everywhere (see

Ladhawala and Pankratz [9]). The analogous results for trigonometric Fourier

series can be found in Zygmund [28, II. p. 235] and for Vilenkin–Fourier series

in Young [26].

In this paper we extend these results to vector-valued, more exactly to UMD

space valued Walsh- and Vilenkin–Fourier series. The UMD (unconditionality

property of martingale differences) Banach spaces were introduced by Burk-

holder [2]. Since that time these spaces itself and their applications to Fourier

analysis has been studied very intensively in the literature (e.g. Burkholder [3],

[4], Rubio de Francia [15], [16], Tozoni [20], [21], Mishura and Weisz [13],

[14], Martinez and Torrea [12] and Girardi and Weis [8]). Hardy spaces of

scalar-valued martingales are investigated in the books Long [11] and Weisz [23].

Here we consider Walsh and Vilenkin martingales and give the atomic de-

composition of a Banach space valued martingale Hardy space. We generalize

the Marcinkiewicz inequality on partial sums for UMD space valued (bounded)

Vilenkin–Fourier series. From this it follows that if X is a UMD space then the X

valued Vilenkin–Fourier series of f ∈ Lp(X) (1 < p < ∞) converges to f in norm.

The converse is also true: if the Vilenkin–Fourier series converges in Lp(X) norm

then X is a UMD space. For Walsh–Fourier series this was proved in Wenzel

[25] and Tozoni [20].

It is known that if f ∈ Lp(X) (1 < p < ∞) and X is UMD then snf → f

a.e. in X norm (see Rubio de Francia [15] for trigonometric Fourier series

and Weisz [22] for Vilenkin–Fourier series). Finally, we extend this result to

Hardy spaces, more exactly we prove that if f is in the Hardy space H1(X) and

(nk, k ∈ N) is a lacunary sequence of positive integers, then the partial sums of

the Vilenkin–Fourier series snk
f converge a.e. to f in X norm. In the proofs of

these results martingale techniques are used.

2. Vilenkin systems

In this paper we consider the unit interval [0, 1), the σ-algebra A of the

Borel sets and the Lebesgue measure λ. Let (pn, n ∈ N) be a sequence of natural

numbers with entries at least 2. Introduce the notations P0 = 1 and Pn+1 :=
∏n

k=0 pk (n ∈ N). Every point x ∈ [0, 1) can be written in the following way:

x =

∞
∑

k=0

xk

Pk+1
, 0 ≤ xk < pk, xk ∈ N.
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In case there are two different forms, we choose the one for which limk→∞ xk = 0.

The functions

rn(x) := exp
2πıxn

pn
(n ∈ N)

are the generalized Rademacher functions where ı :=
√
−1. The product system

generated by these functions is called a Vilenkin system:

wn(x) :=
∞
∏

k=0

rk(x)nk

where n =
∑∞

k=0 nkPk, 0 ≤ nk < pk and nk ∈ N. If pn = 2 for every n ∈ N then

it is called Walsh system. In this paper we suppose that the Vilenkin system is

bounded, i.e. the sequence (pn) is bounded. For a detailed investigation of the

Walsh- and Vilenkin systems see Schipp, Wade, Simon and Pál [18].

Let Fn be the σ-algebra generated by {r0, . . . , rn−1}. It is easy to see that

Fn = σ{[kP−1
n , (k + 1)P−1

n ) : 0 ≤ k < Pn}

where σ(H) denotes the σ-algebra generated by an arbitrary set system H. By a

Vilenkin interval we mean one of the form [kP−1
n , (k + 1)P−1

n ) for some k, n ∈ N,

0 ≤ k < Pn.

For a Banach space X , the space Lp(X) consists of all strongly measurable

functions f : [0, 1) → X for which

‖f‖Lp(X) :=

(
∫ 1

0

‖f‖p
X dλ

)1/p

(0 < p ≤ ∞).

If f ∈ Lp(X) (p ≥ 1) then the Bochner integral
∫ 1

0
f dλ exists (see Diestel and

Uhl [6] and Garcia-Cuerva and Rubio de Francia [7]). The expectation

and the conditional expectation operators relative to Fn are denoted by E and

En, respectively. We investigate the class of X-valued (Vilenkin) martingales

f = (fn,∈ N) with respect to (Fn,∈ N). For a stopping time ν : [0, 1) → N∪{∞}
the stopped martingale (fν

n ,∈ N) is defined by

fν
n :=

n
∑

k=0

1{ν≥k}dkf,

where dkf := fk − fk−1, f−1 := 0.
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If f ∈ L1(X) then f̂(n) := E(fwn) is said to be the nth Vilenkin–Fourier

coefficient of f (∈ N). Denote by snf the nth partial sum of the Vilenkin–Fourier

series of f , namely,

snf :=
n−1
∑

k=0

f̂(k)wk.

It is easy to see that (sPnf,∈ N) is an X-valued martingale.

We will suppose that X is a Banach lattice. As usual, | · | will denote the

absolute value in X : |x| := sup{x,−x}. For more about Banach lattices see Lin-

denstrauss and Tzafriri [10]. A Banach lattice X is a UMD (unconditionality

property for martingale differences) space, if for all 1 < p < ∞, all X-valued

martingale difference sequences (d1, d2, . . .) and all numbers ǫ1, ǫ2, . . . ∈ {−1, 1}
there exists a positive real number Cp such that

∥

∥

∥

∥

n
∑

k=1

ǫkdk

∥

∥

∥

∥

Lp(X)

≤ Cp

∥

∥

∥

∥

n
∑

k=1

dk

∥

∥

∥

∥

Lp(X)

(∈ N) (1)

(see Burkholder [2]). It is enough to assume (1) for some 1 < p < ∞ and for

all X-valued martingale difference sequences (d1, d2, . . .) with respect to (Fn), be-

cause each Fn is atomic (see Rubio de Francia [16] or Girardi and Weis [8]).

The maximal function of an X-valued martingale f = (fn,∈ N) is defined by

Mnf := sup
k≤n

‖fk‖X , Mf := sup
k∈N

‖fk‖X .

The following theorem can be found in Bourgain [1], Rubio de Francia

[16] and Tozoni [21].

Theorem 1. If X is a UMD lattice and f ∈ Lp(X) then

ρλ(Mf > ρ) ≤ C‖f‖L1(X), (ρ > 0)

and

‖f‖Lp(X) ∼ ‖Mf‖Lp[0,1) ∼
∥

∥

∥

∥

( ∞
∑

n=0

|dnf |2
)1/2∥

∥

∥

∥

Lp(X)

∼
∥

∥

∥

∥

( ∞
∑

n=0

En−1|dnf |2
)1/2∥

∥

∥

∥

Lp(X)

for all 1 < p < ∞, where ∼ denotes the equivalence of the norms.

Note that the sequence (Fn) is regular. In this paper the positive constants

Cp depend only on p and may denote different constants in different contexts.
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3. Hardy spaces and atomic decomposition

The Hardy space Hp(X) (1 ≤ p ≤ ∞) consists of all X-valued martingales f

for which

‖f‖Hp(X) := ‖Mf‖Lp(R) < ∞.

By Theorem 1, if X is UMD then Hp(X) ∼ Lp(X) for all 1 < p < ∞. Moreover,

if (fn) ∈ Hp(X) for some 1 ≤ p < ∞ then there exists f ∈ Lp(X) such that

f = limn→∞ fn in Lp(X) norm and fn = Enf (see e.g. Diestel and Uhl [6]).

The atomic decomposition is a useful characterization of Hardy spaces (for

scalar valued martingales see e.g. Weisz [23]). Let us introduce first the concept

of atoms. A function a is an atom if there exists a Vilenkin interval I such that
∫

I

a dλ = 0, ‖a‖L∞(X) ≤ λ(I)−1, {a 6= 0} ⊂ I.

Though the proof of the next atomic decomposition is similar to the scalar valued

case, for the sake of completeness we present a short proof.

Theorem 2. Assume that X is a UMD lattice. Then f ∈ H1(X) if and only

if there exist a sequence (ak, k ∈ N) of atoms and a sequence (µk, k ∈ N) of real

numbers such that

∞
∑

k=0

µkak = f a.e. in X norm and

∞
∑

k=0

|µk| < ∞. (2)

Moreover,

‖f‖H1(X) ∼ inf

∞
∑

k=0

|µk|

where the infimum is taken over all decompositions of f of the form (2).

Proof. Assume that f ∈ H1(X). Define the stopping time νk by

νk(x) := inf{n ∈ N : En1{Mn+1f>2k}(x) ≥ 1/d}, (k ∈ Z),

where d = supn pn. From this it follows that νk ≤ νk+1, (k ∈ Z),

{Mf > 2k} ⊂ {νk < ∞}, λ(νk < ∞) ≤ dλ(Mf > 2k) (3)

and Mνk
f ≤ 2k for all k ∈ Z, where Mνk

f := Mnf if νk = n. It is easy to see

that

f =
∑

k∈Z

(fνk+1
− fνk

) a.e. in X norm.
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Indeed, λ(νk < ∞) → 0 by (3) and so fνk+1
→ f a.e. in X norm as k → ∞

and ‖fνk
‖X ≤ 2k → 0 as k → −∞. We decompose {νk = l} = ∪nI l

k,n, where

I l
k,n ∈ Fl are Vilenkin intervals. If we define

µl
k,n := 3 · 2kλ(I l

k,n), al
k,n := (µl

k,n)−11Il
k,n

(fνk+1
− fνk

)

then

f =
∑

k∈Z

∑

l∈N

∑

n

µl
k,nal

k,n a.e. in X norm. (4)

Since νk+1 ≥ νk = l on I l
k,n, by the martingale property

∫

Il
k,n

(fνk+1
− fνk

) dλ =

∫

Il
k,n

(fνk+1
− fl) dλ = 0.

This and

‖al
k,n‖X ≤ |µl

k,n|−1(‖fνk+1
‖X + ‖fνk

‖X) ≤ λ(I l
k,n)−1

imply that al
k,n are atoms. By (3),

∑

k∈Z

∑

l∈N

∑

n

|µk| = 3
∑

k∈Z

2kλ(νk < ∞) ≤ 3d
∑

k∈Z

2kλ(Mf > 2k) ≤ CE(Mf).

Since E(‖a‖X) ≤ 1, the sum

∑

k∈Z

∑

l∈N

∑

n

|µl
k,n|‖al

k,n‖X

is convergent a.e. Thus the sum in (4) can be rearranged to get (2).

Conversely, suppose that f has a decomposition of the form (2). Since the

sum in (2) converges in L1(X) norm, we have

Enf =

∞
∑

k=0

µkEnak

and so we conclude

E(|Mf |) ≤
∞
∑

k=0

|µk|E(sup
n

‖Enak‖X) ≤
∞
∑

k=0

|µk|
∫

Ik

sup
n≥nk

En‖ak‖X dλ ≤
∞
∑

k=0

|µk|,

where the Vilenkin interval Ik ∈ Fnk
is the support of ak. �

Note that the same proof works if we suppose only that X is a Banach space

having the Radon–Nikodym property.
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4. Marcinkiewicz inequality

Now we generalize the classical Marcinkiewicz inequality, mentioned in the

Introduction, for UMD valued functions.

Theorem 3. Assume that X is a UMD lattice and nk is an arbitrary natural

number for each k ∈ N. If (fk, k ∈ N) ∈ Lp(ℓr(X)) for some 1 < p, r < ∞ then

∥

∥

∥

∥

( ∞
∑

k=0

‖snk
fk‖r

X

)1/r∥
∥

∥

∥

p

≤ Cp,r

∥

∥

∥

∥

( ∞
∑

k=0

‖fk‖r
X

)1/r∥
∥

∥

∥

p

. (5)

If (fk, k ∈ N) ∈ L1(ℓr(X)) for some 1 < r < ∞ then

ρλ

(( ∞
∑

k=0

‖snk
fk‖r

X

)1/r

> ρ

)

≤ Cr

∥

∥

∥

∥

( ∞
∑

k=0

‖fk‖r
X

)1/r∥
∥

∥

∥

1

, (ρ > 0). (6)

Proof. It is known that

wnsnf =

∞
∑

j=0

wnT n
j

(

wn

(

Ej+1(fwn) − Ej(fwn)
)

)

=:

∞
∑

j=0

dn
j , (7)

where the operator T n
j is linear,

|T n
j f |2 ≤ CEj |f |2, (j, n ∈ N) (8)

and (dn
j , j ∈ N) is a martingale difference sequence with respect to (Fj+1) (see

Weisz [23]). Note that (7) is a finite sum. Since ℓr (1 < r < ∞) is a UMD lattice,

so is ℓr(X) (see Rubio de Francia [16]). Then we may apply Theorem 1 and

(8) to obtain

∥

∥

∥

∥

( ∞
∑

k=0

‖snk
fk‖r

X

)1/r∥
∥

∥

∥

p

=

∥

∥

∥

∥

( ∞
∑

k=0

∥

∥

∥

∥

∞
∑

j=0

dnk

j

∥

∥

∥

∥

r

X

)1/r∥
∥

∥

∥

p

≤ Cp,r

∥

∥

∥

∥

( ∞
∑

k=0

∥

∥

∥

∥

( ∞
∑

j=0

|dnk
j |2

)1/2∥
∥

∥

∥

r

X

)1/r∥
∥

∥

∥

p

≤ Cp,r

∥

∥

∥

∥

( ∞
∑

k=0

∥

∥

∥

∥

( ∞
∑

j=0

Ej |Ej+1(f
kwnk

) − Ej(f
kwnk

)|2
)1/2∥

∥

∥

∥

r

X

)1/r∥
∥

∥

∥

p

≤ Cp,r

∥

∥

∥

∥

( ∞
∑

k=0

∥

∥

∥

∥

( ∞
∑

j=0

|Ej+1(f
kwnk

) − Ej(f
kwnk

)|2
)1/2∥

∥

∥

∥

r

X

)1/r∥
∥

∥

∥

p
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≤ Cp,r

∥

∥

∥

∥

( ∞
∑

k=0

∥

∥

∥

∥

fkwnk

∥

∥

∥

∥

r

X

)1/r∥
∥

∥

∥

p

, (9)

which proves (5). Note that in the last step we have used that

(Ej+1(f
kwnk

) − Ej(f
kwnk

), j ∈ N)

is a martingale difference sequence.

To prove (6) let us define the stopping time

ν(x) := inf{n ∈ N : En1{(
P
∞

k=0
‖En+1(fkwnk

)‖r
X )1/r>ρ}(x) ≥ 1/d}.

Then

λ(ν < ∞) ≤ dλ

(

sup
∈N

( ∞
∑

k=0

‖En(fkwnk
)‖r

X

)1/r

> ρ

)

(10)

and

sup
n≤ν

( ∞
∑

k=0

‖En(fkwnk
)‖r

X

)1/r

≤ ρ. (11)

Obviously,

( ∞
∑

k=0

‖snk
fk‖r

X

)1/r

=

( ∞
∑

k=0

∥

∥

∥

∥

∞
∑

j=0

dnk
j 1{ν≥j+1}

∥

∥

∥

∥

r

X

)1/r

+

( ∞
∑

k=0

∥

∥

∥

∥

∞
∑

j=0

dnk
j 1{ν<j+1}

∥

∥

∥

∥

r

X

)1/r

= (A) + (B).

Using the definition of stopped martingales and (11) we get similarly to (9) that

λ((A) > ρ) ≤ 1

ρ2
E((A)2)

≤ Cr

ρ2
E

( ∞
∑

k=0

∥

∥

∥

∥

∞
∑

j=0

(Ej+1(f
kwnk

) − Ej(f
kwnk

))1{ν≥j+1}

∥

∥

∥

∥

r

X

)2/r

≤ Cr

ρ2
E

( ∞
∑

k=0

‖Eν(fkwnk
)‖r

X

)2/r

≤ Cr

ρ
E

( ∞
∑

k=0

‖Eν(fkwnk
)‖r

X

)1/r

≤ Cr

ρ
E

( ∞
∑

k=0

‖fk‖r
X

)1/r

. (12)
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It is easy to see that (B) = 0 if ν = ∞, and so {(B) > ρ} ⊂ {ν < ∞}. Since
(
∑∞

k=0 ‖En(fkwnk
)‖r

X

)1/r
is a non-negative submartingale, we obtain

λ(ν < ∞) ≤ dλ

(

sup
∈N

( ∞
∑

k=0

‖En(fkwnk
)‖r

X

)1/r

> ρ

)

≤ d

ρ
E

( ∞
∑

k=0

‖fk‖r
X

)1/r

.

This together with (12) implies (6). �

If we apply Theorem 3 for one k, only, then we get

Corollary 1. If X is a UMD lattice and f ∈ Lp(X) for some 1 < p < ∞
then

‖snf‖Lp(X) ≤ Cp‖f‖Lp(X) (∈ N) (13)

and snf → f in Lp(X) norm as n → ∞.

The converse of this result easily follows from the proof of Theorem 3:

Theorem 4. Assume that X is a Banach lattice. Inequality (13) holds for

some (or equivalently for all) 1 < p < ∞ if and only if X is UMD.

Proof. One can show that

T n
j (wn(Ej+1(fwn) − Ej(fwn))) = nj(wn(Ej+1(fwn) − Ej(fwn)))

if nj = 0 or 1, where n =
∑∞

j=0 njPj , 0 ≤ nj < pj (see Weisz [23]). Consider

only such numbers n for which nj = 0 or 1 for each j. Then

wnsnf =

∞
∑

j=0

nj

(

Ej+1(fwn) − Ej(fwn)
)

.

Inequality (13) implies

∥

∥

∥

∥

∞
∑

j=0

nj

(

Ej+1(fwn) − Ej(fwn)
)

∥

∥

∥

∥

Lp(X)

≤ Cp‖f‖Lp(X).

Writing fwn instead of f we obtain

∥

∥

∥

∥

∞
∑

j=0

nj

(

Ej+1f − Ejf
)

∥

∥

∥

∥

Lp(X)

≤ Cp‖f‖Lp(X)

and this implies that X is UMD (see (1)). �

For other versions of this theorem see also Wenzel [25], Tozoni [20] and

Clément at al. [5].
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5. Almost everywhere convergence

It is known (see Weisz [22]) that snf → f a.e. in X norm as n → ∞,

whenever f ∈ Lp(X) for some 1 < p < ∞. However, this does not hold for L1(X)

or H1(X) even if X = R (see Ladhawala and Pankratz [9] or Schipp and

Simon [17]). We say that an increasing sequence (nk, k ∈ N) of positive integers

is lacunary if nk+1/nk > α > 1 for all k ∈ N. Now we are ready to prove our

main result.

Theorem 5. Assume that X is a UMD lattice and (nk, k ∈ N) is a lacunary

sequence of positive integers. If f ∈ H1(X) then

ρλ
(

sup
k

‖snk
f‖X > ρ

)

≤ C‖f‖H1(X), (ρ > 0).

Proof. It is well known that every lacunary sequence (nk, k ∈ N) can be

split into a finite number of lacunary subsequences (nj
k, k ∈ N) with nj

k+1 ≥ dnj
k

(k ∈ N). Thus we may assume that Pk ≤ nk < Pk+1. Then snk
f = sPk

f +

snk
(dkf), where dkf := sPk+1

f − sPk
f . Since (sPk

f) is a martingale, Theorem 1

implies

ρλ
(

sup
k

‖sPk
f‖X > ρ

)

≤ C‖f‖L1(X) ≤ C‖f‖H1(X) (ρ > 0). (14)

On the other hand, by Theorem 3,

ρλ
(

sup
k

‖snk
(dkf)‖X > ρ

)

≤ ρλ

(( ∞
∑

k=0

‖snk
(dkf)‖q

X

)1/q

> ρ

)

≤ Cq

∥

∥

∥

∥

( ∞
∑

k=0

‖dkf‖q
X

)1/q∥
∥

∥

∥

1

for all ρ > 0 and 1 < q < ∞. If we take an atomic decomposition of f as in (2)

then

dkf =

∞
∑

j=0

µjdkaj a.e. in X norm.

It is easy to show that

ρλ
(

sup
k

‖snk
(dkf)‖X > ρ

)

≤ Cq

∞
∑

j=0

|µj |E
( ∞

∑

k=0

‖dkaj‖q
X

)1/q

. (15)

Since every UMD lattice is superreflexive (see e.g. Rubio de Francia [16]), X

is q-concave for some 1 < q < ∞. We may suppose that q > 2. Hence X has
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cotype q (see Lindenstrauss and Tzafriri [10]). This means that

( N
∑

k=0

‖dkaj‖q
X

)1/q

≤ C

∫ 1

0

∥

∥

∥

∥

N
∑

k=0

rk(t)dkaj

∥

∥

∥

∥

X

dt

for every N, j ∈ N, where rk denote now the original Rademacher functions with

pn = 2 (∈ N). If Ij denotes the support of the atom aj , then we obtain by the

UMD property and by the definition of the atom that for each fixed t,

E

∥

∥

∥

∥

N
∑

k=0

rk(t)dkaj

∥

∥

∥

∥

X

=

∫

Ij

∥

∥

∥

∥

N
∑

k=0

rk(t)dkaj

∥

∥

∥

∥

X

dλ

≤ λ(Ij)
1/2

(
∫

Ij

∥

∥

∥

∥

N
∑

k=0

rk(t)dkaj

∥

∥

∥

∥

2

X

dλ

)1/2

≤ Cλ(Ij)
1/2

(
∫

Ij

‖aj‖2
Xdλ

)1/2

≤ C.

Now Theorem 2, (14) and (15) finishes the proof of the theorem. �

By the usual density argument of Marcinkiewicz and Zygmund we obtain

Corollary 2. Assume that X is a UMD lattice and (nk, k ∈ N) is a lacunary

sequence of positive integers. If f ∈ H1(X) then limk→∞ snk
f = f a.e. in X norm.
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