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On characterizing permutability in direct products

By JOSEPH EVAN (Wilkes-Barre)

Abstract. This paper extends the author’s earlier results regarding permutable

subgroups of direct products. More specifically, a prior article characterizes when a

subgroup of a direct product of finite groups is permutable, and this article improves

that characterization.

1. Introduction

Over the last few years, several authors have been carrying out a project of
examining how subgroups with various embedding properties can be characterized
in a direct product of two groups. This article is a contribution to that project.

In particular, it has long been known that a subgroup N of the direct prod-
uct G × H is normal if and only if πG(N)/(N ∩ G) ≤ Z(G/(N ∩ G)) and
πH(N)/(N ∩H) ≤ Z(H/(N ∩H)) where πG and πH are the natural projections
of G×H onto G and H respectively. Yet other embedding properties are also well
understood in direct products. In [6], P. Hauck uses the Fitting subgroup to
characterize subnormality. More recently, in his Ph.D. dissertation J. Petrillo

[10] has studied the cover-avoidance property (p. 263 of [12] is a reference on cover-
avoidence). B. Brewster, A. Martinez Pastor and M. D. Perez-Ramos [2]
provide necessary and sufficient conditions for subgroups of direct products to be
normally embedded, and extend their results to characterize system permutability
in direct products of finite solvable groups.

This article focuses on permutable subgroups. Recall that a subgroup M of
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a group G is permutable if for all subgroups X of G, we have MX = XM . Per-
mutable subgroups were first studied by Ore [9], who called them quasinormal,
in 1939. Ore proved that in a finite group, a permutable subgroup is subnormal.

The author has examined permutability in direct products in a series of
papers [3], [4], and [5]. This paper concludes these investigations. In [3], the
permutability of a subgroup of G × H that is a direct product of subgroups of
the direct factors is explored. In [4], we investigate subgroups of G × H whose
intersections with the direct factors are normal. It is in [5] that we put these
results together to provide necessary and sufficient conditions for a subgroup of
a direct product of finite groups to be permutable.

Theorem 1.1 (Theorem 4.2 [5]). Let M be a subgroup of the finite p-

group G × H. Without loss of generality, assume exp(G/ CoreG(M ∩ G)) ≥
exp(H/ CoreH(M ∩H)). Then, M is a permutable subgroup of G×H if and only

if for all (g, h) ∈ G×H, one of the following is true:

1) M ≤ NG×H(((M ∩G)× (M ∩H))〈(g, h)〉), or

(2) |〈g〉/(〈g〉∩M)| > exp(H/ CoreH(M∩H)), and there is a nonnegative integer i

so that hpi ∈ πH((〈g〉 × 〈h〉) ∩M) and M ≤ NG×H(((M ∩ G) × (M ∩ H))
〈(1, hpi

)〉〈(g, h)〉).
Although stated for p-groups, this theorem characterizes permutability in

any direct product of finite groups. To observe this, apply the permutabil-
ity of M in G × H together with the Maier–Schmid Theorem [8] to con-
clude πG(M)/(CoreG(M ∩ G)) and πH(M)/(CoreH(M ∩ H)) are hypercentral
in G/ CoreG(M ∩G) and H/ CoreH(M ∩H).

Despite the presence of this theorem, interesting questions remain. Specifi-
cally we present in Conjecture 5.1 of [5] a much more natural condition that is
sufficient for a subgroup of a direct product to be permutable. Unfortunately, Ex-
ample 5.4 in [5] demonstrates that this condition, presented here as Condition A,
is not in general necessary for permutability of a subgroup M of a direct product
G×H.

Condition A. (1) The subgroup (M∩G)×(M∩H) is a permutable subgroup
of G×H, and (2) for all S ≤ G×H such that (M ∩G)× (M ∩H) ≤ S, we have,
M ≤ NG×H(S).

One would like to have a better understanding of the relationship between
Condition A and permutability in direct products, and that is what is explored in
this paper. Section 2 provides examples that are critical for understanding Con-
dition A. Example 2.3 establishes a substantial difference between even and odd
group orders when studying permutability in direct products, and Example 2.5
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reveals a significant distinction between the parts of Condition A. Specifically,
previous examples of permutable subgroups of direct products, like Example 5.4
in [5], satisfy Part (2) of Condition A, but not Part (1). Example 2.5 shows it
is possible for a permutable subgroup of a direct product to satisfy Part (1) of
Condition A but not Part (2).

In Section 3 our goal is to determine a class of groups in which Condition A
characterizes permutability. We focus on groups with modular subgroup lattices.
A subgroup of a finite group is permutable if and only if it is subnormal and
modular (Theorem 5.1.1 [13]), and so a finite p-group has a modular subgroup
lattice if and only if all its subgroups are permutable. Classified by Iwasawa

[7], these groups provide the most accessible examples of permutable subgroups
that are not normal, and play an important role in exploring many questions.
For example, they are crucial to the study of groups in which permutability is
transitive, as seen in investigations by Beidleman, Brewster, and Robinson

in [1] and Robinson’s continuation [11]. Corollary 3.4 in this article concludes
that when G and H are groups of odd order with modular subgroup lattices, a
subgroup of G×H is permutable if and only if it satisfies Condition A. In light of
remarks in the preceding paragraph, this result is especially noteworthy for those
interested in modularity, since it characterizes modularity in the direct product
of two finite p-groups of odd order with modular subgroup lattices. We extend
this result by proving in Theorem 3.5 that if G and H are any finite groups with
modular subgroup lattices, then a permutable subgroup of G × H must satisfy
the first part of Condition A. The question of whether or not such a subgroup
must satisfy the second part of Condition A remains open.

Notation is standard, as found in Robinson [12]. Special thanks are due to
L. C. Kappe for her valuable suggestions and to the referee, whose careful reading
and comments have greatly improved this article.

2. Examples

In this section, we construct examples that provide a deeper understanding
of Condition A. These examples are constructed using permutations that compose
left to right.

In Lemma 5.8 of [5], we prove that if G×H is a group of odd order, and M

is a permutable subgroup of G×H whose intersections with the direct factors are
cyclic, then M satisfies the first part of Condition A. Example 2.3 reveals that
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this cannot be extended to direct products of even order. Example 2.1 is used as
a direct factor in Example 2.3.

Example 2.1. Suppose that n ∈ N, and n ≥ 4. Let g, yi for i ∈ 1, 2, 3, 4 be ele-
ments of S2n where g = (1, 2, 3, . . . , 2n) and yi = (ai0, ai1, . . . , aij , . . . , ai(2n−2−1))
with aij = 4j + i. Finally, let m = y2y4. Then, 〈m〉〈g〉 ≤ S2n , and 〈m〉 is a
Core-free permutable subgroup of 〈m〉〈g〉.

Proof. Observe that for i ∈ {1, 2, 3}, g−1yig = yi+1 and g−1y4g = y1.
This fact is used throughout the example. First, we show that 〈m〉〈g〉 is a group
by demonstrating that gm ∈ 〈m〉〈g2〉. Notice that gm = y1y3 = m−1g4 since
g4 = y1y2y3y4, completing this argument. Next observe Core〈m〉〈g〉(〈m〉) = 1
since otherwise 〈y2n−3

2 y2n−3

4 〉C 〈m〉〈g〉, which is false.
In order to demonstrate that 〈m〉 is permutable in 〈m〉〈g〉, we must prove

that for all i, j ∈ N, 〈m〉 permutes with 〈mjgi〉. When gcd(2, i) = 2, then
[m,mjgi] = 1. So, suppose that gcd(2, i) 6= 2. It follows that 〈m,mjgi〉 = 〈m〉〈g〉.
Since Core〈m〉〈g〉(〈m〉) = 1, we have 〈m〉 ∩ 〈mjgi〉 = 1. This yields |〈m〉〈mjgi〉| =
|〈m〉||〈mjgi〉|. So, by showing that |〈mjgi〉| = 2n, we conclude that 〈m〉 permutes
with 〈mjgi〉.

Since g2 ∈ Z(〈m〉〈g〉), assume i = 1. Now (mjgi)2 = (y1y2y3y4)jg2 = g4j+2,
which has order 2n−1. As a result, o(mjgi) = 2n. Therefore, 〈m〉 is permutable
in 〈m〉〈g〉. ¤

Corollary 5.2 in [3] provides criteria for determining when a subgroup M of a
group G permutes with cyclic subgroups of G×H. It is applied in Example 2.3,
and in subsequent results, and so we state it here.

Lemma 2.2. Let G and H be finite groups. Suppose that M is a subgroup

of G and (g, h) ∈ G × H. Then M permutes with 〈(g, h)〉 if and only if g ∈
NG(〈go(h)〉M).

Example 2.3. Let G = 〈m〉〈g〉 as in Example 2.1, H = 〈h〉 be a cyclic group
of order 2n−1, and M = 〈(m, 1)〉〈(g2, h)〉. Then M is a permutable subgroup of
G×H, but M ∩G is not permutable in G×H.

Proof. Obviously, M is a subgroup of G×H since (g2, h) ∈ Z(G×H). Let
r, t, i ∈ N. Clearly, if gcd(2, i) = 2, then M and (mrgi, ht) satisfy Condition (1)
of Theorem 1.1.

So, assume gcd(2, i) 6= 2. Then, o(mrgi) = 2n, and 〈mrgi〉 ∩ 〈m〉 = 1,
since Core〈m〉〈g〉(〈m〉) is trivial. Thus, |〈mrgi〉/(〈(mrgi, 1)〉 ∩M)| = 2n, which is
greater than exp(H/ CoreH(M ∩H)). Furthermore, πH(M ∩ (〈mrgi〉 × 〈ht〉)) =
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〈ht〉. Notice M normalizes (M ∩G)〈(1, ht)〉〈(mrgi, ht)〉. Hence, M and (mrgi, ht)
satisfy Condition (2) of Theorem 1.1, completing the proof that M is a permutable
subgroup of G×H.

Finally, observe that g−1mg /∈ 〈m〉〈g8〉. Therefore, g /∈ NG((M ∩G)〈g2n−1〉).
By Lemma 2.2, M ∩G does not permute with 〈(g, h)〉. ¤

Until now, all examples of permutable subgroups M of direct products G×H

that satisfy Part (1) of Condition A also satisfy Part (2). This is not the case in
Example 2.5. Example 2.4 serves as a direct factor in Example 2.5.

Example 2.4. Suppose that p is an odd prime, and let g, xi for i ∈ N
such that 1 ≤ i ≤ p be elements of Sp4 , where g = (1, 2, 3, . . . , p4) and xi =
(ai0, ai1, ai2, . . . , aij , . . . , ai(p3−1)) with aij = jp+ i. Let m1 = (x1x

2
2x

3
3 . . . xp−1

p−1)
p,

and for j ∈ N such that 2 ≤ j ≤ p, let mj = xp2

j . Finally, let M = 〈mi|i ∈ N and
2 ≤ i ≤ p〉. Then:

(1) g normalizes 〈gp3〉M , and so 〈g〉M ≤ Sp4 ;

(2) m−1
1 gm1 = gp2+1m̄ for some m̄ ∈ M , and so 〈m1〉〈g〉M ≤ Sp4 ;

(3) Core〈m1〉〈g〉M (M) = 1; and

(4) for r, t ∈ N with gcd(t, p) 6= p and w ∈ M , 〈(mr
1g

tw)p〉 = 〈gp〉, and M is a
permutable subgroup of 〈m1〉〈g〉M .

Proof. First observe that for i ∈ {2, 3, . . . , p − 1}, g−1mig = mi+1. Fur-
thermore, g−1mpg = xp2

1 . But xp2

1 = (x1x2 . . . xp)p2
(m2m3 . . . mp)−1. Since

(x1x2 . . . xp)p2
= gp3

, we have g−1mpg ∈ 〈gp3〉M . It follows that g normalizes
〈gp3〉M , which proves (1).

Secondly, m−1
1 gm1 = gg−1(xp3−p

1 xp3−2p
2 · · ·xp3−p(p−1)

p−1 )g(xp
1x

2p
2 · · ·xp(p−1)

p−1 )

= g(x1x2 · · ·xp−1)p(xp3−p(p−1)
p ). Since (x1x2 · · ·xp)p = gp2

, we have m−1
1 gm1 =

gp2+1m̄ for m̄ ∈ M . Observe [m1,M ] = 1, and it follows that m1 ∈ NSp4 (〈g〉M),
proving (2).

Since g−1xig = xi+1 for i ∈ N such that 1 ≤ i < p, and g−1xpg = x1, we
conclude that (3) is true, and so it is left to prove (4). Let r, t ∈ N, and let
w ∈ M . In order to show M is permutable in 〈m1〉〈g〉M , it is sufficient to show
that M permutes with 〈mr

1g
tw〉. When gcd(p, t) = p, we have [〈m1〉M, gt] = 1,

and then M permutes with 〈mr
1g

tw〉. So, assume gcd(p, t) 6= p. We will first prove
that 〈(mr

1g
tw)p〉 = 〈gp〉. Observe that there are c2, c3, . . . cp ∈ N such that w =

xc2p2

2 xc3p2

3 · · ·xcpp2

p . Then, (mr
1g

tw)p=((x1x
2
2x

3
3 · · ·xp−1

p−1)
rpgt(xc2

2 xc3
3 · · ·xcp

p )p2
)p =

gtp(x1x2 · · ·xp)rp2(p−1)/2(x1x2 · · ·xp)p2(c2+···+cp) due to the conjugation of x′is
by gt. But gp = x1x2 · · ·xp, and since p is odd,
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(mr
1g

tw)p = (gp)t(gp3
)r((p−1)/2)+c2+c3···+cp , which is a generator for 〈gp〉 since

gcd(p, t) 6= p. Thus, 〈(mr
1g

tw)p〉 = 〈gp〉.
Notice that gp ∈ Z(〈m1〉〈g〉M). So as a consequence of (1) in this example,

mr
1g

tw normalizes 〈(mr
1g

tw)p〉M , completing the proof of (4). ¤

Example 2.5. Let G = 〈m1〉〈g〉M from the previous example, and set H =
〈h1〉×〈h2〉 where 〈h1〉 and 〈h2〉 are cyclic groups of orders p2 and p3 respectively.
Finally, let S = 〈(m1, h1)〉〈(gp, h2)〉M . Then, (S ∩ G) × (S ∩ H) and S are
permutable subgroups of G × H, but S does not normalize ((S ∩ G) × (S ∩
H))〈(g, h2)〉.

Proof. Since gp ∈ Z(G), and [M,m1] = 1, it follows that S is a subgroup
of G × H. Furthermore, as a result of (1) in Example 2.4, 〈gp3〉M C G. So, by
Lemma 2.2, we conclude that M × 1, which is (S ∩G)× (S ∩H), is permutable
in G×H. In order to show that S is permutable in G×H, let (y, z) ∈ G×H be
arbitrary. It is sufficient to demonstrate that S and (y, z) satisfy one of the two
conditions in Theorem 1.1.

Observe that y = mi
1g

jm, where i, j ∈ N and m ∈ M . If gcd(p, j) = p,
then [S, (y, z)] = 1, and Condition 1 of Theorem 1.1 holds. On the other hand,
if gcd(p, j) 6= p, then m−1

1 ym1 = mi
1(m

−1
1 gjm1)m since [M,m1] = 1. Recall

from (2) in Example 2.4 that m−1
1 gm1 = gp2+1m̄ where m̄ ∈ M . Since gp2 ∈

Z(G), we have m−1
1 gjm1 = (gp2

)j(gm̄)j . As a result of (1) in Example 2.4,
(gm̄)j = gcp3

m∗gj for some m∗ ∈ M and c ∈ N. Now since gp2 ∈ Z(G) and
[M,m1] = 1, we have m−1

1 ym1 = m∗gc1p2
y, where c1 ∈ N and gcd(c1, p) = 1. By

(4) in Example 2.4, 〈gp2〉 = 〈yp2〉. Hence, m−1
1 ym1 = m∗yc2p2+1 for c2 ∈ N with

gcd(c2, p) = 1.
Suppose o(z) ≤ p2. Then, since gp ∈ Z(G) and M is permutable in G×H, we

have that S and (y, z) satisfy Condition 1 of Theorem 1.1. So, assume o(z) = p3.
First observe that 〈y, m1,M〉 = G. Thus, 〈y〉∩M = 1, since M is Core-free by (3)
in Example 2.4. Hence, it follows from (4) in Example 2.4 that |〈y〉/(〈y〉∩M)|=p4.

Let z = hk
1hl

2 for k, l∈N. Then gcd(l, p)= 1. Since 〈gp3〉= 〈yp3〉, 〈(gp3
, hp2

2 )〉≤
(S ∩ (〈y〉 × 〈z〉)). But (m1, h1)−1(y, z)(m1, h1) = (m∗yc2p2+1, hk

1hl
2) = (m∗, 1)

(1, (hp2

2 )−c2l)(y, z)c2p2+1. Since gp ∈ Z(G) and M is permutable in G×H it fol-
lows that S and (y, z) satisfy Condition 2 of Theorem 1.1, completing the proof
that S is permutable in G×H. Yet (g, h2) satisfies the conditions placed on (y, z),
and so (m1, h) fails to normalize ((S ∩G)× (S ∩H))〈(g, h2)〉. ¤
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3. Direct products of groups with modular subgroup lattices

In this section, we prove that Condition A characterizes permutability in a
direct product of groups of odd order with modular subgroup lattices. This is
achieved in Corollary 3.4, which follows from Theorem 3.3. Observe that due to
Example 2.5, it is necessary to prove that each part of Condition A is satisfied by
a permutable subgroup.

We begin here with two lemmas that are applied repeatedly throughout the
section. Lemmas 3.1 and 3.2 are (13) and (11) on Page 202 of [13] respectively.

Lemma 3.1. Let M and N be subgroups of a group G such that N ≤ M

and N C G. Then M is a permutable subgroup of G if and only if M/N is a

permutable subgroup of G/N .

Lemma 3.2. If M is a permutable subgroup of a group G, and S is a

subgroup of G, then M ∩ S is a permutable subgroup of S.

Theorem 3.3. Let G and H be groups of odd order, and let M be a subgroup

of G×H such that every subgroup of M∩G is permutable in G and every subgroup

of M ∩ H is permutable in H. Then, M is a permutable subgroup of G × H if

and only if M satisfies Condition A.

Proof. The converse is clearly true, and so we prove only the forward di-
rection. Let G×H be a group with permutable subgroup M that fails to satisfy
Part (1) of Condition A, and assume G × H has minimal order with respect to
this property. By the minimality of |G×H| and Lemma 3.1, CoreG(M ∩G) and
CoreH(M ∩H) are trivial. It then follows from Lemma 3.2 and the minimality
of |G×H| that G = (M ∩G)〈g〉 and H = (M ∩H)〈h〉 where (g, h) ∈ G×H and
(M ∩G)× (M ∩H) and 〈(g, h)〉 do not permute. By an argument similar to one
used in the proof of Theorem 5.2.8(b) in [13], 〈g〉∩ (M ∩G) is trivial. Specifically,
(〈g〉 ∩ (M ∩ G))G = (〈g〉 ∩ (M ∩ G))〈g〉(M∩G) = (〈g〉 ∩ (M ∩ G))M∩G ≤ M ∩ G,
and since CoreG(M ∩ G) = 1, it follows that 〈g〉 ∩ (M ∩ G) = 1. Similarly,
〈h〉∩ (M ∩H) = 1. So by the minimality of |G×H| and Lemma 3.2, and since all
subgroups of M ∩G and M ∩H are permutable in G and H respectively, M ∩G

and M ∩H are cyclic, contradicting Lemma 5.8 in [5].
Now let G1×H1 be a group with a permutable subgroup S that fails to satisfy

Part (2) of Condition A, and assume that G1 ×H1 is of minimal order with this
property. By Lemma 3.1 and the minimality of |G1×H1|, both CoreG1(S∩G1) and
CoreH1(S∩H1) are trivial. It then follows from 3.7 in [5] that πG1(S) and πH1(S)
are hypercentral in G1 and H1 respectively. So G1 and H1 are p-groups for the
same odd prime p. As a consequence of Lemma 4.1 in [5], we may assume without
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loss of generality that S ∩H1 = 1 and exp(H1) ≤ exp(G1). By Lemma 5.1 in [4],
for all (g1, h1) ∈ G1×H1, we have πG1(S) and πH1(S) contained in NG1(〈g1〉(S ∩
G1)) and NH1(〈h1〉(S ∩H1)) respectively. Thus it follows from Lemma 3.2 and
the minimality of |G1 ×H1| that G1 = 〈s1〉(S ∩G1)〈x〉 and H1 = 〈s2〉〈y〉 where
(x, y) ∈ G1×H1, (s1, s2) ∈ S, and (s1, s2) /∈ NG1×H1(((S∩G1)×(S∩H1))〈(x, y)〉).

Yet observe that s−1
1 xs1 = wxi for w ∈ S∩G1 and i ∈ N where gcd(i, p) = 1,

and additionally, s−1
2 ys2 = yj for j ∈ N with gcd(j, p) = 1. We have already

proved that (1) of Condition A holds. But every subgroup of S∩G1 is permutable
in G1, and so 〈w〉〈x〉 is a group. Furthermore, by Lemma 3.2, (S ∩G1) ∩ 〈w〉〈x〉
is permutable in 〈w〉〈x〉 × H1. Notice that (〈x〉 ∩ (S ∩ G1))G1 = (〈x〉 ∩ (S ∩
G1))〈x〉(S∩G1)〈s1〉 = (〈x〉∩ (S∩G1))(S∩G1)〈s1〉 ≤ S∩G1 since S∩G1 CπG1(S) and
s1 ∈ πG1(S). Since CoreG1(S ∩G1) = 1, it follows that 〈x〉 ∩ (S ∩G1) = 1. Thus
〈w〉 is permutable in 〈w〉〈x〉 ×H1. As a result of Theorem 1.1, o(x) > o(y). Let
o(y) = pk where k ∈ N. Having established that 〈w〉 is permutable in 〈w〉〈x〉×H1,
we know that for any x0 ∈ 〈x〉, the subgroups 〈w〉 and 〈(x0, y)〉 permute. So by
Lemma 2.2, x0 ∈ N〈w〉〈x〉(〈w〉〈(x0)pk〉). Hence, xiwx−i = wa(xi)c1pk

, where
a, c1 ∈ N. Since 〈wp〉〈x〉 ≤ G1, we have gcd(p, (a− 1)) = p.

In this paragraph we prove that 〈wp〉〈xpk+1〉C 〈w〉〈x〉. This is applied in cal-
culations in the ensuing paragraphs. First, 〈wp〉〈xpk+1〉 = 〈wp〉〈xpk〉∩〈w〉〈xpk+1〉.
Since both 〈wp〉〈xpk〉 and 〈w〉〈xpk+1〉 have index p in 〈w〉〈xpk〉, each of these
subgroups is normal in 〈w〉〈xpk〉, and so 〈wp〉〈xpk+1〉 C 〈w〉〈xpk〉 with abelian
factor group. From our work in the preceding paragraph we know that x ∈
N〈w〉〈x〉(〈w〉〈xpk〉). Therefore, there are ā, c̄ ∈ N so that x−1wpx = (x−1wx)p =
(wāxc̄pk

)p ∈ 〈wp〉〈xpk+1〉. This shows that x normalizes 〈wp〉〈xpk+1〉, and w nor-
malizes 〈wp〉〈xpk+1〉 since 〈wp〉〈xpk+1〉C 〈w〉〈xpk〉, completing this proof.

We will now prove by induction that for all l ∈ N, there are r, t ∈ N
such that (wxi)l = wlwrpxitpk+1

(xi)c1(0+1+2+···+(l−1))pk

(xi)l. Clearly this is true
when l = 1. Assume it is true for l = u, where u ∈ N. Then, (wxi)u+1 =
(wxi)wuwr1pxit1pk+1

(xi)c1(0+1+2+···+(u−1))pk

(xi)u where r1, t1 ∈ N. If one can
show there are c2, c3 ∈ N so that xiwu = wuwc2p(xi)c1upk

(xi)c3pk+1
xi, then since

〈wp〉〈xpk+1〉C 〈w〉〈x〉, the induction proof is complete.
We proceed to prove that there are c2, c3 ∈ N such that

xiwu = wuwc2p(xi)c1upk

(xi)c3pk+1
xi by induction on u. Since gcd(p, (a− 1)) = p,

this is clear when u = 1. Assume it is true when u = q, for q ∈ N. Then there
are c4, c5 ∈ N such that xiwq+1 = wqwc4p(xi)c1qpk

(xi)c5pk+1
xiw. Also xiw =

wa(xi)c1pk+1, and applying that 〈wp〉〈xpk+1〉C 〈w〉〈x〉 and gcd(p, (a− 1)) = p, we
have xiwq+1 = wq+1wc7p(xi)(q+1)c1pk

(xi)c6pk+1
xi for c6, c7 ∈ N, completing the

induction proof.
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At this point, s−1
1 xps1 = (wxi)p = wb(xi)vpk+1

(xi)p for some b, v ∈ N since p

divides 1 + · · ·+ (p− 1). Furthermore, wb(xi)vpk+1
(xi)p = wb(xp)ivpk+i. But by

the minimality of |G1×H1|, we have (s1, s2) ∈ NG1×H1((S ∩G1)〈(xp, y)〉). Since
o(x) > o(y) and o(y) = pk, it follows that ivpk + i ≡ j mod pk. Therefore, i ≡ j

mod pk, contradicting that (s1, s2) /∈ NG1×H1((S ∩G1)〈(x, y)〉). ¤

In order to prove Corollary 3.4, notice that a minimal counterexample would
need to reduce to a p-group of odd order in which every subgroup is permutable.
Theorem 3.3 guarantees that such a counterexample does not exist.

Corollary 3.4. Let G and H be groups of odd order with modular subgroup

lattices. Then M is a permutable subgroup of G × H if and only if M satisfies

Condition A.

Due to Example 2.3, the hypothesis that G and H have odd order cannot
be removed from Theorem 3.3. In Theorem 3.5, we are able to show that when
this hypothesis is removed from Corollary 3.4, a permutable subgroup must still
satisfy the first part of Condition A. It remains an open question as to whether
such a subgroup must satisfy Part (2) of Condition A.

Theorem 3.5. Let G and H be finite groups with modular subgroup lattices.

If M is a permutable subgroup of G×H, then M satisfies Part 1 of Condition A.

Proof. It is sufficient to consider the case where G and H are 2-groups. Let
G×H be a group with a permutable subgroup M that fails to satisfy Part (1) of
Condition A, and assume that G×H is of minimal order with this property.

By Lemma 3.1 and the minimality of |G × H|, both CoreG(M ∩ G) and
CoreH(M ∩ H) are trivial. As a result of Lemma 4.1 in [5], we may assume
without loss of generality that M ∩H = 1 and exp(H) < exp(G). Again by the
minimality of |G × H| and Lemma 3.2, G = (M ∩ G)〈g〉 and H = 〈h〉 where
M ∩ G does not permute with 〈(g, h)〉. It then follows from Lemma 2.2 that
g /∈ NG(〈go(h)〉(M ∩G)).

By Theorem 5.2.8 in [13], o(g) = exp(G). So, let o(g) = 2n and o(h) = 2k

with n > k. Apply the minimality of |G×H| and Lemma 3.2 to see that M ∩G

is permutable in G × 〈h2〉. Thus, by Lemma 2.1, g ∈ NG(〈g2k−1〉(M ∩ G)). Let
M ∩G = 〈m〉. Then g−1mg = gc2k−1

mi, where i, c ∈ N, but gcd(c, 2) = 1.
Once more, apply the minimality of |G × H| and Lemma 3.2 to conclude

that M ∩ G is permutable in (M ∩ G)〈g2〉 × 〈h〉. As a result of Lemma 2.2,
g2 ∈ NG(〈g2k+1〉(M ∩G)). Now g−2mg2 = g−1(gc2k−1

mi)g = gc2k−1
(gc2k−1

m)i =
gc(1+i)2k−1

gl2k+1
mj for j, l ∈ N. Since 〈g〉 ∩ 〈m〉 = 1 by Theorem 5.2.8 in [13], 4

divides 1 + i, and so, i ≡ 3 mod 4.
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We will now show that 〈m4〉〈g2〉 is a normal subgroup of G. Since 〈m〉〈g〉 is a
2-group, 〈m2〉〈g2〉 is a normal subgroup of G. Furthermore, 〈m4〉〈g〉 is a subgroup
of G, and recall that 〈m〉 ∩ 〈g〉 = 1. So, g−1m4g ∈ 〈m4〉〈g2〉. Next apply the
fact that 〈m2〉〈g〉C 〈m〉〈g〉, together with the normality of 〈m4〉〈g〉 in 〈m2〉〈g〉, to
conclude m−1g2m ∈ 〈m4〉〈g2〉. This completes the argument that 〈m4〉〈g2〉C G.
Finally, observe that G/〈m4〉〈g2〉 is isomorphic to the dihedral group of order 8,
contradicting that G is a group with a modular subgroup lattice. ¤
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