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On a family of connections in Finsler geometry

By AKBAR TAYEBI (Tehran), ESMAEIL AZIZPOUR (Rasht)
and EBRAHIM ESRAFILIAN (Tehran)

Abstract. In this paper, we introduce a new family of linear torsion-free connec-

tions for Finsler metrics. This family of connections defines a Riemannian curvature

tensor R and a non-Riemannian quantity P . We show that P contains all the non-

Riemannian information, namely, P = 0 if and only if the Finsler metric is Riemannian.

In fact, this family of connections makes a systematical analysis of connections that

characterize Riemannian metrics.

1. Introduction

A Finsler space is a manifold M equipped with a family of smoothly varying
Minkowski norms; one on each tangent space. Riemannian metrics are examples
of Finsler norms that arise from an inner-product. After Einstein’s formulation
of general relativity, Riemannian geometry became fashionable and one of the
connections, namely that due to Christoffel (Levi–Civita), came to the forefront.
This connection is both torsion-free and metric-compatible. Likewise, connec-
tions in Finsler geometry can be prescribed on π∗TM and its tensor products.
Examples of such connections were proposed by J. L. Synge (1925), J. H. Tay-

lor (1925), L. Berwald (1928) [9], but most important of all is Elie Cartan’s
connection (1934) [10]. There is also such a connection given by Chern [11] in
1948. It is torsion-free but not completely compatible with the inner product
(on π∗TM) defined by the gij ’s. Incidentally, in the generic Finslerian setting,
it is not possible to have a connection on π∗TM which is both torsion-free and
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compatible with the said inner product. The Chern connection, like many other
connections, solves the equivalence problem for Finsler structures [7]. Namely, it
gives rise to a list of criteria which decide when two such structures differ only
by a change of coordinates. For a treatment of this connection using moving
frames, see Chern’s article [12]. The Chern connection coincides with the Rund
connection, as pointed out by Anastasiei [4]. Asanov [5], Miron and Anas-

tasiei [17], Bejancu [6], Ikeda [14], Kozma [25] and Tamássy [23], [24] have
worked on connection theory. Recently Z. Shen [20] has found a new torsion-
free connection in Finsler geometry. He proved that P = 0 if and only if F is
Riemannian.

In this paper we will give a new family of torsion-free linear connections
in π∗TM , which are torsion-free and compatible with the Finsler structure in a
certain sense, where as torsion-free connections, in our connection we define two
curvature tensors R and P . The R-term is the so-called Riemannian curvature
tensor which is a natural extension of the usual Riemannian curvature tensor of
Riemannian metrics, while the P -term is a purely non-Riemannian quantity. The
main result of this paper states that P = 0 if and only if the Finsler metric is
Riemannian. This is the second torsion-free linear connection with such property
ever discovered since Shen‘s work [20]. We know there are already several well-
known linear connections in Finsler geometry which are introduced from various
points of view, in particular the connection constructed by Chern and Bao [7],
that shows its extraordinary usefulness in treating global problems in Finsler
geometry. However, the non-Riemannian quantity of our connections as well as
the Shen connection seems to capture all non-Riemannian information on the
Finsler metric.

2. Preliminaries

Let M be nn n-dimensional C∞ manifold. Denote by TxM the tangent space
at x ∈ M , and by TM := ∪x∈MTxM the tangent bundle of M . Each element of
TM has the form (x, y), where x ∈ M and y ∈ TxM . Let TM0 = TM \ {0}. The
natural projection π : TM → M is given by π(x, y) := x.

The pull-back tangent bundle π∗TM is a vector bundle over TM0 whose fiber
π∗vTM at v ∈ TM0 is TxM , where π(v) = x. Then

π∗TM = {(x, y, v) | y ∈ TxM0, v ∈ TxM}.
Some authors prefer to define connections in the pull-back tangent bundle

π∗TM . From a geometrical point of view the construction of these connections
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on π∗TM seems to be simple because here the fibers are n-dimensional (i.e.,
π∗(TM)u = Tπ(u)M , ∀u ∈ TM) thus torsions and curvatures are obtained quickly
from the structure equations. When the construction is done on T (TM) many
geometrical objects appear twice and one needs to split T (TM) into the vertical
and horizontal parts where the later is called horizontal distribution or non-linear
connection. Nevertheless we do not need to split π∗TM . Indeed, the connection
on π∗(TM) is the most natural connection for Physicists.1 In order to define
curvatures, it is more convenient to consider the pull-back tangent bundle than
the tangent bundle, because our geometric quantities depend on directions.

For the sake of simplicity, we denote by
{
∂i|v :=

(
v, ∂

∂xi

)|x)
}n

i=1
the natural

basis for π∗vTM. In Finsler geometry, we study connections and curvatures in
(π∗TM, g), rather than in (TM,F ). The pull-back tangent bundle π∗TM is a
very special tangent bundle.

Throughout this paper, we use the Einstein summation convention for ex-
pressions with indices.2

Finsler structure
A (globally defined) Finsler structure on a manifold M is a function

F : TM → [0,∞)
with the following properties:

(i) F is a differentiable function on the manifold TM0 and F is continuous on
the null section of the projection π : TM → M .

(ii) F is a positive function on TM0.

(iii) F is positively 1-homogeneous on the fibers of the tangent bundle TM .

(iv) The Hessian of F 2 with elements

(gij) :=

([
1
2
F 2

]

yiyj

)

is positive definite on TM0.

Given a manifold M and a Finsler structure F on M , the pair (M,F ) is
called a Finsler manifold. F is called Riemannian if gij(x, y) are independent of
y 6= 0.

Every Finsler metric on a manifold defines a length structure on oriented
piecewise C∞ curves. Let C be an oriented piecewise C∞ curve from p to q in

1For more details on the structure of π∗(TM) see [19] and [8].
2That is, if an index appears twice, namely as a subscript as well as a superscript, then that

term is assumed to be summed over all values of that index.
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a Finsler manifold (M,F ). Let C : [a, b] → M be a parameterization of C with
C(a) = p and C(b) = q. Then the length of C is defined by

LF (C) :=
∫ b

a

F

(
C(t),

d C(t)
d t

)
dt. (∗)

The homogeneity of F implies that LF (C) is independent of the choice of the
particular parameterization of C.

The Finsler structure F defines a fundamental tensor g : π∗TM ⊗ π∗TM →
[0,∞) by the formula g(∂i|v, ∂j |v) = gij(x, y), where v = yi ∂

∂xi |x. Let

gij(x, y) := FFyiyj + FyiFyj ,

where Fyi = ∂F
∂yi . Then (π∗TM, g) becomes a Riemannian vector bundle over

TM0. Let

Aijk(x, y) =
1
2
F (x, y)

∂gij

∂yk
(x, y).

Clearly, Aijk is symmetric with respect to i, j, k. The Cartan3 tensor A : π∗TM⊗
π∗TM ⊗ π∗TM → R is defined by

A(∂i|v, ∂j |v, ∂k|v) = Aijk(x, y),

where v = yi ∂
∂xi |x. The homogeneity condition (iii) holds in particular for posi-

tive λ. Therefore, by Euler’s theorem we see that

yi ∂gij

∂yk
(x, y) = yj ∂gij

∂yk
(x, y) = yk ∂gij

∂yk
(x, y) = 0.

We recall that the canonical section ` is defined by

` = `(x, y) =
yi

F (x, y)
∂

∂xi
=

yi

F

∂

∂xi
:= `i ∂

∂xi
.

Put `i := gij`
j = Fyi . Thus the canonical section ` satisfies

g(`, `) = gij
yi

F

yj

F
= 1

and
`iAijk = `jAijk = `kAijk = 0.

Thus A(X, Y, `) = 0.

3In some literature Cijk =
Aijk

F
is called Cartan tensor. Riemannian manifolds are characterized

by A ≡ 0.
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3. Existence and uniqueness of a new Finsler connection on π∗TM

In this section we introduce a new Finsler connection which is torsion-free
and almost compatible with Finsler metric.

Bundle Maps µ and ρ.
The bundle map ρ : T (TM0) → π∗TM is defined by

ρ

(
∂

∂xi

)
= ∂i, ρ

(
∂

∂yi

)
= 0. (1)

Put V TM := ker ρ = span
{

∂
∂yi

}n

i=1
. V TM is an n-dimensional subbundle of

T (TM0), whose fiber VvTM at v is just the tangent space Tv(TxM) ⊂ Tv(TM0).
V TM is called the vertical tangent bundle of TM0.

The bundle map µ : T (TM0) → π∗TM is defined by µ
(

∂
∂yi

)
= ∂i.

Put HTM := Ker µ. HTM is called the horizontal tangent bundle of TM0.
We have the direct decomposition T (TM0) = HTM ⊕ V TM . Tangent vec-

tors in HTM are called horizontal and vectors in V TM are called vertical. We
summarize: Ker ρ = V TM , Ker µ = HTM , ρ restricted to HTM is an isomor-
phism onto π∗TM , and µ restricted to V TM is the bundle isomorphism onto
π∗TM .

Definition 3.1. A tensor T : π∗TM⊗π∗TM⊗π∗TM → R is called compatible
if it has the following properties:

(i) T (X, Y, Z) is symmetric with respect to X, Y , Z.

(ii) T (X, Y, `) = 0.

(iii) T is homogeneous, i.e., Tijk(x, ty) = Tijk(x, y), ∀t ∈ R, where
Tijk(x, y) = T (∂i, ∂j , ∂k).

Let (M, F ) be a Finsler n-manifold. Let g, A and T denote the fundamental
tensor, the Cartan tensor and a compatible tensor in π∗TM , respectively.

Definition 3.2. Let D be a Finsler connection on M . Then we say that

(i) D is torsion-free, if

TD(X̂, Ŷ ) := DX̂ρ(Ŷ )−DŶ ρ(X̂)−ρ([X̂, Ŷ ]) = 0, ∀X̂, Ŷ ∈ C∞(T (TM0)). (2)

(ii) D is almost compatible with the Finsler structure in the following sense: for
all X, Y ∈ C∞(π∗TM) and Ẑ ∈ Tv(TM0),

(DẐg)(X, Y ) := Ẑg(X,Y )− g(DẐX,Y )− g(X,DẐY )

= A(ρ(Ẑ), X, Y )− 2T (ρ(Ẑ), X, Y ) + 2F−1A(µ(Ẑ), X, Y ), (3)
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where ρ(Ẑ) := (v, π∗(Ẑ)), µ(Ẑ) := DẐF`, and T is the given compatible
tensor.

Theorem 3.1. Let (M,F ) be a Finsler n-manifold and T an arbitrary com-

patible tensor in π∗TM . Then there is a unique linear torsion-free connection D

in π∗TM , which is almost compatible with the above Finsler structure.4

We define the Landsberg tensor Ȧ = π∗TM ⊗ π∗TM ⊗ π∗TM → R by

Ȧ(X, Y, Z) := ¯̀A(X,Y, Z)−A(D¯̀X, Y, Z)−A(X, D¯̀Y, Z)−A(X, Y, D¯̀Z).

It is obvious that
`iȦijk = `jȦijk = `kȦijk = 0.

Then Ȧ(X, Y, `) = 0. It is easy to check that T = αA+βȦ is a compatible tensor
∀α, β ∈ R.

4. Nonlinear connections and Finsler connections

Let M be a real n-dimensional connected manifold of C∞-class and
(TM, π, M) its tangent bundle with the zero section removed. Every local chart
(U,ϕ = (xi)) on M induces a local chart (ϕ−1(U), ϕ = (xi, yi)) on TM . The ker-
nel of the linear map π∗ : TTM → TM is called the vertical distribution and is
denoted by V TM . For every u ∈ TM , Ker π∗,u = VuTM is spanned by

{
∂

∂yi |u
}
.

By a nonlinear connection on TM we mean a regular n-dimensional distribution
H : u ∈ TM → HuTM which is supplementary to the vertical distribution i.e.

Tu(TM) = HuTM ⊕ VuTM, ∀u ∈ TM.

A basis for TuTM adapted to the above direct sum is
(

δ
δxi |u, ∂

∂yi |u
)
, where N i

j

are the coefficients of the nonlinear connection and δ
δxi |u = ∂

∂xi − N j
i (u) ∂

∂yj |u.
The dual basis of

(
δ

δxi ,
∂

∂yi

)
is given by (dxi, δyi +N i

jdxj). These are the Berwald
bases.

Let M be a real n-dimensional C∞ manifold and V TM = ∪v∈TMVvTM

its vertical vector bundle. Suppose that HTM = ∪v∈TMHvTM is a nonlinear
connection on TM and ∇ a linear connection on V TM ; then the pair (HTM,∇)
is called a Finsler connection on the manifold M .

4In the sequel we will refer to this connection as “New connection”.
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Proof of Theorem 3.1. In a standard local coordinate system (xi, yi) in
TM0, we write

D ∂
∂xi

∂j = Γk
ij∂k, D ∂

∂yi
∂j = F k

ij∂k.

Clearly, (2) and (3) are equivalent to the following:

Γk
ij = Γk

ji (4)

F k
ij = 0 (5)

∂

∂xk
(gij) = −Γl

kiglj + Γl
kjgli + 2Aijk − 2Tijk + 2AijlΓl

km`m (6)

∂

∂yk
(gij) = −F l

kjgli + F l
ikgjl + 2Cijk − 2TijkF l

mk`m + 2AijkF l
mk`m (7)

where gij = gij(x, y), Aijk = Aijk(x, y) and Tijk = Tijk(x, y) is the given com-
patible tensor. Notice that (5) and (7) are just the definition of Aijk. We must
compute Γk

ij from (4) and (6). Then permuting i, j, k in (6), and using (4), one
obtains

Γk
ij = γk

ij −Ak
ij + T k

ij + gkl
{
AijmΓm

lb −AjlmΓm
ib −AlimΓm

jb

}
`b, (8)

where we have put

γk
ij =

1
2
gkl

{
∂

∂xi
(gjl) +

∂

∂xj
(gil)− ∂

∂xl
(gij)

}

and Ak
ij = gklAijl. Multiplying (8) by `i, yields

Γk
ib`

b = γk
ib`

b −Ak
imΓm

lb `l`b. (9)

Multiplying (9) by `i gives
Γk

ab`
a`b = γk

ab`
a`b. (10)

By substituting (10) into (9) one obtains

Γk
ib`

b = γk
ib`

b −Ak
imγm

ab`
a`b. (11)

By substituting (11) into (8) one obtains

Γk
ij = γk

ij −Ak
ij + T k

ij + gkl
{
Aijmγm

lb −Ajlmγm
ib −Alimγm

jb

}
`b

+
{
Ak

jmAm
is + Ak

imAm
js −Ak

smAm
ij

}
γs

ab`
b`a. (12)

This proves the uniqueness of D. The set {Γk
ij , F

k
ij = 0}, where {Γk

ij} are given
by (12), satisfy a linear connection D with properties (2) and (3). ¤
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The bundle map µ : T (TM0) → π∗TM defined in Section 3 can be expressed
in the following form:

µ

(
∂

∂xi

)
= Nk

i ∂k, µ

(
∂

∂yi

)
= ∂i, (13)

where
Nk

i = yjΓk
ij = yjγk

ij −
1
F

gksAsilγ
l
aby

ayb.

The above N i
j are known in the literature as the nonlinear connection coeffi-

cients on TM0. The Berwald connection is most directly related to the nonlinear
connection N i

j , and is most amenable to the study of path geometry.

Defining Gi := γi
jkyjyk, one can prove that ∂Gi

∂yj = N i
j . Finslerian geodesics

are curves in M which obey the equation ẏi + Gi = 0. Thus, if the geodesic
equation is once known, the nonlinear connection N i

j can be computed without
having to calculate first the Cartan tensor Aijk and the formal Christoffel symbols
γijk. The formula (12) in terms of the coefficients N i

j is given by

Γk
ij = γk

ij −Ak
ij + T k

ij − gkl{Ns
j Cski + Ns

i Csjk −Ns
kCsij}. (14)

It is obvious that

Γk
ij`

i = Γk
ji`

i =
Nk

j

F
. (15)

Let us express the Christoffel coefficients of the Berwald, Chern and Shen con-
nections and of the New connection, by bΓk

ij ,
cΓk

ij ,
sΓk

ij and Γk
ij respectively; then

we see that:

Γk
ij := bΓk

ij −Ak
ij − Ȧk

ij + T k
ij , (16)

Γk
ij := cΓk

ij −Ak
ij + T k

ij , (17)

Γk
ij := sΓk

ij + T k
ij . (18)

It is clear that in a locally Minkowski space, Γk
ij = −Ak

ij + T k
ij and N i

j = 0. The
reader can consult [24] and [15].

5. Curvatures of the New connection

In this section we study the curvature tensor of the “new Finsler connection”
introduced in the above section, which is torsion-free and almost compatible with
the Finsler metric. As a torsion-free connection, it defines two curvatures R

and P . The R-term is the so-called Riemannian curvature tensor, which is a
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natural extension of the usual Riemannian curvature tensor of a Riemannian
metric, while the P -term is a purely non-Riemannian quantity. We prove also
that the hv-curvature P of this connection vanishes if and only if the Finsler
structure is Riemannian. The curvature tensor Ω of D is defined by

Ω(X̂, Ŷ )Z = DX̂DŶ Z −DŶ DX̂Z −D[X̂,Ŷ ]Z, (19)

where X̂, Ŷ ∈ C∞(T (TM0)) and Z ∈ C∞(π∗TM).
Let {ei}n

i=1 be a local orthonormal frame field (with respect to g) for the
vector bundle π∗TM , such that g(ei, en) = 0, i = 1, . . . , n− 1 and

en :=
y

F
=

yi

F (x, y)
∂

∂xi
= `.

Let {ωi}n
i=1 be its dual co-frame field. These are local sections of the dual bundle

π∗TM . One readily finds that

ωn :=
∂F

∂yi
dxi = `idxi = ω,

which is the Hilbert form. It is obvious that

ω(`) = 1.

We observe that for a curve xi = xi(t) with yi = dxi

dt , Euler’s theorem allows us
to rewrite the integral (∗) as

∫ b

a
ωn.

Put
ρ = ωi ⊗ ei, Dei = ωi

j ⊗ ej , Ωei = 2Ωi
j ⊗ ej .

{Ωi
j} and {ωi

j} are called the curvature forms and connection forms of D with
respect to {ei}. We have µ := DF` = F{ωn

i + d(log F )δn
i} ⊗ ei. Put ωn+i :=

ωn
i+d(log F )δin. It is easy to see that {ωi, ωn+i}n

i=1 is a local basis for T ∗(TM0).
By definition

ρ = ωi ⊗ ei, µ = Fωn+i ⊗ ei.

Use the above formula for Theorem 3.1, then it will re-express the structure
equation of the New connection

dωi = ωj ∧ ωj
i (20)

dgij = gkjωi
k + gikωj

k + 2Aijkωk − 2Tijkωk + 2Aijkωn+k. (21)
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Define gij.k and gij|k by

dgij − gkjωi
k − gikωj

k = gij|kωk + gij.kωn+k, (22)

where gij.k and gij|k are the vertical and horizontal covariant derivative respec-
tively of gij with respect to the New connection. This gives

gij|k = 2(Aijk − Tijk), (23)

gij.k = 2Aijk. (24)

It can be shown that δi
j|s = 0 and δi

j.s = 0, thus (gijgjk)|s = 0 and (gijgjk).s = 0.
So

gij
|s = 2(T ij

s −Aij
s ) (25)

and
gij

.s = −2Aij
s . (26)

Moreover, torsion freeness is equivalent to the absence of dyk in {ωj
i}, namely

ωj
i = Γi

jk(x, y)dxk. (27)
(19) is equivalent to

dωi
j − ωi

k ∧ ωk
j = Ωi

j . (28)

Since the Ωj
i are 2-forms on the manifold TM0, they can be expanded as

Ωi
j =

1
2
Ri

j
klω

k ∧ ωl + Pi
j
klω

k ∧ ωn+l +
1
2
Qi

j
klω

n+k ∧ ωn+l. (29)

The objects R, P and Q are the hh-, hv- and vv-curvature tensors respectively
of the connection D. Let {ēi, ėi}n

i=1 be a local basis for T (TM0), which is dual
to {ωi, ωn+i}n

i=1, i.e., ēi ∈ HTM , ėi ∈ V TM such that ρ(ēi) = ei, µ(ėi) = Fei.
We have put R(ēk, ēl)ei = Ri

j
klej , P (ēk, ėl)ei = Pi

j
klej and Q(ėk, ėl)ei = Qi

j
klej .

Since the New connection is torsion-free we have ([21] and [22]) that

Q = 0.

The first Bianchi identities for R are

Ri
j
kl + Rk

j
li + Rl

j
ik = 0 (30)

and
Pi

j
kl = Pk

j
il. (31)

Exterior differentiation of (28) gives the Second Bianchi identities:

dΩi
j − ωi

k ∧ Ωk
j + ωk

j ∧ Ωi
k = 0. (32)
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We decompose the covariant derivative of the Cartan tensor on TM

dAijk −Aljkωi
l −Ailkωj

l −Aijlωk
l = Aijk|lωl + Aijk.lω

n+l, (33)

and so for Ȧijk we have

dȦijk − Ȧljkωi
l − Ȧilkωj

l − Ȧijlωk
l = Ȧijk|lωl + Ȧijk.lω

n+l. (34)

Clearly, in the above relations the tensors Aijk|l, Aijk.l, Ȧijk|l and Ȧijk.l are
symmetric with respect to the indices i, j, k.

Put Ȧijk = Ȧ(ei, ej , ek), Ȧk
ij = gklȦijl. The quantity Aijk|n plays a some-

what privileged role in Finsler geometry so much that it deserves perhaps a special
notation:

Aijk|n = Ȧijk. (35)

It follows from (33) and (34) that

Anjk|l = 0, and Anjk.l = −Ajkl. (36)

Ȧnjk|l = 0, and Ȧnjk.l = −Ȧjkl. (37)

Theorem 5.1. Let (M, F ) be a Finsler manifold and D be a torsion-free

connection defined in theorem (1) with the condition Tijk := k1A
(1)

jk
i + · · · +

kmA
(m)
jk

i, where A
(m)
ijk = Aijk

m times︷ ︸︸ ︷
|n|n · · · |n, m ∈ N . Then F is Riemannian if and

only if P = 0.

Proof. Let (M, F ) be a Finsler manifold. Differentiating (21) and using
(20), (21),(33), (36) and (37) leads to

gkjΩi
k + gikΩj

k = −2AijkΩk
n − 2Aijk|lωk ∧ ωl + 2Aijk.lω

n+k ∧ ωn+l

− 2{Aijk.l −Aijk|l}ωk ∧ ωn+l

+ k1(A
(1)
ijk|lω

l + A
(1)
ijk.lω

n+l) ∧ ωk + · · ·
+ km(A(m)

ijk|lω
l + A

(m)
ijk.lω

n+l) ∧ ωk. (38)

Using (29), we get

Rijkl + Rjikl = 2k1

{
A

(1)
ijl|k −A

(1)
ijk|l

}
+ · · ·+ 2km

{
A

(m)
ijl|k −A

(m)
ijk|l

}

− 2AijsRn
s
kl + 2{Aijk|l −Aijl|k}, (39)

Pijkl + Pjikl = −2{k1A
(1)
ijk.l + · · ·+ kmA

(m)
ijk.l}

+ 2{Aijk.l −Aijl|k} − 2AijsPn
s
kl, (40)
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Aijk.l = Aijl.k. (41)

Permuting i, j, k in (40) yields

Pijkl = −{k1A
(1)
ijk.l + · · ·+ kmA

(m)
ijk.l}+ Aijk.l − (Aijl|k + Ajkl|i −Akil|j)

+ AkisPn
s
jl −AjksPn

s
il −AijsPn

s
kl (42)

and
Pnjkl = {k1A

(1)
jkl + · · ·+ kmA

(m)
jkl } −Ajkl − Ȧjkl, (43)

because of Pnjnl = 0.
Now if F is Riemannian, then from (42) and (43) we conclude that P = 0.
Conversely let P = 0. It follows from (43) that

k1A
(1)
jkl + · · ·+ kmA

(m)
jkl = Ȧjkl + Ajkl. (44)By (42) one has

k1A
(1)
ijk.l + · · ·+ kmA

(m)
ijk.l = Aijk.l + Akil|j −Aijl|k −Ajkl|i.

Permuting i, j, k in the above identity leads to

k1A
(1)
ijk.l + · · ·+ kmA

(m)
ijk.l = Aijk.l + Ajkl|i −Akil|j −Aijl|k,

and then
Aijl|k = Ajkl|i.

Letting k = n, we can conclude

Ȧijk = 0. (45)

It is obvious that

A
(m)
ijk = 0, ∀m ∈ N. (46)

Therefore we conclude that Aijk = 0, and thus F is Riemannian. ¤

6. Complete Finsler manifolds

Let ¯̀ denote the unique vector field in HTM such that ρ(¯̀) = `. We call ¯̀

the geodesic field on TM0, because it determines all geodesics and it is called a
spray.
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Let c : [a, b] → (M, F ) be a unit speed C∞ curve. The canonical lift of c to
TM0 is defined by ĉ := dc

dt ∈ TM0. It is easy to see that

ρ

(
dĉ

dt

)
= `ĉ.

The curve c is called a geodesic if its canonical lift ĉ satisfies

dĉ

dt
= `ĉ,

where ¯̀ is the geodesic field on TM0, i.e., ` ∈ HTM , ρ(¯̀) = `.
Let IxM = {v ∈ TxM, F (v) = 1} and IM =

⋃
p∈M IxM . The IxM is called

indicatrix, and it is a compact set. We can show that the projection of the integral
curve ϕ(t) of ¯̀ with ϕ(0) ∈ IM is a unit speed geodesics c, whose canonical lift
is ĉ(t) = ϕ(t). A Finsler manifold (M, F ) is called complete if any unit speed
geodesic c : [a, b] → M can be extended to a geodesic defined on R. This is
equivalent to requiring that the geodesic field ¯̀ restricted to IM is complete.

If we put k1 = k3 = · · · = km = 0 and k2 = −1, then we have a connection
and we obtain

A + Ȧ + Ä = 0,

where Ä := A(2) is defined in Theorem 5.1.
Let (M,F ) be a Finsler manifold and c a unit speed geodesic in M . A section

X = X(t) of π∗TM along ĉ is said to be parallel if D dĉ
dt

X = 0. For v ∈ TM0

we define ‖A‖v := sup A(X, Y, Z). Then we put ‖A‖ = supv∈IM ‖A‖v where the
supremum is taken over all unit vectors of π∗vTM .

Theorem 6.1. Let (M,F ) be complete with bounded ‖A‖. If k1= k3= · · ·
= km = 0 and k2 = −1, then F is Riemannian, whenever

A + Ȧ + Ä = 0. (47)

Proof. If F is Riemannian, then (47) is true. Conversely, let the above
condition be true. Fix any X, Y, Z ∈ π∗TM at v ∈ IxM . Let c : M → R be
the unit speed geodesic with dc

dt (0) = v. Let X(t), Y (t) and Z(t) denote the
parallel sections along ĉ with X(0) = X, Y (0) = Y , Z(0) = Z. Putting A(t) =
A(X(t), Y (t), Z(t)), Ȧ(t) = Ȧ(X(t), Y (t), Z(t)), and Ä(t) = Ä(X(t), Y (t), Z(t)),
one has

dA

dt
= Ȧ and

dȦ

dt
= Ä. (48)
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Therefore by (47) and (48) we have

d2A

dt2
+

dA

dt
+ A = 0. (49)

Now

A(t) = e
−t
2

(
c1 cos

√
3

2
t + c2 sin

√
3

2
t

)
.

Using ‖A‖ < ∞ and letting t → −∞, we get c1 = c2 = 0, and A(0) =
A(X, Y, Z) = 0, which completes the proof. ¤

Acknowledgement: The authors would like to thank Z. Shen for his very
helpful comments and suggestions to the paper.
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scient. Ec. Norm. Sup., 3e serie, t 80 (1963), 1–79.

[3] H. Akbar-Zadeh, Champ de vecteurs projectifs sur le fibre unitaire, J. Math. Pures
Appl. 65 (1986), 47–79.

[4] M. Anastasiei, A historical remark on the connections of Chern and Rund, Cont.
Math. 196 (1998), 171–176.

[5] G. S. Asanov, Finsler Geometry, Relativity, and Gauge Theories, D. Reildel, Dordrecht,
1985.

[6] A. Bejancu, Finsler Geometry and Applications, Ellis Horwood, Yew York, 1990.

[7] D. Bao and S. S. Chern, On a notable connection in Finsler Geometry, Houston J.
Math. 19 (1993), 135–180.

[8] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
Springer-Verlag, 2000.
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