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On convexities of lattices

By JUDITA LIHOVÁ (Košice)

Abstract. In this paper, some principal convexities of lattices and their mutual

relations are investigated.

The notion of convexity of lattices has been introduced by E. Fried at the

Problem session of the International Conference held in memory of Wilfried

Nöbauer in Krems, Austria, in 1988 (cf. [9]). He also proposed a problem con-

cerning the “number” of convexities of lattices. J. Jakub́ık solved this problem

in [4]; he showed that convexities of lattices form a proper class. In [4], it is also

proved that the class of all convexities of lattices is a complete lattice (omitting

the fact that it is a proper class) and the two-element chain generates an atom of

this lattice.

Convexities can be defined also for various types of ordered algebraic struc-

tures. J. Jakub́ık defined and studied convexities of d-groups [5] and l-groups

([6], [7]). Some results concerning convexities of Riesz groups were derived in [8].

In the present paper we investigate the relation between some principal con-

vexities. We also touch the problem of atoms in the lattice of all convexities and

we prove that this lattice is distributive. Finally we propose some open questions.
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1. Preliminaries

Let L be the class of all lattices. A subclass K of L is said to be a convexity

of lattices (or simply a convexity), whenever K is closed under homomorphic

images, convex sublattices and direct products. Comparing this notion with that

of a variety of lattices, we see that each variety is a convexity. The converse does

not hold in general. E.g., the convexity K generated by a two-element chain is not

a variety. Namely, in the opposite case, K would have to contain all distributive

lattices. But this is not true, because there exist infinitely many convexities of

distributive lattices, K being the least non-trivial one, as it follows from results

of Section 3.

For a nonempty subclass X of the class L we denote by

HX : the class of all homomorphic images of elements of X ;

CX : the class of all convex sublattices of elements of X and their isomorphic

copies;

PX : the class of all direct products of elements of X and their isomorphic

copies.

We will use the following theorem (cf. [9] or [4]).

Theorem 1.1. Let ∅ 6= X ⊆ L. Then HCPX is a convexity; moreover, it

is the least one containing X .

If X is a one-element class, then the variety HCPX is said to be principal.

Let C be the class of all convexities of lattices. It is partially ordered by the

class-theoretical inclusion. It is easy to verify that if {Ki : i ∈ I} is a nonempty

subclass of C, then
⋂

i∈I Ki is a convexity, too. In view of this and the fact that

L is the greatest element of C, we will refer to C as a complete lattice (omitting

the fact that C is a proper class). We will also apply the usual lattice-theoretical

terminology and notation. So we will use the symbol
∨

i∈I Ki and
∧

i∈I Ki for the

least upper bound and the greatest lower bound of {Ki : i ∈ I}(⊆ C), respectively.

Evidently
∧

i∈I Ki =
⋂

i∈I Ki,
∨

i∈I Ki = HCP
(
⋃

i∈I Ki

)

.

As to the notation, N will be the chain of all positive integers, N0 = N∪{0}.

Z will be the chain of all integers, while the symbol R will be used for the chain

of all real numbers. The n-element chain (n ∈ N) will be denoted by Cn.
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2. Convexities generated by Mα

Let α be a cardinal, α ≥ 3. We denote by Mα the lattice consisting of

elements u, v, xj(j ∈ J), where card J = α, u < xj < v and xj(1) is incomparable

with xj(2) whenever j(1) and j(2) are distinct elements of J . J. Jakub́ık proved

in [4] that if α, β are cardinals, 3 ≤ α < β, then Mα does not belong to the

convexity HCP{Mβ}. We will show that if α, β are different finite cardinals,

then HCP{Mα} and HCP{Mβ} are incomparable convexities, while for α, β

infinite this is not the case in general.

If Li is a lattice for each i ∈ I, I 6= ∅ and F is a dual ideal of the lattice of

all subsets of I, then the symbol
∏

(Li | i ∈ I)/F will be used for the reduced

product of (Li | i ∈ I). If F is an ultrafilter (also called prime dual ideal), then
∏

(Li | i ∈ I)/F will be also referred to as an ultraproduct of (Li | i ∈ I). The

symbol θ(F) will be used for the congruence relation corresponding to F , [f ]F

will mean the congruence class containing f ∈
∏

(Li | i ∈ I). (See e.g. [3]).

For a nonempty subclass X of the class L we denote by

PUX : the class of all lattices that are isomorphic to an ultraproduct of members

of X .

The proof of the following theorem is a slight modification of that of the

analogous theorem for varieties of lattices (cf. [3], p. 302, Theorem 9).

Theorem 2.1. Let ∅ 6= X ⊆ L, K = HCPX . If L ∈ K and L is subdirectly

irreducible, then L ∈ HCPUX .

Proof. Let L be a subdirectly irreducible lattice, L ∈ K. Then there exist

Li ∈ X , i ∈ I, a convex sublattice B of
∏

(Li | i ∈ I), and a congruence relation

φ on B such that L is isomorphic to B/φ. By the above mentioned result from

[3], there exists an ultrafilter F over I such that the corresponding congruence

relation θ(F) restricted to B is contained in φ. Consider the set {[b]F : b ∈ B}.

It is evidently a sublattice of
∏

(Li | i ∈ I)/F . We will show that it is convex.

Let [b1]F ≤ [f ]F ≤ [b2]F for some b1, b2 ∈ B, f ∈
∏

(Li | i ∈ I). We can

suppose that b1 ≤ b2 (in the opposite case we would take b1 ∧ b2 instead of b1

and b1 ∨ b2 instead of b2). Let g = (b1 ∨ f) ∧ b2. Then b1 ≤ g ≤ b2 yields g ∈ B.

Hence [f ]F = ([b1]F ∨ [f ]F) ∧ [b2]F = [(b1 ∨ f) ∧ b2]F = [g]F , which belongs

to {[b]F : b ∈ B}. Now the correspondence [b]F 7−→ [b]φ is a homomorphism of

{[b]F : b ∈ B} onto B/φ. Thus L ∈ HCPUX . �

Corollary 2.2. Let X be a finite set of finite lattices. If L ∈ HCPX and L

is subdirectly irreducible, then L ∈ HCX .
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Proof. Under our assumptions concerning X , PUX is, up to isomorphic

copies, X . �

Applying this theorem to X = {Mα} for any finite cardinal α, α ≥ 3, we

obtain that Mα and the two-element chain are the only subdirectly irreducible

members of HCP{Mα}. This implies

Corollary 2.3. If α, β are any distinct finite cardinals, α, β ≥ 3, then the

convexities HCP{Mα}, HCP{Mβ} are incomparable.

Further we will consider α to be an infinite cardinal number.

Lemma 2.4. If L ∈ PU{Mα}, then L is isomorphic to Mβ for some β ≥ α.

Proof. Let L = M I
α/F for a nonempty set I and an ultrafilter F over I.

Since “being one of the Mγ for some γ ≥ ℵ0” is a first order property,  Loś’

theorem (cf. [1]) gives that L is Mβ for some infinite β. Moreover, β ≥ α, because

if we define fj ∈ M I
α for each j ∈ J by fj(i) = xj for all i ∈ I, then the [fj ]F are

mutually different. �

We will use the following assertion, which is a consequence of 6.1.14 and 6.3.21

of [1].

Theorem 2.5. Let I be any infinite set of the cardinality λ, A a set of the

cardinality α. Then there exists an ultrafilter F over I such that card AI/F = αλ.

As a consequence we obtain

Theorem 2.6. For each infinite cardinal α there exists a cardinal β > α

with Mβ ∈ HCP{Mα}.

Proof. Take any set I of the cardinality α and an ultrafilter F over I with

card M I
α/F = αα. Set β = αα. Then evidently β > α and, in view of 2.4, M I

α/F

is isomorphic to Mβ. �

Corollary 2.7. For each infinite cardinal α there exists an increasing infinite

sequence of cardinals α0 < α1 < . . . such that α0 = α and HCP{Mα0
} %

HCP{Mα1
} % HCP{Mα2

} % . . . .

3. Convexities generated by finite chains

We will consider principal convexities generated by finite and also by some

infinite chains and study relations between them.
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Theorem 3.1. For each n ∈ N , HCP{Cn} $ HCP{Cn+1}.

Proof. Since Cn+1 contains an n-element chain as a convex sublattice,

it holds HCP{Cn} j HCP{Cn+1}. So we have only to show that Cn+1 /∈

HCP{Cn} for each n ∈ N . By way of contradiction, let n0 be the least positive

integer with Cn0+1 ∈ HCP{Cn0
}. Evidently n0 ≥ 3, because HCP{C1} contains

only one-element lattices and each L ∈ HCP{C2} is a relatively complemented

lattice, while C3 fails to have this property. The relation Cn0+1 ∈ HCP{Cn0
}

implies that there exist an index set I, a convex sublattice B of CI
n0

and a ho-

momorphism ϕ of B onto Cn0+1. As Cn0+1 is bounded, we can suppose that B

is an interval, say [f0, f1] and B =
∏

(Cki
: i ∈ J) with J ⊆ I, 1 < ki ≤ n0. Let

us define f ∈ B in such a way that, for i ∈ J , f(i) is the least element of Cki

if ki < n0 and the element covering the least one otherwise. Assume that Cn0+1

is the chain c0 < c1 < . . . < cn0
, ϕ(f) = ct. Then we have ϕ([f0, f ]) = [c0, ct],

ϕ([f, f1]) = [ct, cn0
]. As [f0, f ] is a convex sublattice of a product of two-element

chains, it must be t ≤ 1. On the other hand, [f, f1] is a convex sublattice of a

product of (n0 − 1)-element chains, so that t > 1 by the choice of n0. We have a

contradiction. �

Corollary 3.2. If C is any infinite chain, then HCP{Cn} $ HCP{C} for

each n ∈ N .

Proof. Using an (n − 1)-element subchain of C one can easily define a

surjective homomorphism from C to Cn. The rest follows from 3.1. �

Theorem 3.3. It is HCP{Cn : n ∈ N} = HCP{Z}.

Proof. It suffices to show that Z ∈ HCP{Cn : n ∈ N}. Let F be a

nontrivial ultrafilter over N and let B =
∏

(Cn | n ∈ N)/F . We will embed Z
into B. For each n ∈ N the first order property “there are at most n+1 distinct x

with |[0, x]| ≤ n” holds in every Ci. Applying  Loś’ theorem to this property and

its dual we conclude that the set U = {x ∈ B : [0, x] is finite or [x, 1] is finite} is

countable (0 and 1 being the least and the greatest element of B, respectively).

As B has the power of continuum, B′ = B − U is nonempty. Fix an element

b0 ∈ B′.  Loś’ theorem again easily gives that for any x ∈ B′ − {0, 1} there is a

unique upper resp. lower cover x+ ∈ B′ − {0, 1} resp. x− ∈ B′ − {0, 1} of x.

Via induction we define bn+1 = b+
n , b−n−1 = b−−n. Now it is easy to see that

{bn : n ∈ Z} is a convex sublattice of B, which completes the proof. �

Proposition 3.4. HCP{N} = HCP{Z} = HCP{R}.
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Proof. The first ⊆ is evident. The second ⊆ and the first ⊇ come from 3.2

and 3.3. Finally, HCP{Z} ⊇ HCP{R} is a consequence of 1.2 of [7] where R ∈

HCP{Z} is proved for a richer structure, namely for lattice ordered groups. �

Let us remark that, as it was shown in [7], the convexity of l-groups generated

by Z is larger than that generated by R.

4. An example

J. Jakub́ık proved in [4] that the convexity HCP{C2} is an atom in the

lattice C of all convexities of lattices. He also formulated the question if there

are other atoms in C. This question remains open. We give here some results

concerning this problem. Further we prove that the lattice C is distributive.

Let L be a lattice. Consider the following conditions concerning L:

(i) L contains a non-trivial distributive interval;

(ii) L has a non-trivial distributive homomorphic image.

Theorem 4.1. Let L be a lattice satisfying any of the conditions (i), (ii).

Then HCP{L} ⊇ HCP{C2}.

Proof. Without regard to which of the conditions (i), (ii) is fulfilled, the

convexity HCP{L} contains a distributive lattice L1 with card L1 > 1. By a well-

known theorem each distributive lattice containing more than one element can be

homomorphically mapped onto C2. So HCP{C2} ⊆ HCP{L1} ⊆ HCP{L}. �

Let us remark that the condition (i) is fulfilled, e.g., by each finite lattice or,

more generally, by each lattice containing a prime interval. We are going to show

that the converse assertion to 4.1 does not hold in general.

If P is any partially ordered set and S is a bounded partially ordered set,

then we will use the notation (S → P ) for the partially ordered set obtained

in such a way that each prime interval of P is replaced by S. For example,

(C3 → (C2 × C2)) is an 8-element lattice consisting of two copies of C5 having

the same endpoints. It is easy to see that if S, P are finite lattices, then so is

(S → P ) and P can be regarded as its sublattice.

Now take the lattice M3 and define Li(i ∈ N0) as follows: L0 = M3; if Li is

defined for some i ∈ N0, then Li+1 = (M3 → Li).

We have an ascending chain of lattices L0 ⊆ L1 ⊆ L2 ⊆ . . . with Li being a

sublattice of Li+1 for each i ∈ N0. Let L be the join of all Li. Evidently L is a
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lattice and each Li is its sublattice. It is easy to see that L is not even modular.

The following lemma shows that L does not satisfy (ii).

Lemma 4.2. The lattice L has only trivial congruence relations.

Proof. An easy induction shows that all the Li are simple, whence so is L.

�

To show that L doesn’t satisfy (i), let us look at the intervals of L.

Lemma 4.3. Each non-trivial interval of L contains a convex sublattice

isomorphic to L.

Proof. The obvious induction is left to the reader. �

Using 4.3 we obtain immediately that L does not satisfy (i), because L is

not distributive, as we have already remarked. In spite of the fact that L satisfies

neither (i) nor (ii), we will show that HCP{L} ⊇ HCP{C2}.

Let us define a sequence a0, a1, a2, . . . of elements of L as follows:

a0 will be the least element of L0. Take any b ∈ L0 covering a0 in L0 and denote

by a1 any element of L1 which lies between a0 and b. Further denote by a2 any

element of L2 which lies between a1 and b, and so on.

We have a0 < a1 < . . . < b, and for each i ∈ N , ai ∈ Li − Li−1, ai covers

ai−1 in Li. Introduce the following notations: for each i ∈ N , Ii will be the set

{x ∈ L : a0 ≤ x ≤ ai}, M =
∏

(Ii | i ∈ N). It is easy to see that Ii is isomorphic

to (L → Ci+1) (see Figure 1).

Figure 1

Theorem 4.4. Let L be the lattice defined before 4.2. Then HCP{C2} $
HCP{L}.
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Proof. Let F be a nontrivial ultrafilter over N and define P to be the set

{f ∈ M : there is an n ∈ N with {i : f(i) ≤ an} ∈ F}. Of course, here and in

the sequel, f(i) ≤ an is understood to be true when i < n (i.e., when an /∈ Ii).

Clearly, P is an ideal of the lattice M , ∅ 6= P 6= M . In order to show that P

is a prime ideal, let us assume that for f1, f2 ∈ M we have g = f1 ∧ f2 ∈ P .

Then there is an n ∈ N such that U = {i : g(i) ≤ an} ∈ F . The structure of

the Ii makes it clear that g(i) ≤ an implies f1(i) ≤ an+1 or f2(i) ≤ an+1. Hence,

with Vj = {i : fj(i) ≤ an+1} for j ∈ {1, 2}, we have U ⊆ V1 ∪ V2. Since F is

an ultrafilter, we derive V1 ∈ F or V2 ∈ F , i.e. f1 ∈ P or f2 ∈ P . This shows

that P is a prime ideal of M , whence the two-element lattice is a homomorphic

image of M . Now the Ii, their direct product M , and therefore C2, belong to

HCP{L}. Finally L /∈ HCP{C2}, because HCP{C2} contains only distributive

lattices. �

J. Jakub́ık proved in [7] that the lattice of all convexities of l-groups is

distributive. This result was extended to the lattice of all convexities of Riesz

groups in [8]. Now we are going to prove the distributivity of the lattice C of all

convexities of lattices.

Lemma 4.5. Let K1, K2 be convexities of lattices. Then K = {L×M : L ∈

K1, M ∈ K2} is a convexity and it holds K = K1 ∨ K2.

Proof. The inclusion K ⊆ K1∨K2 is trivial. Let A ∈ K1∨K2 = HCP (K1∪

K2). Then there exist lattices Li ∈ K1 ∪ K2(i ∈ I, I 6= ∅), a convex sublattice B

of
∏

(Li | i ∈ I) and a congruence relation φ of B such that A is isomorphic to

B/φ. Let I1 = {i ∈ I : Li ∈ K1}, U=
∏

(Li | i ∈ I1), V =
∏

(Li | i ∈ I − I1). If

some of the sets I1, I − I1 is empty, the corresponding direct product is regarded

as a one-element lattice. We can suppose that B is a convex sublattice of U ×V .

Let us denote by B1 and B2 the projection of B into U and V , respectively. It is

easy to verify that B1 and B2 is a convex sublattice of U and V , respectively, and

B = B1 × B2. Now there exist congruence relations φ1 of B1 and φ2 of B2 with

φ = φ1×φ2 (cf. [2]). Then B/φ is isomorphic to B1/φ1×B2/φ2 and B1/φ1 ∈ K1,

B2/φ2 ∈ K2. Hence A, being isomorphic to B/φ, belongs to K. �

Theorem 4.6. The lattice C of all convexities of lattices is distributive.

Proof. Let K1,K2,K3 ∈ C. We are going to verify K1 ∧ (K2 ∨ K3) =

(K1 ∧ K2) ∨ (K1 ∧ K3). Clearly K1 ∧ (K2 ∨ K3) ⊇ (K1 ∧ K2) ∨ (K1 ∧ K3). Now

let L ∈ K1 ∧ (K2 ∨ K3). Then L ∈ K1 and L is isomorphic to L1 × L2 for some

L1 ∈ K2, L2 ∈ K3 by 4.5. We can suppose that L1, L2 are convex sublattices

of L, so that L1, L2 ∈ CK1 = K1. Hence we have L ∈ (K1 ∧K2) ∨ (K1 ∧K3). �
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Open problems:

1. Is HCP{C2} the only atom in C ? (formulated in [4])

2. What are the necessary and sufficient conditions for a distributive relatively

complemented lattice L to belong to HCP{C2} ?

3. What are the necessary and sufficient conditions for a distributive lattice L

to belong to HCP{C3} ?

4. Does the convexity HCP{Cn+1} cover the convexity HCP{Cn} for n ∈ N ?

5. Does the convexity HCP{Mn} (n ∈ N, n ≥ 3) cover the convexity HCP{C2} ?
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