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On Hölder continuous solutions of functional equations

By ANTAL JÁRAI (Debrecen)

Abstract. In this work it is proved that the real solutions f of the functional
equation

f(t) = h(t, y, f(y), f(g1(t, y)), . . . , f(gn(t, y))),

that are locally Hölder continuous with some exponent 0 < α < 1, are locally Hölder
continuous with all exponent α, 0 < α < 1.

As it is treated in Aczél’s classical book [1961], regularity is very im-
portant in the theory and practice of functional equations. The regularity
problem of functional equations with two variables can be formulated as
follows (see Aczél [1984] and Járai [1986]):

Problem. Let T and Z be open subsets of Rs and Rm, respectively,
and let D be an open subset of T × T . Let f : T → Z, gi : D → T
(i = 1, 2, . . . , n) and h : D × Zn+1 → Z be functions. Suppose that

(1) f(t) = h(t, y, f(y), f(g1(t, y)), . . . , f(gn(t, y))) whenever (t, y) ∈ D;

(2) h is analytic;
(3) gi is analytic and for each t ∈ T there exists a y for which (t, y) ∈ D

and
∂gi

∂y
(t, y) has rank s (i = 1, 2, . . . , n).

Is it true that every f , which is measurable or has the Baire property
is analytic?
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The following steps may be used:
(I) Measurability implies continuity.

(II) Almost open solutions are continuous.
(III) Continuous solutions are locally Lipschitz.
(IV) Locally Lipschitz solutions are continuously differentiable.
(V) All p times continuously differentiable solutions are p + 1 times

continuously differentiable.
(VI) Infinitely many times differentiable solutions are analytic.
The complete answer to this problem is unknown. The problems

corresponding to (I), (II), (IV) and (V) are solved in Járai [1986]. In the
same paper, partial results in connection with (III) are treated. A partial
result in connection with (VI) is treated in Járai [1988] (in Hungarian).

In this paper we deal with locally Hölder continuous real solution.
The result is a new step in (III). The main tool is the fundamental lemma
of the theory of Campanato spaces (Lemma 1), which is a generalization
of the famous classical Morrey lemma from the regularity theory of par-
tial differential equations. For further references about this lemma see
Zeidler’s book [1990], II/A pp. 90–93.

A real function f is called locally Hölder continuous with exponent
0 < α ≤ 1, if each point of its domain has a neighbourhood V such that

sup
x,y∈V

|f(x)− f(y)| / |x− y|α < ∞.

Any constant not less then this supremum is called a (local) Hölder-
constant for f . In the case α = 1 Hölder continuous functions and Hölder
constants are also called Lipschitz functions and Lipschitz constants, re-
spectively. It is well-known, that continuously differentiable functions are
locally Lipschitz.

Lemma 1. Let G be a nonempty open set in Rn. Let Br(y) denote
the closed ball with center y and radius r, and define the mean value fy,r

of the real valued function f by

f̄y,r =
1

measBr(y)

∫

Br(y)

f(x) dx.

Let 0 < α ≤ 1, 1 ≤ p < ∞, and r0 > 0 be given. Then the inequality
∫

Br(y)

|f(x)− f̄y,r|p dx ≤ const rn+pα

for all r < min(r0,dist(y, ∂G)) and all y ∈ G implies that f is locally
Hölder continuous with exponent α on G.
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Lemma 2. Let V, W and U be open real intervals, r,R>0, [t0 − r,
t0 + r] ⊂ V , [y0 − R, y0 + R] ⊂ W , g : V × W → U a continuously
differentiable function, and f : U → R a continuous function. Suppose
that all partial functions y 7→ g(t, y) are monotonic with inverse denoted
by x 7→ Gt(x). If there exist constants B, B′, L and L′ such that |f(x)| ≤
B, |G′t(x)| ≤ B′, |g(t, y) − g(t′, y′)| ≤ L(|t − t′| + |y − y′|) and |G′t(x) −
G′t′(x)| ≤ L′|t − t′| whenever |t − t0| ≤ r, |t′ − t0| ≤ r and the left hand
sides are defined, then the absolute value of the integral

∫ t0+r

t0−r

∫ y0+R

y0−R

f(g(t, y))− f(g(t′, y)) dy dt′

is bounded by 8LBB′r2 + 8LBL′r2(r + R) whenever |t− t0| ≤ r.

Proof. In the integral above the inner integral can be written as the
difference of two integrals. Using the substitution x = g(t, y) in the first,
and the substitution x = g(t′, y) in the second integral respectively, we get

∫ t0+r

t0−r

(∫ g(t,y0+R)

g(t,y0−R)

f(x)G′t(x) dx−
∫ g(t′,y0+R)

g(t′,y0−R)

f(x)G′t′(x)dx

)
dt′.

The integrand of the outer integral can be rewritten as
∫ g(t′,y0−R)

g(t,y0−R)

f(x)G′t(x) dx +
∫ g(t,y0+R)

g(t′,y0−R)

f(x)(G′t(x)−G′t′(x)) dx

+
∫ g(t,y0+R)

g(t′,y0+R)

f(x)G′t′(x) dx.

The first and the last term can be estimated by L|t − t′|BB′, and the
middle term by L(2r + 2R)BL′|t− t′|. Using that |t− t′| ≤ 2r, we get the
stated result.

Theorem. Let 0 < α < 1. Let T, Y,X1, . . . , Xn and Z1, Z2, . . . , Zn
be open subsets of R, D an open subset of T × Y . Consider the functions
f : T → R, fi : Xi → Zi (i = 1, . . . , n), gi : D → Xi (i = 1, . . . , n),
h : D × Z1 × Z2 × · · · × Zn → R. Suppose, that

(1) for each (t, y) ∈ D,

f(t) = h(t, y, f1(g1(t, y)), . . . , fn(gn(t, y)));

(2) h is twice continuously differentiable;
(3) gi is twice continuously differentiable on D and for each t ∈ T there

exists a y such that (t, y) ∈ D and
∂gi

∂y
(t, y) 6= 0 for i = 1, . . . , n;

(4) the functions fi, i = 1, . . . , n are locally Hölder continuous with expo-
nent α.
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Then f is locally Hölder continuous with exponent 2α/(α + 1).
Proof. We have to prove that for each point t0 ∈ T the function f

is Hölder continuous on a neighbourhood of t0 with exponent 2α/(1 + α).
Let us choose y0 by (3) for t0. For an arbitrary set V ⊂ R let Vε denote
the ε-neighbourhood

Vε = {x : |x− y| < ε for some y ∈ V }
of V . Let V and W be open intervals containing t0 and y0 respectively,

and 0 < ε ≤ 1 such that Vε×Wε ⊂ D and
∂gi

∂y
does not vanish on Vε×Wε.

Hence the partial functions y 7→ gi(t, y) have inverse on Wε for all t ∈ Vε

and i = 1, 2, . . . , n. Decreasing V , W and ε if necessary we may suppose
that these inverses have derivatives bounded (in absolute value) by B′
and are Lipschitz continuous with Lipschitz constant L′ for i = 1, 2, . . . , n.
Similarly, we may suppose that gi is a Lipschitz function with Lipschitz
constant L on Vε ×Wε, that fi is Hölder continuous with exponent α and
Hölder constant H and |fi| bounded by B on gi(Vε×Wε) (i = 1, 2, . . . , n),
moreover on

Vε ×Wε × f1(g1(Vε ×Wε))× · · · × fn(gn(Vε ×Wε))

the functions
∂h

∂zi
are Lipschitz continuous with Lipschitz constant L′i,

and the functions
∣∣∣∣
∂h

∂t

∣∣∣∣ and
∣∣∣∣
∂h

∂zi

∣∣∣∣ are bounded by B′
0 and B′

i, respectively,

(i = 1, 2, . . . , n). Let us fix ε, V, W and y0. We shall prove that f is locally
Hölder continuous on V with exponent 2α/(1 + α). Abusing notation let
t0 denote an arbitrary element of V and let 0 < r, R < ε. Fixing t0 let f̄
denote the mean value of f on the interval with endpoints t0 − r, t0 + r.
Let us integrate the two sides of the functional equation over the interval
with endpoints y0 −R, y0 + R. We have

2Rf(t) =
∫ y0+R

y0−R

h(t, y, f1(g1(t, y)), . . . , fn(gn(t, y))) dy,

and

2Rf̄ =
1
2r

∫ t0+r

t0−r

∫ y0+R

y0−R

h(t′, y, f1(g1(t′, y)), . . . , fn(gn(t′, y))) dy dt′ .

Hence

|f(t)− f̄ | = 1
2R

∣∣∣∣∣
∫ y0+R

y0−R

h(t, y, f1(g1(t, y)), . . . , fn(gn(t, y)))

− 1
2r

∫ t0+r

t0−r

h(t′, y, f1(g1(t′, y)), . . . , fn(gn(t′, y))) dt′ dy

∣∣∣∣ .
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To get a good upper estimate for the left hand side we need an upper
estimate for the difference

h(t, y, f1(g1(t, y)), . . . , fn(gn(t, y)))− h(t′, y, f1(g1(t′, y)), . . .

. . . , fn(gn(t′, y))).

We may apply the Taylor theorem for the function h with points

z = (t, y, z1, . . . , zn) and z′ = (t′, y, z′1, . . . , z
′
n)

where t′, t ∈ V , y ∈ W , zi = fi(gi(t, y)) and z′i = fi(gi(t′, y)) for i =
1, . . . , n. We have

h(z)− h(z′) =
∫ 1

0

∂h

∂t
(τz + (1− τ)z′)(t− t′) dτ

+
n∑

i=1

∫ 1

0

∂h

∂zi
(τz + (1− τ)z′)(zi − z′i) dτ.

Using this and omitting variables we have

4rR|f(t)− f̄ | =
∣∣∣∣∣
∫ y0+R

y0−R

∫ t0+r

t0−r

( ∫ 1

0

∂h

∂t
(τz + (1− τ)z′)(t− t′) dτ

+
n∑

i=1

∫ 1

0

∂h

∂zi
(τz + (1− τ)z′)(zi − z′i)dτ

)
dt′ dy

∣∣∣∣∣ .

Using the triangle inequality, we get n + 1 terms on the right hand side.
For the first term we get the trivial upper bound 4RrB′

02r, where B′
0 is an

upper bound of
∣∣∣∣
∂h

∂t

∣∣∣∣. If h̄′i denotes the mean value of the partial derivative

∂h

∂zi
, that is

h̄′i =
1

4rR

∫ y0+R

y0−R

∫ t0+r

t0−r

∫ 1

0

∂h

∂zi
(z) dτ dt dy,

then the other terms can be rewritten in the form
∫ y0+R

y0−R

∫ t0+r

t0−r

∫ 1

0

(
∂h

∂zi
(τz + (1− τ)z′)− h̄′i

)
(zi − z′i) dτ dt′ dy

+ h̄′i

∫ y0+R

y0−R

∫ t0+r

t0−r

(zi − z′i) dt′dy.

First we give an upper estimate for the absolute value of the first term
of this sum. An upper estimate of |zi − z′i| is H(L2r)α, where H is a
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Hölder-constant for fi and L is a Lipschitz-constant for gi. Hence
∣∣∣∣∣
∫ y0+R

y0−R

∫ t0+r

t0−r

∫ 1

0

∂h

∂zi
(τz + (1− τ)z′)− h̄′i)(zi − z′i) dτ dt′ dy

∣∣∣∣∣

≤ H(2rL)α

∫ y0+R

y0−R

∫ t0+r

t0−r

∫ 1

0

∣∣∣∣
∂h

∂zi
(τz + (1− τ)z′)− h̄′i

∣∣∣∣ dτ dt′ dy.

Because the difference between the value and the mean value of a function
is not greater then the difference between any two values, we need to es-

timate the difference
∣∣∣∣
∂h

∂zi
(τz + (1− τ)z′)− ∂h

∂zi
(z′′)

∣∣∣∣ . This is not greater

than L′i multiplied by the norm of τz + (1 − τ)z′ − z′′, that is, L′i times
the maximal distance between the vectors z and z′′ = (t′′, y′′, z′′1 , . . . , z′′n),

where z′′i = fi(gi(t′′, y′′)) and L′i is a Lipschitz-constant for
∂h

∂zi
. The max-

imal distance between z and z′′ can be estimated by r + R + nH(L(2r +
2R))α. Hence we get the upper bound

4rRH(2rL)αL′i(r + R + nH(L(2r + 2R))α)

for the first term.
To get an upper bound for the second term, we need an upper bound

for the absolute value of
∫ y0+R

y0−R

∫ t0+r

t0−r

(zi − z′i) dt′ dy =

=
∫ y0+R

y0−R

∫ t0+r

t0−r

fi(gi(t, y))− fi(gi(t′, y)) dt′ dy,

because |h̄′i| is trivially bounded by the upper bound B′
i of

∣∣∣∣
∂h

∂zi

∣∣∣∣. From

Lemma 2 we get the upper bound 8LBB′r2 + 8LBL′r2(r + R) for this
integral.

Summing up all these estimates, we get

|f(t)− f̄ | ≤ 2B′
0r + H(2rL)α

n∑

i=1

L′i(r + R + nH(L(2r + 2R))α)

+
n∑

i=1

B′
i(2LBB′r + 2LBL′r(r + R)) /R.

If r ≤ R this can be rewritten as

|f(t)− f̄ | ≤ C0r + C1r
αRα + C2r/R,
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where C0, C1 and C2 do not depend on t0, r and R. If we choose r and R
such that they satisfy the condition R = r(1−α)/(1+α), then we have

|f(t)− f̄ | ≤ (C0 + C1 + C2)r2α/(1+α)

whenever 0 < r < r0 = ε(1+α)/(1−α) and |t− t0| ≤ r. Integrating and using
Lemma 1, we get that f is locally Hölder continuous on V which implies
the theorem.
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