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Lineability and coneability of discontinuous functions on R

By A. AIZPURU (Cádiz) C. PÉREZ-ESLAVA (Cádiz), F. J. GARCÍA-PACHECO (Kent)

and J. B. SEOANE-SEPÚLVEDA (Madrid)

Abstract. We construct infinite dimensional vector spaces and positive cones of

discontinuous functions on R enjoying some special properties, such as functions with an

arbitrary Fσ set of points of discontinuity, discontinuous Riemann-integrable functions,

or functions having either jump or removable discontinuities at a given point. We show

that these special phenomena occur more often than one could expect, i.e. in a linear

or algebraic way.

1. Preliminaries and background

This paper is a contribution to the study of certain pathological properties
on subsets of functions on R. We show that these properties occur more often
than one could expect, existing large algebraic structures enjoying them (infinite
dimensional vector spaces, algebras, or positive cones every non-zero element of
which enjoys this given property). Examples of such kind are continuous nowhere
differentiable functions, everywhere surjective functions, or differentiable nowhere
monotone functions.

Given such a special property, we say that the subset M ⊂ F(R,R) of func-
tions which satisfies it is lineable if M∪{0} contains an infinite dimensional vector
space. At times, we will say that the set M is µ-lineable if it contains a vector
space of dimension µ. Also, we let λ(M) be the maximum cardinality (if it exists)
of such a vector space. These terminologies of lineable and lineability were first
introduced in [7] and, later, in [2], [3].
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In [3], it was shown that the set of everywhere surjective functions is 2c-
lineable. Moreover, there exists an infinitely generated algebra every non-zero
element of which is an everywhere surjective function from C to C ([5]). In [3] it
was also shown that the set of differentiable functions on R which are nowhere
monotone is lineable in C(R). Fonf, Gurariy, and Kadeč showed ([8]) that
there exists a closed and infinite dimensional vector space of continuous nowhere
differentiable functions on [0, 1], as a subspace of C[0, 1]. Some of these patholog-
ical behaviors occur in really interesting ways. Aron, Pérez-Garćıa, and the
fourth author ([4]) constructed, given any set E ⊂ T of measure zero, an infinite
dimensional, infinitely generated dense subalgebra of C(T) every non-zero element
of which has a Fourier series expansion divergent in E.

Besides vector spaces or algebras, we could also study the existence of positive
or negative cones, introducing the following concept:

Definition 1.1 (Coneability). A set of functions in F(R,R) is said to be
coneable if it possesses a positive (or negative) cone containing an infinite linearly
independent set.

This paper is divided in three sections. In each of them we focus on a
particular property and type of function. These properties are:

(1) Functions whose points of discontinuity form an arbitrary given Fσ set.

(2) Riemann-integrable functions with an arbitrary Fσ set of measure zero as
their set of points of discontinuity.

(3) Functions having either jump or removable discontinuities at a given point.

Set theoretical considerations, cardinal theory, topology, Borel structures,
matrix theory, abstract algebra, and usual real analysis techniques are involved.
From now on, ℵ0 and c will denote the cardinalities of N and the power set of N,
P(N), respectively

2. Fσ sets of points of discontinuity

As known from the works of Baire, Borel et al. (1905) [6], for every func-
tion f : R −→ R, the set of points of discontinuity of f is an Fσ set. Also, given
any Fσ set there exists a function from R to R whose set of points of discontinuity
is exactly this set. Modern references for these results are, for example, [9], [10,
p. 30, ex. 22 and 23], and [13]; We will be using these latest references along this
paper.
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In this section we will study the lineability and coneability of the set of
all functions whose set of points of discontinuity is a given Fσ set F . We will
distinguish two cases depending on whether F is closed or not.

2.1. The Fσ set is closed. As we mentioned above, given any closed set F ,
there exists a function from R to R whose set of points of discontinuity is exactly
F . Here, our purpose is to construct a vector space of dimension at least c every
non-zero element of which is a function whose set of points of discontinuity is
exactly F . We start writing

R\F =
⋃̇

n∈N

(an, bn) and int (F ) =
⋃̇

m∈M

(cm, dm) ,

where N and M are countable sets. For every n ∈ N and every m ∈ M let
φn : (an, bn) −→ R and ψm : (cm, dm) −→ R be homeomorphisms. Now, it is
known ([3]) the existence of a vector space U of dimension 2c contained in the set

{f : R −→ R/f is everywhere surjective} ∪ {0} .

Let us recall that the everywhere surjective functions are exactly the functions
f : R → R so that, for every non-void interval (a, b), f((a, b)) = R and, as a
consequence, these type of functions are nowhere continuous and their graph is
dense in R2. The existence of this class of functions was first noticed by Lebesgue

(1904) in [12] (for further study of this class of functions, see [3], [5]). Let us denote
by V any vector space of dimension c contained in the set

{
f : R −→ R/f is continuous and lim

|x|→∞
|f(x)| = ∞

}
∪ {0}.

The existence of such a vector space is shown in, for instance, [1]. For every
(u, v, r) ∈ U × V × R, consider the function

fuvr : R −→ R

x 7−→ fuvr(x) =





r x ∈ bd(F ),

u (ψm(x)) x ∈ (cm, dm) , m ∈ M,

v (φn(x)) x ∈ (an, bn) , n ∈ N.

Let us see that the set of points of discontinuity of fuvr is exactly F . If x ∈ R\F
then fuvr is continuous at x, since R\F is open and v and φn are continuous
functions. If x ∈ int(F ) then fuvr is discontinuous at x, since u ◦ ψm is an every-
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where surjective function in (cm, dm). If x ∈ bd(F ) then fuvr is discontinuous
at x, since x ∈ {an, bn : n ∈ N} and we know that, for every n ∈ N ,

lim
y→an

|v(φn(y))| = lim
y→bn

|v (φn (y))| = ∞.

Now, X = {fuvr : u ∈ U, v ∈ V, r ∈ R} is a vector space, since if λ1, . . . , λk ∈ R,
u1, . . . , uk ∈ U , v1, . . . , vk ∈ V , and r1, . . . , rk ∈ R, then

λ1fu1v1r1 + · · ·+ λkfukvkrk
= fλ1u1+···+λkuk,λ1v1+···+λkvk,λ1r1+···+λkrk

.

Finally, suppose that int (F ) = ∅, then R\F 6= ∅ and, therefore, X has dimen-
sion c. Indeed, if {vl}l∈L is a basis for V then {fvl1}k∈K is a basis for X. On
the other hand, if int(F ) 6= ∅ then X has dimension 2c. Indeed, if {uk}k∈K and
{vl}l∈L are basis for U and V respectively, then {fukvl1 : k ∈ K, l ∈ L} is a basis
for X. As a consequence, we have the following result.

Theorem 2.1. Given a closed set F , the set H of all functions whose set of

points of discontinuity is F is lineable with λ(H) ≥ c. Moreover, if int(F ) 6= ∅
then λ(H) = 2c.

2.2. The Fσ set is not closed. As we said at the beginning of this section,
given any non-closed Fσ set F , there exists a function from R to R whose set of
points of discontinuity is exactly F (see, e.g., [10, p. 30, ex. 23], for a more modern
reference). Here, our purpose is to construct a positive cone C every non-zero
element of which is a function from R to R whose set of points of discontinuity
is exactly F . Let us call f to such a function, that we know exists ([10, p. 30,
ex. 23]). Next, consider the set

C =
{
λ1f

k1 + · · ·+ λpf
kp : p ∈ N, λ1, . . . , λp ≥ 0, k1, . . . , kp ∈ N∗

}

where N∗ denotes the set of odd natural numbers. Now, let us take any finite
positive linear combination

λ1f
k1 + · · ·+ λpf

kp , (1)

in which λ1, . . . , λp > 0. In order to see that the set of points of discontinuity of the
function given by (1) is F , it suffices to prove that this function is not continuous
at every point in F . Take any x ∈ F . There exist ε > 0 and a sequence (xn)n∈N
convergent to x such that |f(xn) − f(x)| ≥ ε. We can assume, without loss of
generality, that either f(xn) < f(x) − ε for every n ∈ N or f(xn) > f(x) + ε for
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every n ∈ N. We will assume the first possibility, the other case is similar. With
our assumption we have that, for every n ∈ N,

λ1f
k1 (xn) + · · ·+ λpf

kp (xn) < λ1 (f (x)− ε)k1 + · · ·+ λp (f (x)− ε)kp .

If the function given in (1) is continuous at x, then we obtain the following
contradiction

λ1f
k1 (x) + · · ·+ λpf

kp (x) ≤ λ1 (f (x)− ε)k1 + · · ·+ λp (f (x)− ε)kp

< λ1f
k1 (x) + · · ·+ λpf

kp (x) .

Next, let us see that
{
fk : k ∈ N∗} is linearly independent. Take any identically

zero linear combination

λ1f
k1 + · · ·+ λpf

kp = 0. (2)

By the construction of the function f given in [10, p. 30, ex. 23], there exists a
countable family of non-empty disjoint sets {Bn}n∈N so that f(x) = 2−n for every
x ∈ Bn and every n ∈ N. For every i ∈ {1, . . . , p} let us take an element xi ∈ Bi.
By evaluating the equation (2) at the points x1, . . . , xp we obtain the following
linear system of equations:




1
2k1

1
2k2

1
2k3

· · · 1
2kp

(
1

2k1

)2 (
1

2k2

)2 (
1

2k3

)2

· · ·
(

1
2kp

)2

(
1

2k1

)3 (
1

2k2

)3 (
1

2k3

)3

· · ·
(

1
2kp

)3

...
...

...
. . .

...(
1

2k1

)p (
1

2k2

)p (
1

2k3

)p

· · ·
(

1
2kp

)p




·




λ1

λ2

λ3

...
λp




=




0
0
0
...
0




.

The matrix of the previous system is non-singular (it is a Van der Monde-type
matrix). Therefore we have that, necessarily, λ1 = λ2 = · · · = λp = 0 and the
family {fk : k ∈ N∗} is linearly independent. We have, thus, proved the following
result.

Theorem 2.2. Given any non-closed Fσ set F , the set of functions whose

set of points of discontinuity is exactly F is coneable.
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3. Discontinuous Riemann-integrable functions

Taking into account the results of Baire, Borel, et al. ([6]) mentioned at
the beginning of the previous section, along with the well-known Lebesgue theo-
rem characterizing Riemann-integrable functions in terms of their discontinuities
(see [12], or [14] for a modern reference), it is clear that if f : [a, b] −→ R is
a Riemann-integrable function then the set of points of discontinuity of f is an
Fσ set of measure zero. Also, given any Fσ set of measure zero contained in an
interval [a, b], there exists a Riemann-integrable function from [a, b] to R whose
set of points of discontinuity is exactly this Fσ set.

In this section we study the lineability and coneability properties of the set
H of all Riemann-integrable functions whose set of points of discontinuity is an
Fσ set F of measure zero. As we did in the previous section, we will distinguish
two cases depending on whether F is closed or not.

3.1. The Fσ set is closed. If F is a closed set contained in an interval [a, b],
then it is easy to see that the function

[a, b] −→ R

x 7−→
{

1 x ∈ F,

0 x ∈ [a, b]\F

is Riemann-integrable and verifies that its set of points of discontinuity is ex-
actly F . Here, our purpose is to construct a vector space of dimension, at least,
ℵ0 every non-zero element of which is a Riemann-integrable function from [a, b]
to R whose set of points of discontinuity is exactly F . First, let us see the exis-
tence of a vector space U with dim(U) = ℵ0, and so that every non-zero element
of which is a continuous bounded function from R to R oscillating at both ∞ and
−∞. As usual, P will denote the set of all odd prime numbers. For every p ∈ P

let us consider the continuous bounded function

up : R −→ R
x 7−→ up(x) = sin(x/p),

which is oscillating at both ∞ and −∞. Now, let us consider the vector space
U = span{up : p ∈ P}. From the fact that the family {sin(x/p) : p ∈ P} is
linearly independent (see, e.g. [1]), it can be proved that the set {up : p ∈ P} is
also linearly independent. Finally, it is clear that every non-zero element of U is
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continuous and bounded, and if

φ (·) =
k∑

j=1

αj sin
( ·

pj

)

is a non-zero function of U , then, by considering the sequence

(xn = p2 · · · · · pk · π · n)n∈Z ,

it can be seen that φ is oscillating at both ∞ and −∞, since

φ (xn) = α1 sin
(

p2 · · · · · pk

p1
· π · n

)

does not converge as n goes to ∞ or −∞ (here we are assuming, without loss,
that α1 6= 0).

Now, once we know the existence of such an U , we start by writing

[a, b] \F =
⋃̇

n∈N

In,

where for every n ∈ N , In is an open interval in [a, b] and N is countable. At
the moment, we will take care of the case in which a, b ∈ F . For every n ∈ N let
φn : In −→ R be an homeomorphism. Now, for every (u, r) ∈ U ×R consider the
function

fur : [a, b] −→ R

x 7−→ fur(x) =

{
r x ∈ F,

u(φn(x)) x ∈ In, n ∈ N.

Let us see that the set of points of discontinuity of fur is exactly F . If x ∈ In for
some n ∈ N then fur is continuous at x, since u and φn are continuous functions
and In is an open interval. If x ∈ F then fur is discontinuous at x, since x can
be approximated by a subsequence of extreme points of the intervals In, and we
know that for every n ∈ N , u ◦ φn is oscillating at both extremes of In. Now,
X = {fur : u ∈ U, r ∈ R} is a vector space, since if λ1, . . . , λk ∈ R, u1, . . . , uk ∈ U

and r1, . . . , rk ∈ R, then

λ1fu1r1 + · · ·+ λkfukrk
= fλ1u1+···+λkuk,λ1r1+···+λkrk

.

Finally, X has dimension ℵ0. Indeed, if {ukt}k∈N is a basis for U , then {fuk1}k∈N
is a basis for X.
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For the case in which either a or b are in [a, b]\F , it suffices to consider the
vector spaces V = span{vp : p ∈ P} and W = span{wp : p ∈ P}, where for every
p ∈ P

vp : [−∞,∞) −→ R

x 7−→ vp(x) =

{
0 x ≤ 0,

sin(x/p) x ≥ 0,

and

wp : (−∞,∞] −→ R

x 7−→ wp(x) =

{
sin(x/p) x ≤ 0,

0 x ≥ 0.

Let us also consider homeomorphisms φa : Ia −→ [−∞,∞) and φb : Ib −→
(−∞,∞], where Ia and Ib are, respectively, the connected components of a and
b in [a, b]\F .

As a consequence of all of this, we have the following result.

Theorem 3.1. Given a closed set F of measure zero contained in an in-

terval [a, b], the set H of all Riemann-integrable functions whose set of points of

discontinuity is F is lineable.

3.2. The Fσ set is not closed. In [10, p. 44, ex. 26] there can be found a proof
of the fact that given any non-closed Fσ set F of measure zero contained in an
interval [a, b], there exists a Riemann-integrable function from [a, b] to R whose
set of points of discontinuity is exactly F . Here, our purpose is to construct a
positive cone C every non-zero element of which is a Riemann-integrable function
from [a, b] to R whose set of points of discontinuity is exactly F . Let us call f to
such a function, that we know exists ([10, p. 44, ex. 26]). Next, consider the set

C =
{
λ1f

k1 + · · ·+ λpf
kp : p ∈ N, λ1, . . . , λp ≥ 0, k1, . . . , kp ∈ N∗

}

where N∗ denotes the set of odd natural numbers. Clearly, every non-zero function
of C is bounded and, from the previous section, we know that every non-zero
element of C is a function from [a, b] to R whose set of points of discontinuity is
exactly F . Now, to see that the family {fk : k ∈ N∗} is linearly independent we
proceed as in the previous section, since in the construction of the function f given
in [10, p. 44, ex. 26], it can be found a countable family of non-empty disjoint
sets {Bn}n∈N so that f(x) = 2−n for every x ∈ Bn and every n ∈ N. Finally, we
have the corresponding theorem.

Theorem 3.2. Given any non-closed Fσ set F of measure zero contained

in an interval [a, b], the set C of all Riemann-integrable functions whose set of

points of discontinuity is exactly F is coneable.



Lineability and coneability of discontinuous functions on R 137

4. Removable discontinuities and jumps

Let us consider an interval I and a point a ∈ I. Let f : I −→ R be a function
for which both limits from the left and from the right at a exist. Then, we will
use the following notation:

f (a+) := lim
x→a+

f (x) ,

f (a−) := lim
x→a−

f (x) ,

f (a∗) :=
f (a+) + f (a−)

2
.

In this section, we study the lineability of the set H of all functions from I to R
having either jump or removable discontinuities at a.

4.1. Functions having only removable discontinuities. Let I be any non-
trivial interval and consider a point a ∈ I. Let f, g : I −→ R be linearly indepen-
dent functions having removable discontinuities at a. Let us take

α =
f (a∗)− f (a)
g (a)− g (a∗)

and consider the function h = f + αg. We have that h is continuous at a. As a
consequence we have the following result.

Theorem 4.1. Let I be any non-trivial interval and consider a point a ∈ I.

Let K denote the set of all functions from I to R having a removable discontinuity

at a. Then, λ(K) = 1.

4.2. Functions having only jump discontinuities. Let I be any non-trivial
interval and consider a point a ∈ I. Let f, g : I −→ R be linearly independent
functions having jump discontinuities at a. Let us take

α =
f (a+)− f (a−)
g (a−)− g (a+)

and consider the function h = f +αg. We have that h is either continuous or has
a removable singularity at a. As a consequence we have the following result.

Theorem 4.2. Let I be any non-trivial interval and consider a point a ∈ I.

Let L denote the set of all functions from I to R having a jump discontinuity

at a. Then, λ(L) = 1.

4.3. Functions having either removable or jump discontinuities. Let I

be an arbitrary given non-trivial interval and consider a point a ∈ I. Let H

denote the set of all functions from I to R having either a removable or jump
discontinuity at a. Assume that X is a vector space of dimension greater or equal
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to 3 contained in H ∪ {0}. Let us consider {f, g, h} a linearly independent set
contained in X. We will reach a contradiction. Taking into account theorem 4.1,
it is clear that, at least, two of three functions f , g, and h must have a jump
discontinuity at a. Then, let us assume that this two functions are f and g. Let
us take

α =
f (a−)− f (a+)
g (a+)− g (a−)

and consider the function u = f + αg. We have that u has a removable dis-
continuity at a. Now, applying again theorem 4.1, k cannot have a removable
discontinuity at a. Let us take

β =
g (a−)− g (a+)
h (a+)− h (a−)

and consider the function v = g + βh. We have that v has a removable discon-
tinuity at a. Since u and v are linearly independent, we have a contradiction
according to theorem 4.1. Now, consider the vector space Y = span {f, g} where

f : I −→ R

x 7−→ f(x) =

{
−5 x 6= a,

0 x = a,
and

g : I −→ R

x 7−→ g(x) =

{
(x− a)3 + 2 x > a,

(x− a)3 − 7 x ≤ a.

It can be easily seen that Y has dimension 2 and Y ⊆ H ∪{0}. As a consequence
of all of this, we have the following theorem.

Theorem 4.3. Let I be any non-trivial interval and consider a point a ∈ I.

Let H denote the set of all functions from I to R having either a removable or

jump discontinuity at a. Then, λ(H) = 2.
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of non-convergent Fourier series, Studia Math. 175 (2006), 83–90.
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ensembles (French), S. M. F. Bull. 33 (1905), 261–273.

[7] P. Enflo and V. I. Gurariy, On lineability and spaceability of sets in function spaces,
(preprint).

[8] V. Fonf, V. I. Gurariy and V. Kadeč, An infinite dimensional subspace of C[0, 1]
consisting of nowhere differentiable functions, C. R. Acad. Bulgare Sci. 52 (1999), 11–12,
13–16.

[9] B. Gelbaum and J. Olmsted, Counterexamples in analysis, Holden-Day, 1964.

[10] B. Gelbaum and J. Olmsted, Counterexamples in analysis, Dover, 2003.

[11] V. I. Gurariy, Subspaces and bases in spaces of continuous functions (Russian), Dokl.
Akad. Nauk SSSR 167 (1966), 971–973.
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