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Jordan loops and loop rings

By EDGAR G. GOODAIRE (St. John’s) and REBECCA G. KEEPING (St. John’s)

Abstract. Jordan loop rings can exist only in characteristics not relatively prime

to 6. In this paper, we show they exist in characteristic 2, give a number of examples of

loops with Jordan loop rings and initiate a study of Jordan loops, a class of loops which

has hitherto been largely ignored, perhaps for good reason.

1. Jordan loop rings

A quasigroup is a set L together with a binary operation (a, b) 7→ ab which
has the property that given any two of three elements a, b, c in L, the third is
uniquely determined by the equation ab = c. A loop is a quasigroup with identity.
Given any loop L and any commutative, associative ring R with 1, one forms the
loop ring RL precisely as in the case that L is a group.

Loop rings satisfying interesting identities other than associativity are hard
to find. Over twenty years ago, it was shown that a certain restricted class of
Moufang loops have loop rings that are not associative, but alternative, in the
sense that they satisfy the identities

x(xy) = x2y the left alternative law
and

(yx)x = yx2 the right alternative law
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[Goo83]. Some time later, the existence of loop rings satisfying just one of the
alternative laws was established [GR95]. Such rings exist only in characteristic 2
[CG88], [Kun98].

A power associative loop or ring is one in which every element generates an
associative subloop (or subring). A loop (or ring) is Jordan if it is commutative
and satisfies

(x2y)x = x2(yx) the Jordan identity.

In characteristic prime to 6, any commutative power associative loop ring is as-
sociative [Pai55], [Osb84]. Since a Jordan ring of characteristic different from 2
is power associative [Sch66, §IV.1], Jordan loop rings of characteristic prime to 6
are associative. One purpose of this paper is to begin filling the implicit gap in
these observations by showing that nonassociative1 Jordan loop rings do exist if
the characteristic of the coefficient ring is 2. We then provide a brief introduction
to the theory of Jordan loops, a topic to which little attention has apparently
been paid hitherto.

In the proof of our main theorem, Theorem 1.1 that follows, it is convenient
to use the term support for the set of loop elements which actually appear in the
canonical representation of a loop ring element, that is, with nonzero coefficients:
For α =

∑
`∈L α``, supp(α) = {` | α` 6= 0}.

Theorem 1.1. Let R be a commutative, associative ring with 1 and of

characteristic 2 and let L be a loop. The loop ring RL is nonassociative Jordan

if and only if L is a nonassociative Jordan loop and either

(1) R is a Boolean ring, that is, r2 = r for all r ∈ R, and, given any elements

x, y, z ∈ L, either

J1: x2y · z = x2 · yz and x · yz2 = xy · z2, or

J2: x2y · z = xy · z2 and x · yz2 = x2 · yz, or

J3: x2y · z = x · yz2 and x2 · yz = xy · z2

or else

(2) J1 holds for all x, y, z ∈ L.

Proof. Suppose the loop ring RL is Jordan, but not associative. As a subset
of RL, the loop L is certainly Jordan and, were it associative, RL would also be
associative, which is not the case. So L is not associative. Next, replacing x by
x + z in the Jordan identity, we obtain

(x2y + z2y)(x + z) = (x2 + z2)(yx + yz)

1In this paper, “nonassociative” means “not associative.”
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(in characteristic 2). Expanding and cancelling two pairs of terms that are equal
because RL is Jordan, we obtain

x2y · z + z2y · x = x2 · yz + z2 · yx. (1)

Thinking of x, y, z as loop elements, each side of this equation is the sum of loop
elements and these are linearly independent over R. If x2y ·z is not in the support
of the left side, then the two terms on the left are equal, the two terms on the
right are equal, and we have J3. (Remember that L is commutative.) On the
other hand, if x2y · z is in the support of the left side, then it is in the support of
the right as well, so we have either J1 or J2.

Now suppose that given three elements x, y, z ∈ L, we have either J1 or J2
or J3, but that J1 does not hold identically in L. In the first instance, suppose
there exist elements x = `1, y = k, z = `2 in L which satisfy J2, but not J1. Thus

`21k · `2 = `1k · `22 and `1 · k`22 = `21 · k`2, (2)
but

`21k · `2 6= `21 · k`2 or `1 · k`22 6= `1k · `22. (3)

[Note that these two inequalities are equivalent, because of (2).] We claim that
R is Boolean. If not, there exists r ∈ R with r2 6= r. Let α = `1 + r`2 and β = k

and compare
A = (α2β)α = [(`21 + r2`22)k](`1 + r`2)

with
B = α2(βα) = (`21 + r2`22)[k(`1 + r`2)]

which are equal elements of RL because RL satisfies the Jordan identity. Ex-
panding, subtracting, and using the Jordan identity in L to cancel two pairs of
elements, we have

A−B = A + B =
[
r`21k · `2 + r2`22k · `1

]
+

[
r`21 · k`2 + r2`22 · k`1

]
.

Using equations (2), this is (r2 + r)(`21k · `2 + `21 · k`2) which, in view of (3), is
a linear combination of two different loop elements with nonzero coefficients and
hence nonzero in the Jordan loop ring RL, a contradiction.

With a similar argument, we derive a contradiction from the assumption that
there exist elements x, y, z ∈ L which satisfy J3, but not J1, and obtain necessity
of the conditions given in the theorem.

Conversely, suppose L is a Jordan loop that is not associative and either J1
holds for all x, y, z ∈ L or else R is Boolean and, for any x, y, z ∈ L, at least one
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of J1, J2, J3 holds. Clearly the loop ring RL is not associative, so it remains
simply to establish the Jordan identity, namely, that (α2β)α = α2(βα) for any
α, β ∈ RL.

Write α =
∑

`∈L α`` and β =
∑

k∈L βkk. Because charR = 2, α2 =
∑

α2
``

2

so that (α2β)α is the sum of terms of the form [(α2
1`

2
1)(βkk)](α2`2) = α2

1α2βk`21k·`2
while α2(βα) is the sum of terms of the form α2

1α2βk`21 · k`2. We wish to show
that (α2β)α = α2(βα). After using the Jordan identity to cancel the terms where
`1 = `2, we note that for each term α2

1α2βk`21k ·`2 in (α2β)α with `1 6= `2, there is
a corresponding term α2

2α1βk`22k · `1, so that (α2β)α is the sum of pairs of terms
of the form A = α2

1α2βk`21k · `2 + α1α
2
2βk`1 · k`22. Similarly, α2(βα) is the sum of

pairs of terms of the form B = α2
1α2βk`21 · k`2 + α1α

2
2βk`1k · `22. We claim that

A = B or, equivalently (in characteristic 2), that

α2
1α2βk(`21k · `2 + `21 · k`2) + α1α

2
2βk(`1 · k`22 + `1k · `22) = 0.

If R is not Boolean, but J1 holds identically, then the two elements within each
pair of parentheses are equal, so the terms in the parentheses are 0, whereas,
if R is Boolean, the coefficients α2

1α2βk and α1α
2
2βk are equal and each of the

conditions J1 or J2 or J3 with x = `1, y = k, z = `2 implies that

`21k · `2 + `21 · k`2 + `1k · `22 + `1 · k`22 = 0.

The proof is complete. ¤

Loops which have alternative loop rings over coefficient rings of any char-
acteristic or in characteristic 2 are known as RA and RA2 loops, respectively.
Correspondingly, we make the following definition.

Definition 1.2. A nonassociative loop is RJ2 if it has a (commutative) Jordan
loop ring over some coefficient ring of characteristic 2.

Obviously any commutative loop of exponent 2 satisfies the Jordan identity.
Furthermore, since J1 will hold identically, our Theorem 1.1 shows that such a
loop is RJ2. Any loop of order not exceeding 4 is a group, so a nonassociative
commutative loop of exponent 2 must have order at least five. In fact, it has
order at least six.

Lemma 1.3. In a commutative loop of finite odd order, every element is a

square. In particular, a commutative loop of exponent 2 has even order.

Proof. Let a be any element of a commutative loop L of odd order n and
consider the loop table. If a appears k times above the diagonal, it appears k

times below the diagonal, giving an even number of off-diagonal appearances.
Since n is odd, a also appears on the diagonal. ¤
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By hand, by machine or by referring to Fisher and Yates [FY34], one can
find representatives of the eight isomorphism classes of commutative loops of
order 6. There is one (and only one) nonassociative Jordan loop of this order,
with this table:

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 5 3 6 4
3 3 5 1 6 4 2
4 4 3 6 1 2 5
5 5 6 4 2 1 3
6 6 4 2 5 3 1

(4)

It has exponent 2, so it is also RJ2 and, since the only commutative loops of order
less than 6 are groups, it is also the smallest nonassociative Jordan loop and the
smallest RJ2 loop. We mention also that this loop is simple: there are just two
conjugacy classes, {1} and {2, 3, 4, 5, 6}.

2. Two constructions

In this section, we present two different constructions of Jordan loops, loops of
the first type having Jordan loop rings over any coefficient ring of characteristic 2.

Some loops of exponent 2. For every even order exceeding 5, there exists a
nonassociative commutative loop which satisfies the Jordan identity because it
has exponent 2. We describe a construction of such loops here.

Let n be an odd positive integer, let A = {1, 2, 3, . . . , n}, and define f :
A×A → {0, 1, 2, . . . , n− 1} by the rule

f(i, j) =
1
2
(n + 1)(j − 1)− 1

2
(n− 1)(i− 1) (mod n).

It is easily checked that for each fixed i, f(i, ·) : A → {0, 1, 2, . . . , n − 1} is a
bijection and for each fixed j, f(·, j) : A → {0, 1, 2, . . . , n− 1} is a bijection. One
can also verify that f(i, j) = f(j, i) for all i, j and f(i, i) = i − 1 (mod n) for
each i. As a consequence, the n × n array whose (i, j) entry is f(i, j) + 2 is a
symmetric Latin square on the integers {2, 3, 4, . . . , n + 1} with (i, i) entry i− 1.
Now form the (n+1)× (n+1) table that has this square in the lower right corner
with all diagonal entries changed to 1, and which has the integers 1, 2, 3, . . . , n+1
in order in row one and in column one. This table defines a commutative loop
of exponent 2 and order n + 1. The loop defined by (4) is an example of this
construction with n = 5.
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If n + 1 is not a power of 2, no loop realized by this construction can be
associative. To show that no such loop is ever associative in general apparently
acquires a small calculation. Specifically, we show that 2(2 · 3) 6= 22 · 3 = 3. We
have

2 · 3 = f(1, 2) = [ 12 (n + 1) (mod n)] + 2.

Since this is not 2,

2(2 · 3) = f(1, f(1, 2)− 1) + 2 =
[(

1
2 (n + 1)

)2 (mod n)
]
+ 2.

If 2(2 · 3) = 3, then [ 12 (n + 1)2] (mod n) = 1, so 4 ≡ (n + 1)2 ≡ 1 (mod n), a
contradiction.

J(G,α) loops. The literature contains many examples of nonassociative loops
constructed by “doubling” groups [Voj03], [Voj04], [GJM96, §II.5]. Suggested by
the notation M(G, 2), which Orin Chein introduced for a family of Moufang loops
[Che74], we label J(G,α) a Jordan loop constructed by the following theorem.

Theorem 2.1. Let G be an abelian group, let u be some element not in G

and let L = G ∪Gu. Extend the multiplication in G to L by setting

g(hu) = (hu)g = (gh)u

and
(gu)(hu) = α(g, h)

for some symmetric map α : G×G → G, that is, a map satisfying α(g, h) = α(h, g)
for all g, h ∈ G.

i. The structure (L, ·) is a loop if and only if for each g ∈ G, the function

αg : G → G defined by αg(x) = α(g, x) is a bijection.

ii. The Jordan identity is satisfied in (L, · ) if and only if

α(α(g, g)h, g) = α(g, g)α(g, h) for all g, h ∈ G.

iii. Associativity holds in (L, ·) if and only if there exists a ∈ G such that

α(g, h) = agh for all g, h ∈ G.

Before beginning the proof, we note that for finite G the existence of a map
α as described is equivalent to the existence of a symmetric Latin square of order
|G|, where α(g, h) is the (g, h) entry of the square.

Proof. i. Suppose L is a loop and fix g ∈ G. For any h ∈ G, the equation
(gu)(xu) = h, which is αg(x) = h, has a unique solution, so αg is a bijection.
Conversely, given that αg is a bijection for all g, we must prove that given any two
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of a, b, c ∈ L, the third element is uniquely determined by the equation ab = c.
Given a and b, this is clear from the definition of L.

Assume we are given a and c. Table 1, in which g and h are always assumed to
be elements of G, shows an element b satisfying ab = c given the four possibilities
for a, c ∈ G ∪Gu.

a c b

g h g−1h

g hu (g−1h)u
gu h α−1

g (h)
gu hu g−1h

Table 1. g and h are elements of G.

In each case, uniqueness of b is not hard to establish. In the third line, for example,
given g, h ∈ G, the solution b to (gu)b = h must be an element xu, x ∈ G, because
of the way multiplication in L is defined. Since (gu)(xu) = α(g, x) = αg(x) and
αg is invertible, x = α−1

g (h) is unique.
Finally, given b and c, the existence and uniqueness of a solution a to ab = c

can be established with an argument similar to the one just given.

ii. The loop is Jordan if and only if (x2y)x = x2(yx) for each x and y in G

or Gu. Table 2, where again g and h are assumed to be elements of G, establishes
this part.

x y (x2y)x x2(yx)
g h (g2h)g = g3h g2(hg) = g3h

g hu [(g2h)u]g = (g3h)u g2[(gh)u] = (g3h)u

gu h [α(g, g)h]gu = [α(g, g)gh]u [α(g, g)][(gh)u] = [α(g, g)gh]u

gu hu [α(g, g)(hu)]gu = [α(g, g)h]u · gu α(g, g)α(h, g)
= α(α(g, g)h, g)

Table 2. g and h are elements of G.

iii. Table 3 shows that the loop is associative if and only if

α(gh, k) = gα(h, k) (5)

α(gh, k) = α(g, hk) (6)

α(g, hk) = α(g, h)k (7)
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and
α(g, h)k = gα(h, k) (8)

for all g, h, k ∈ G.

x y z (xy)z x(yz)

g h k (gh)k g(hk)

g h ku (gh)(ku) = (ghk)u g[(hk)u] = (ghk)u

g hu k [(gh)u]k = (ghk)u g[(hk)u] = (ghk)u

g hu ku [(gh)u](ku) = α(gh, k) gα(h, k)

gu h k [(gh)u]k = (ghk)u (gu)(hk) = (ghk)u

gu h ku [(gh)u](ku) = α(gh, k) gu[(hk)u] = α(g, hk)

gu hu k α(g, h)k (gu)[(hk)u] = α(g, hk)

gu hu ku [α(g, h)](ku) = [α(g, h)k]u (gu)[α(h, k)] = [gα(h, k)]u

Table 3. g, h and k are elements of G.

Suppose L is associative. Setting first h = 1 and then k = 1 in (5) gives
α(g, k) = gα(1, k) and α(g, 1) = gα(1, 1), so α(g, k) = gα(1, k) = gα(k, 1) =
gkα(1, 1) for all g and k. This is the condition of statement iii with a = α(1, 1).
Conversely, if there exists a ∈ G with α(g, h) = agh for all g, h ∈ G, then
equations (5), (6), (7) and (8) all hold for any g, h, k ∈ G and L is associative.
We have verified statement iii. ¤

Let G = Zn, the group of integers under addition (mod n). To produce a
Jordan loop of the type J(G,α), we require a symmetric map α : Zn × Zn→Zn

which satisfies condition ii of Theorem 2.1 or, equivalently, n maps αi, i =
0, 1, . . . , n− 1 satisfying

αi(αi(i) + j) = αi(i) + αi(j) (9)

for all i, j. To avoid associativity, we must also ensure that αi(j) − i − j is not
constant.

We find it convenient to set λi = αi(i) so that (9) becomes

αi(λi + j) = λi + αi(j) (10)

and then to look for symmetric Latin squares on the elements 0, 1, 2, . . . , n − 1,
row i consisting of the elements αi(0), αi(1), . . . , αi(n− 1).
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Example 2.2. One obvious solution to (10) can be obtained by setting λi = 0
for all i, in which case any (symmetric) Latin square with 0s on the diagonal
“works.” The array

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

(11)

is one such Latin square and this produces the loop J(Z4, α) described by Table 4.
Note that the Latin square (11) is in the lower right corner and Z4 is in the upper
left. The other corners are defined as in Theorem 2.1: specifically, g(hu) =
(hu)g = (gh)u. Here 4 = u, 5 = 1 + u, 6 = 2 + u, 7 = 3 + u so that, for example,
we have 3 + 6 = 3 + (2 + u) = (3 + 2) + u = 1 + u = 5. Also, α(0, 0) = 0 (the
(0, 0)-entry of the table in (11)) while α(1, 1) = 0, so α(i, j)− i−j is not constant.
Part iii of Theorem 2.1 now says that this loop of order 8 is not associative.

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 5 6 7 0 1 2 3
5 6 7 4 1 0 3 2
6 7 4 5 2 3 0 1
7 4 5 6 3 2 1 0

Table 4. The loop J(Z4, α) has a Jordan loop ring.

Example 2.3. With G = Z6 and i, j ∈ {0, 1, 2, 3, 4, 5}, define α(i, j) by the
table

5 0 1 2 3 4
0 1 2 3 4 5
1 2 0 4 5 3
2 3 4 5 0 1
3 4 5 0 1 2
4 5 3 1 2 0

This produces the loop L = J(Z6, α) defined by Table 5 and the reader may
verify that (10) holds for all i, j. Thus L is Jordan, but not associative: (5 ·6)8 =
11 · 8 = 3, while 5(6 · 8) = 5 · 1 = 0. In fact, it is not even power associative:
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7(7(7(7(7 · 7)))) = 3, whereas 73 · 73 = 8 · 8 = 0.

0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 7 8 9 10 11 6
2 3 4 5 0 1 8 9 10 11 6 7
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 10 11 6 7 8 9
5 0 1 2 3 4 11 6 7 8 9 10
6 7 8 9 10 11 5 0 1 2 3 4
7 8 9 10 11 6 0 1 2 3 4 5
8 9 10 11 6 7 1 2 0 4 5 3
9 10 11 6 7 8 2 3 4 5 0 1

10 11 6 7 8 9 3 4 5 0 1 2
11 6 7 8 9 10 4 5 3 1 2 0

Table 5. The Jordan loop J(Z6, α) is not RJ2 and not power associative.

To avoid associativity with this construction when G = Zn, it is interesting
to observe that not all λi can be relatively prime to n. Setting j = 0 and
then j = λi repeatedly in (10) and with ai = αi(0), we have αi(λi) = λi + ai,
αi(2λi) = λi + αi(λi) = 2λi + ai and, in general, αi(rλi) = rλi + ai. If λi is
relatively prime to n, any j is of the form rλi, so αi(j) = j + ai for each j. Now
αi(j) = αj(i) gives j + ai = i + aj for all i, j. Setting j = 0, we get ai = i + a0,
so αi(j) = j + ai = i + j + a0 for all i, j, with a0 constant. Thus L is associative.

We now identify some J(G,α) loops that are RJ2.

Theorem 2.4. Let L = J(G,α) be a loop constructed as in Theorem 2.1.

Suppose

i. α(g2h, k) = g2α(h, k) and

ii. α(α(g, g)h, k) = α(g, g)α(h, k)

for all g, h, k ∈ G. Then L is RJ2.

Proof. Notice that condition ii, with k = g is precisely the condition that L

be a Jordan loop—see Theorem 2.1. We conclude the proof by showing that the
two conditions are equivalent to J1 holding for all x, y, z ∈ L and then appeal to
Theorem 1.1.

There are eight cases to consider, according as each of the loop elements x, y,
z are in G or Gu. We leave it to the reader to verify that in five of the eight cases,
J1 holds simply because G is abelian and associative. In one of the remaining
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cases, we have x = g, y = hu, z = ku with g, h, k ∈ G and require the equality
of x2y · z = α(g2h, k) and x2 · yz = g2α(h, k). In another case, we have x = gu,
y = hu, z = k, g, h, k ∈ G and need the equality of xy · z2 = α(g, h)k2 and
x · yz2 = α(g, hk2). In the last case, with x = gu, y = hu, z = ku, g, h, k ∈ G,
the condition x2y · z = x2 · yz is α(α(g, g)h, k) = α(g, g)α(h, k). ¤

Remark 2.5. If one defines α(g, g) = 1 for all g, then condition ii of Theo-
rem 2.4 is true trivially so, to find an α which makes J(G,α) an RJ2 loop, one
has only to make sure that α satisfies condition i. For example, with G = Z4, the
array in (11) defines such an α, and this explains why J(Z4, α), the loop depicted
in Table 4, has a Jordan loop ring. As shown in the proof of Theorem 2.4, this
loop satisfies condition J1 identically, but not for the trivial reason that it has
exponent 2.

3. Jordan loops, Jordan loop rings: Is there a future?

Certainly the most-studied loop identities have always been those of “Bol–
Moufang type” that were identified and classified by F. Fenyves, that is, iden-
tities such as (xy · z)y = x(yz · y) where each side is a monomial of degree four
in three variables with the same variable repeated on each side [Fen69]. Whether
the Jordan identity has been overlooked because it is not of this type we cannot
say. It is clear, though, that Jordan loops fail to satisfy most of the properties
typically studied in loop theory. Table 5 describes a Jordan loop that is not power
associative. The loop defined by Table 4 shows that Jordan loops do not satisfy
the inverse property (xy)y−1 = x (which is the same as the cross inverse property
in a commutative loop) nor the weak inverse property y(xy)−1 = x−1 (in each
case, take y = 3 and x = 2). Even when a Jordan loop is power associative so
that there is a well-defined notion of “order of an element,” one should not expect
the order of an element in a finite Jordan loop to divide the order of the loop, as
shown by each loop in Table 6 where all nonidentity elements have order 3.

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 3 1 5 4 7 6
3 3 1 2 6 7 4 5
4 4 5 6 7 2 3 1
5 5 4 7 2 6 1 3
6 6 7 4 3 1 5 2
7 7 6 5 1 3 2 4

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 3 1 5 4 7 6
3 3 1 2 6 7 4 5
4 4 5 6 7 3 2 1
5 5 4 7 3 6 1 2
6 6 7 4 2 1 5 3
7 7 6 5 1 2 3 4

Table 6. The two Jordan loops of order 7
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Table 7 describes a power associative Jordan loop of order 8. Let x = y = 3 and
observe that the inner map R(x, y) = R(x)R(y)R(xy)−1 sends 2 to 5, so these
elements are conjugate. They do not have the same order, however, these being 2
and 4, respectively.

1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 5 7 8 2 6
4 4 3 5 1 8 7 6 2
5 5 6 7 8 2 1 3 4
6 6 5 8 7 1 2 4 3
7 7 8 2 6 3 4 1 5
8 8 7 6 2 4 3 5 1

Table 7. A power associative Jordan loop

Historically, there has always been interest in the structure and properties
of the units (that is, the invertible elements) of a group ring. In the case of
alternative and right alternative loop rings, there has been the added bonus of
finding more examples of Moufang and Bol loops, respectively [GJM96, §II.5.3],
[Goo01], [Nag02]. Such investigations are of no relevance in the theory of Jordan
loop rings because even the concept of “unit” in a Jordan loop ring makes no sense
in general. For instance, for i > 1, renaming as `i element i in loop (4), consider
the loop ring elements α = 1 + `5 + `6 and β = 1 + `2 + `3. Then α2 = αβ = 1,
so the “inverse” of α is not unique.

4. Open questions

We close with some questions we have considered with less than complete
success.

Does there exist a nonassociative Jordan loop of every order greater than 8?

We have seen that for every even integer n ≥ 6, there exists a nonassociative
commutative loop of exponent 2 and order n and, in Table 6, we exhibit tables
for the two Jordan loops of order 7. By taking the direct product of either loop
with a cyclic group of order k, we obtain a nonassociative Jordan loop of order 7k.
Our referee has reported that a computer search finds no nonassociative Jordan
loops of order 9. On the other hand, he/she has found a construction for order
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2n − 1 that may be adapted to some other odd orders. We ourselves, however,
are unable to find examples or constructions of Jordan loops of odd orders n > 8
(not of the form 7k) and the question that heads this subsection is open.

Is a Jordan loop ring power associative? L. Kokoris has shown that if F is a
field of characteristic 2 and containing at least four elements, then any Jordan
algebra over F is power associative [Kok55]. While we do not know if a Jordan
loop ring is power associative in general, we have the following suggestive fact
about loops of the type J(G, α).

Theorem 4.1. Let L = J(G,α) as in Theorem 2.1 and let R be any commu-

tative, associative coefficient ring with 1 and of characteristic 2. If RL is Jordan,

then L is power associative.

Proof. We show that by itself, condition iii of Theorem 2.4

α(α(g, g)h, k) = α(g, g)α(h, k) (12)

implies that xn is well-defined for any x ∈ L and any n ≥ 1. This is clear for
x ∈ G so we take x = gu, g ∈ G, and proceed by mathematical induction. We
show that for any n ≥ 1

(1) any product of 2n gu’s is α(g, g)n, and

(2) any product of 2n + 1 gu’s is [α(g, g)ng]u.

When n = 1 these statements are clearly true since any product of 2 gu’s is
gu·gu = α(g, g) and any product of 3 gu’s is (gu)2(gu) = α(g, g)·gu = α(g, g)g ·u.
Now assume n > 1 and that statements (1) and (2) hold for all positive integers
k < n. We verify the statements for n.

For the first statement, regardless of the order in which the 2n gu terms are
multiplied, there will be a last multiplication, say of r gu terms and s gu terms,
r + s = 2n. We have two cases.

Suppose r = 2i and s = 2j are both even. Since i < n and j < n, the
induction hypothesis shows that the product is

(gu)2i(gu)2j = α(g, g)iα(g, g)j = α(g, g)i+j = α(g, g)n,

as required.
If r = 2i + 1 and s = 2j + 1 are both odd, the induction hypothesis gives

(gu)2i+1(gu)2j+1 = [α(g, g)ig · u][α(g, g)jg · u] = α(α(g, g)ig, α(g, g)jg).

Repeated applications of (12) give

[α(g, g)iα(g, g)j ]α(g, g) = α(g, g)i+j+1 = α(g, g)n,
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as required.
Turning to statement (2), we again focus on the last multiplication in the

product of 2n + 1 = 2k + 3 gu’s, which is the product of r factors each gu and s

factors each gu. Since the sum of r and s is odd, this time there is only one case.
Without loss of generality, let r = 2i and s = 2j + 1. Again i < n and j < n, so
the induction hypothesis gives

(gu)2i(gu)2j+1 = α(g, g)i[α(g, g)jg · u]

= α(g, g)i+jg · u = α(g, g)
r+s−1

2 g · u = α(g, g)ng · u,

as required. This completes the induction and the proof. ¤

Is the definition of RJ2 loop independent of coefficient ring? Our definition of
“RJ2 loop” takes into account part (1) of Theorem 1.1 which suggests the possi-
bility that a Jordan loop could have a Jordan loop ring over one coefficient ring
(of characteristic 2) but not over some other. At present, we have no examples of
such loops.
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