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The L-dual of a Matsumoto space

By IOANA MONICA MASCA (Brasov), VASILE SORIN SABAU (Sapporo)
and HIDEO SHIMADA (Sapporo)

Abstract. In [HS1], [MHSS] the L-duals of a Randers and Kropina space were

studied. In this paper we shall discuss the L-dual of a Matsumoto space. The metric of

this L-dual space is completely new and it brings a new idea about L-duality because

the L-dual of Matsumoto metric can be given by means of four quadratic forms and

1-forms on T ∗M constructed only with the Riemannian metric coefficients, aij(x) and

the 1-form coefficients bi(x).

1. Introduction

The study of L-duality of Lagrange and Finsler space was initiated by R. Mi-

ron [Mi2] around 1980. Since then, many Finsler geometers studied this topic.
One of the remarkable results obtained are the concrete L-duals of Randers

and Kropina metrics [HS2]. However, the importance of L-duality is by far li-
mited to computing the dual of some Finsler fundamental functions.

Recently, in [BRS], the complicated problem of classifying Randers metrics
of constant flag curvature was solved by means of duality. Other geometrical
problems of (α, β)-metrics might be solved on future by considering not the metric
itself, but its L-dual.

The concrete examples of L-dual metrics are quite few [HS1], [HS2]. In the
present paper we succeeded to compute the dual of another well known (α, β)-
metric, the Matsumoto metric. Surprisingly, despite of the quite complicated
computations involved, we obtain the Hamiltonian function by means of four
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quadratic forms and a 1-form on T ∗M . This metric is completely new and it
brings a new idea about L-duality. The dual of an (α, β)-metric can be given by
means of several quadratic forms and 1-forms on T ∗M constructed only with the
Riemannian metric coefficients, aij(x) and the 1-form coefficients bi(x).

2. The Legendre transformation

2.1. Definitions. Let Fn = (M, F ) be a n-dimensional Finsler space. The fun-
damental function F (x, y) is called an (α, β)-metric if F is homogeneous function
of α and β of degree one, where α2 = a(y, y) = aijy

iyj , y = yi ∂
∂xi |x ∈ TxM is

Riemannian metric, and β = bi(x)yi is a 1-form on T̃M = TM \ {0}.
A Finsler space with the fundamental function:

F (x, y) = α(x, y) + β(x, y), (2.1)

is called a Randers space.
A Finsler space having the fundamental function:

F (x, y) =
α2(x, y)
β(x, y)

, (2.2)

is called a Kropina space, and one with

F (x, y) =
α2(x, y)

α(x, y)− β(x, y)
, (2.3)

is called a Matsumoto space.
Let Cn = (M, K) be an n-dimensional Cartan space having the fundamental

function K(x, p). We also consider Cartan spaces having the metric function of
the following form:

K(x, p) =
√

aij(x)pipj + bi(x)pi, (2.4)

or

K(x, p) =
aij(x)pipj

bi(x)pi
, (2.5)

with aija
jk = δk

i and we will again call these spaces Randers and Kropina spaces
on the cotangent bundle T ∗M , respectively.

Let L(x, y) be a regular Lagrangian on a domain D ⊂ TM and let H(x, p)
be a regular Hamiltonian on a domain D∗ ⊂ T ∗M .
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It is known [MHSS] that if L is a differentiable function, we can consider the
fiber derivative of L, locally given by the diffeomorphism between the open set
U ⊂ D and U∗ ⊂ D∗:

ϕ(x, y) = (xi, ∂̇aL(x, y)) (2.6)

which is called the Legendre transformation. We can define, in this case, the
function H : U∗ → R:

H(x, p) = paya − L(x, y), (2.7)

where y = (ya) is the solution of the equations:

pa = ∂̇aL(x, y). (2.8)

In the same manner, the fiber derivative is locally given by:

ψ(x, p) = (xi, ∂̇aH(x, p)). (2.9)

The function ψ is a diffeomorphism between the same open sets U∗ ⊂ D∗ and
U ⊂ D and we can consider the function L : U → R:

L(x, y) = paya −H(x, p), (2.10)

where p = (pa) is the solution of the equations:

ya = ∂̇aH(x, p). (2.11)

The Hamiltonian given by (2.7) is called the Legendre transformation of the La-
grangian L and the Lagrangian given by (2.10) is called the Legendre transforma-
tion of the Hamiltonian H.

If (M,K) is a Cartan space, then (M, H) is a Hamilton manifold [MHSS],
where H(x, p) = 1

2K2(x, p) is 2-homogeneous on a domain of T ∗M . So, we get
the following transformation of H on U :

L(x, y) = paya −H(x, p) = H(x, p). (2.12)

Proposition 1 ([MHSS]). The scalar field L(x, y) defined by (2.12) is a

positively 2-homogeneous regular Lagrangian on U .

Therefore, we get the Finsler metric F of U , such that

L =
1
2
F 2 (2.13)

Thus, for the Cartan space (M,K) one always can locally associate a Finsler
space (M, F ) which will be called the L-dual of a Cartan space (M, K|U∗).

Conversely, we can associate, locally, a Cartan space to every Finsler space
which will be called the L-dual of a Finsler space (M, F|U ).
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3. The (α, β) Finsler – (α∗, β∗) Cartan L-duality

Let us recall some known results.

Theorem 3.1 ([HS1], [MHSS]). Let (M, F ) be a Randers space and

b = (aijb
ibj)

1
2 the Riemannian length of bi. Then:

(1) If b2 = 1, the L-dual of (M, F ) is a Kropina space on T ∗M with:

H(x, p) =
1
2

(
aijpipj

2bipi

)2

. (3.1)

(2) If b2 6= 1, the L-dual of (M, F ) is a Randers space on T ∗M with:

H(x, p) =
1
2

(√
ãijpipj ± b̃ipi

)2

, (3.2)

where

ãij =
1

1− b2
aij +

1
(1− b2)2

bibj ; b̃i =
1

1− b2
bi,

(in (3.2) ′−′ corresponds to b2 < 1 and ′+′ corresponds to b2 > 1).

Theorem 3.2 ([HS1], [MHSS]). The L-dual of a Kropina space is a Randers

space on T ∗M with the Hamiltonian:

H(x, p) =
1
2

(√
ãijpipj ± b̃ipi

)2

, (3.3)

where

ãij =
b2

4
aij ; b̃i =

1
2
bi,

(in (3.3) ′−′ corresponds to β < 0 and ′+′ corresponds to β > 0).

In [HS1] the notation α∗ = (aij(x)pipj)
1
2 , β∗ = bi(x)pi are used, where aij(x)

are the reciprocal components of aij(x) and bi(x) are the components of the vector
field on M , bi(x) = aij(x)bj(x). We can consider the metric functions K = α∗+β∗

(Randers metric on T ∗M) or K = α∗2
β∗ (Kropina metric on T ∗M) defined on a

domain D∗ ⊂ T ∗M . So, one can easily rewrite the previous theorems:

Theorem 3.3. Let (M,F ) be a Randers space and b = (aijb
ibj)

1
2 the Rie-

mannian lengh of bi. Then:
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(1) If b2 = 1, the L-dual of (M, F ) is a Kropina space on T ∗M with:

H(x, p) =
1
2

(
α∗2

2β∗

)2

. (3.4)

(2) If b2 6= 1, the L-dual of (M, F ) is a Randers space on T ∗M with:

H(x, p) =
1
2

(
α∗ ± β∗

)2

, (3.5)

with α∗ =
√

ãij(x)pipj and β∗ = b̃ipi where

ãij =
1

1− b2
aij +

1
(1− b2)2

bibj ; b̃i =
1

1− b2
bi,

(in (3.5) ′−′ corresponds to b2 < 1 and ′+′ corresponds to b2 > 1).

Theorem 3.4. The L-dual of a Kropina space is a Randers space on T ∗M
with the Hamiltonian:

H(x, p) =
1
2

(
α∗ ± β∗

)2

, (3.6)

with α∗ =
√

ãij(x)pipj and β∗ = b̃ipi where

ãij =
b2

4
aij ; b̃i =

1
2
bi,

(in (3.6) ′−′ corresponds to β < 0 and ′+′ corresponds to β > 0).

We are going to compute now the dual of a Matsumoto metric. We obtain:

Theorem 3.5. Let (M, F ) be a Matsumoto space and b = (aijb
ibj)

1
2 the

Riemannian length of bi. Then

(1) If b2 = 1, the L-dual of (M, F ) is the space having the fundamental function:

H(x, p) =
1
2

(
−bipi

2

(
3
√

aijpipj + 3
√(

bipi +
√

ãijpipj

)2
)3

aijpipj +
(
bipi +

√
ãijpipj

)2

)2

, (3.7)

where

ãij = bibj − aij .
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(2) If b2 6= 1, the L-dual of (M,F ) is the space on T ∗M having the fundamental

function:

H(x, p) =
1
2

(
−bipi

200

25
(
2
√

dij
2 pipj +

√
dij
4 pipj

)2

+ dij
8 pipj

√
dij
2 pipj

√
dij
4 pipj + dij

9 pipj

)2

, (3.8)

where

cij
1 = (bibj + 2ε1a

ij)2 + (2aij)2ε3,

cij
2 = aij(θ2

4b
ibj + aijε2),

cij
3 = (2aij)2θ3

5,

3
√

ãij
2

= 3
√

cij
1 − 2 3

√
cij
2 + 3

√
cij
3 ,

dij
1 = dij

3 + 4m(aijb2 − bibj),

dij
2 =

√
dij
3 aij + 4

√
dij
1 aij − dij

3 ,

dij
3 = 2 3

√
2aij(ãij)2,

√
dij
4 =

√
dij
3 + 3

√
aij ,

√
dij
5 =

√
dij
3 aij ,

dij
6 = dij

1 aij ,
√

dij
7 = 2

√
dij
2 +

√
dij
4 ,

dij
8 = 200

(√
dij
6 + 2naij

)
− 5

(
4
√

dij
3 +

√
dij
4

)
,

dij
9 = 4

√
dij
6 + 4aijp + 9

√
dij
5 ,

and

m = 1− b2,

n =
20b2 − 29

29
,

p =
1− 2b2

2
,

θ1 = −712b6 − 452b4 + 24b2 + 1
1728

,

θ2 =
576b4 − 2232b2 + 2628

1728
,
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θ3 = −
(

8b2 + 1
12

)2

,

θ4 =
2b2 + 1

6
,

θ5 =
11b2 + 1

12
,

ε1 = 2(θ2
4 − θ2),

ε2 = 3θ3θ
2
4 + θ2

2,

ε3 = 4ε2 − 2θ1 − ε1.

Proof. By putting: α2 = yiy
i, bi = aijbj , β = biy

i, β∗ = bipi, pi = aijpj ,
α∗2 = pip

i = aijpipj , we have F = α2

α−β , and

pi =
1
2
∂̇iF

2 =
yi

α− β
+

α2bi − yiβ

(α− β)2
. (3.9)

Contracting in (3.9) by pi and bi we get:

α∗2 =
F

(α− β)2
[F 2(α− 2β) + α2β∗]

β∗ =
F

(α− β)2
[β(α− 2β) + α2b2]. (3.10)

In [Sh], for a Finsler (α, β)-metric F on a manifold M , one constructs a positive
function φ = φ(s) on (−b0; b0) with φ(0) = 1 and F = αφ(s), s = β

α , where
α =

√
aijyiyj and β = biy

i with ‖β‖x < b0, ∀x ∈ M .
The function φ satisfies: φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b0).
A Matsumoto metric is a special (α, β)-metric with φ = 1

1−s .
Using Shen’s [Sh] notation s = β

α , the formula (3.10) become:

α?2 = F 2 1− 2s

(1− s)3
+ F

1
(1− s)2

β?,

β? = Fs
1− 2s

(1− s)2
+ F

1
(1− s)2

b2. (3.11)

Now we put 1− s = t, i.e. s = 1− t and both equations become:

α?2 = F 2 2t− 1
t3

+ F
1
t2

β?, (3.12)
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β? = F (1− t)
2t− 1

t2
+ F

1
t2

b2. (3.13)

We get
β∗t2 = M(−2t2 + 3t + b2 − 1). (3.14)

For b2 = 1 from (3.13) we obtain:

F = − β∗t
2t− 3

, (3.15)

and by substitution of F in (3.12), after some computations we get a cubic equa-
tion:

t3 − 3t +
9
4
t− β?

2α?2
= 0. (3.16)

Using Cardano’s method for solving cubic equation [Wi], we get:

F = −β?

2
(2P − 1)2

3P 2 + (P − 1)2
, (3.17)

where for P we have:

P =
1
2

3

√√√√
(

β? +
√

β?2 − α?2

α?

)2

. (3.18)

After some computations, for F we get:

F = −β?

2

(
3
√

α?2 + 3
√

(β? +
√

β?2 − α?2 )2
)3

α?2 + (β? +
√

β?2 − α?2)2
. (3.19)

Substituting now β∗ = bipi and α∗2 = pip
i = aijpipj we can easily get (3.7).

If b2 6= 1, the formula (3.15) is more complicated because:

F =
β∗t2

−2t2 + 3t + b2 − 1
, (3.20)

and by substituting this in (3.12) we obtain the quadric equation:

t4 − 3t3 + t2
13− 4b2

4
+ t

6α∗2(b2 − 1)
4α∗2

+
α∗2(b2 − 1)2 + β∗2(1− b2)

4α∗2
= 0. (3.21)
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After a quite long computation, formula (3.21) becomes a cubic equation (different
from (3.16)) and solving it, we get:

F = −β∗

2

((√
−A2 + 3A + 2

√
A2 + m

(
b2 − β∗2

α∗2

)
+

A

2
+

3
4

)2

+

√
A2 + m

(
b2 − β∗2

α∗2

)
− 5

4

(
A +

3
10

)2

+ n

)

/ ((3
2

+ 2A
)
(

√
−A2 + 3A + 2

√
A2 + m

(
b2 − β∗2

α∗2

)

+ 2

√
A2 + m

(
b2 − β∗2

α∗2

)
+

9
2
A + p

)
, (3.22)

where

A2 = 3

√(1
2

β∗2

α∗2
+ ε1

)2

+ ε3 + 3

√
−4

(
θ3
4

β∗2

α∗2
+ ε2

)
+ θ5. (3.23)

By substituting now β∗ = bipi and α∗2 = pip
i = aijpipj , after some computations,

from (3.23) we obtain (3.8). ¤

3.1. Remarks.

(1) It is easy to see that both relations, (3.7) and (3.8), are coming from (3.14).
Indeed, substituting b2 = 1 in (3.14) we get the cubic equation (3.16). As
solution, we find (3.7). For b2 6= 1, from (3.14) we get the complicated
quadric equation (3.21) with (3.8) as solution. If in (3.21) we would replace
b2 = 1 we would get t4 − 3t3 + 9

4 = 0 with t1 = t2 = 0 and t3 = t4 = 3
2 . It

is impossible for these four solutions to exist in our proof. So, we can easily
see that (3.7) and (3.8) are two different relations and we can’t get (3.7) as
a particular case of (3.8).

(2) Using α∗ and β∗ we can get, for the L-dual of (M, F ), in the case b2 = 1,
the fundamental function:

H(x, p) =
1
2

(
−β?

2

(
3
√

α?2 + 3
√(

β? +
√

β?2 − α?2
)2

)3

α?2 + (β? +
√

β?2 − α?2)2

)2

. (3.24)

(3) In (3.7) ãij is positive-definite and the Randers metric on T ∗M
pib

i +
√

pipj ãij is positive-valued for any p.
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4. Conclusions

Let’s take a second look at formula (3.8). If we introduce the following
quadratic forms:

α∗2 =
√

dij
2 pipj , α∗4 =

√
dij
4 pipj ,

α∗8 =
√

dij
8 pipj , α∗9 =

√
dij
9 pipj ,

defined on T ∗M by the corresponding matrices, then (3.8) becomes:

H(x, p) =
1
2

(
− β∗

200
25

(
2α∗2 + α∗4

)2 +
(
α∗8

)2

α∗2α
∗
4 +

(
α∗9

)2

)2

, (4.1)

for b2 6= 1.
In other words, the L-duals of a Randers and Kropina metrics are expressed

only with the duals α∗, β∗ of α, β, respectively. However, the L-dual of a Mat-
sumoto metric is given by means of four distinct quadratic forms on T ∗M . Re-
mark that the coefficients of the quadratic forms are constructed only from the
Riemannian metric matrix element, aij and the 1-forms β’s coefficients bi(x).

Inevitably, the following question occurs: if dij
2 , dij

4 , dij
8 , dij

9 are positively
defined and therefore making sure that α∗2, α∗4, α∗8, α∗9 exist.

The answer is not quite immediate and depends both on the value of b2 and
on aij , bi, bj . For example, if we take b2 < 1

2 and aij > 2bibj then, not only dij
2 ,

dij
4 , dij

8 , dij
9 are positively defined but also the four quadric forms are defined.

Certainly, there are many other values for b2, aij , bi, bj which give a certain
positive answer, but the above values justify the existence of (4.1).

4.1. Remarks, examples.

Remark 4.1. For the L-dual of (4.1) we obtain the Matsumoto space with
the fumdamental function:

F =
ãijy

iyj

√
b2aijyiyj − b̃iyi

, (4.2)

where
b̃i = 4b2bi,

ãij = a2
ijbibj(7 + 8b2)−√aijbi[aij(1 + 2b2)− 12bibj ]

±m[a2
ijbi(7 + 8b2)−√aij(aij − 12bibj)],

and
m =

√
bibj − b2aij .
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The other properties like curvature and the relation between geometrical
properties of the L-dual metric (4.1) and the initial Matsumoto metric will be
studied elsewhere.

Example 1. Let us consider a particular example and find its L-dual. For
this, let us consider a surface S emebedded in the usual Euclidian space R3, i.e.

S ↪→ R3, (x, y) ∈ S −→ (x, y, z = f(x, y)) ∈ R3.

It is known that the induced Riemannian metric on the surface S is given by:

(aij) =

(
1 + (fx)2 fxfy

fxfy 1 + (fy)2

)
,

where fx and fy means partial derivative with respect to x and y, respectively.
If we consider now a coordinate system (x, y, u, v) ∈ TM in the tangent

bundle TM , then for α and β one can choose:

α2 = (1 + f2
x)2u2 + 2fxfyuv + (1 + f2

y )2v2,

and
β = fxu + fyv.

Now, for the induced Riemannian metric, we have:

det ‖aij‖ = 1 + f2
x + f2

y ,

(aij) =




1 + (fy)2

1 + f2
x + f2

y

− fxfy

1 + f2
x + f2

y

− fxfy

1 + f2
x + f2

y

1 + (fx)2

1 + f2
x + f2

y


 ,

b̃1 =
fx

1 + f2
x + f2

y

, b̃2 =
fy

1 + f2
x + f2

y

,

and for the Riemannian length of b̃i:

b2 =
f2

x + f2
y

1 + f2
x + f2

y

, 0 < b2 < 1.

Using these and following step by step the second case of Theorem 3.5, we find:

d11
2 = M(A + 4B)−A2,
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d12
2 = d21

2 = P 2[E(1− E) + 4F ],

d22
2 = N(C + 4D)− C2,

d11
4 = A + 3M,

d12
4 = d21

4 = P (E + 3),

d22
4 = C + 3N,

d11
8 = 5M [40(B + 2nM)− 3]− 25A,

d12
8 = d21

8 = 5P [40P (F + 2n)− 5E − 3],

d22
8 = 5N [40(D + 2nN)− 3]− 25C,

d11
9 = M(4B + 4p + 9A),

d12
9 = d21

9 = P 2(4F − 4p + 9E),

d22
9 = N(4D + 4p + 9C),

where

M =

√
1 + (fy)2

1 + f2
x + f2

y

, N =

√
1 + (fx)2

1 + f2
x + f2

y

, P =

√
− fxfy

1 + f2
x + f2

y

,

and

A =
√

R1 −R2 + 2M2θ5, B =
√

R1 −R2 + M2θ6,

C =
√

R3 −R4 + 2N2θ5, D =
√

R3 −R4 + N2θ6,

and

E =
√

R5, F =

√
R5 +

4
c
,

where

R1 = 2 3

√
2

f4
x(1 + f2

y )
(1 + f2

x + f2
y )5

+ 8ε1

f2
x(1 + f2

y )2

(1 + f2
x + f2

y )4
+ 8ε4

(1 + f2
y )3

(1 + f2
x + f2

y )3
,

R2 = 4 3

√
2ε2

(1 + f2
y )3

(1 + f2
x + f2

y )3
+ θ2

4

f2
x(1 + f2

y )2

(1 + f2
x + f2

y )4
,

R3 = 2 3

√
2

f4
y (1 + f2

x)
(1 + f2

x + f2
y )5

+ 8ε1

f2
y (1 + f2

x)2

(1 + f2
x + f2

y )4
+ 8ε4

(1 + f2
x)3

(1 + f2
x + f2

y )3
,
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R4 = 4 3

√
2ε2

(1 + f2
x)3

(1 + f2
x + f2

y )3
+ θ2

4

f2
y (1 + f2

x)2

(1 + f2
x + f2

y )4
,

R5 = 2

(
3

√
2(

1
c
− 2ε1)2 + 8ε2 + 2θ5 − 2 3

√
2ε2 − 2

c
θ2
4

)
,

and c = 1 + f2
x + f2

y ,

m =
1

1 + f2
x + f2

y

,

n = − 29 + 9f2
x + 9f2

y

29(1 + f2
x + f2

y )
,

p =
1− f2

x − f2
y

2(1 + f2
x + f2

y )
,

θ1 = −258c3 − 1256c2 + 1684c− 712
123c3

,

θ2 =
81c2 + 90c + 48

122c2
,

θ3 = −
(9c− 8

12c

)2

,

θ4 =
3c− 2

6c
,

θ5 =
12c− 11

12c
,

θ6 =
12c2 + 13c− 24

6c2
,

ε1 =
−45c2 − 138c− 32

122c2
,

ε2 =
−2187c4 + 41796c3 − 15660c2 + 24768c− 768

124c4
,

ε3 =
921c4 + 14732c3 − 1084c2 + 6832c− 256

123c4
,

ε4 =
13077c4 + 189204c3 + 8916c2 + 90816c− 2048

124c4
,

getting in this way all the four quadric form which allow us to find, in T ∗M , using
(4.1), the L-dual of our particular Matsumoto space from above.
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For the above construction, we need to analyze the existence of the expre-
ssions under the radicals. M , N allways exist.

First of all, because of the radical in the expression of P we must have
fxfy ≤ 0. If fxfy = 0 we get d12

2 = d21
2 = 0 and d12

4 = d21
4 = 0, d12

8 = d21
8 = 0,

d12
9 = d21

9 = 0.
Let us put ∆ = (ε1 − θ2

4)
2 − 4(ε4 − 2ε2) and S = 4(ε4 − 2ε2). Therefore, we

have:
If ∆ < 0 then R1 −R2 ≥ 0 and R3 −R4 ≥ 0 for any value of c. This allows

us to conclude that A, B, C, D always exist.
If ∆ ≥ 0 and c ∈ [

1, 4
3

]
or ∆ ≥ 0 and S ≥ 0, then R1 − R2 ≥ 0 and

R3 −R4 ≥ 0 proving the existence of A, B, C, D.
We also need to have R5 ≥ 0. But this depends on the value of c ≥ 1. For

example, if c ∈ [
1, 4

3

]
we have R5 ∈ [−0, 0701; 2, 1898].

To complete our discussion, we mention here the following result [SS1]: if

f2
x + f2

y ≤ 1
3 i.e. 1 ≤ c ≤ 4

3 , then f2
x+f2

y

1+f2
x+f2

y
≤ 1

4 and the fundamental tensor gij of

Matsomoto space F = α2

α−β with α and β defined above is positively defined, or
equivalently, the indicatrix is convex.

Example 2. Let us consider the surface S to be a plane, z = f(x, y) = 1
2x.

The convexity condition for the indicatrix is satisfied, i.e.: f2
x + f2

y = 1
4 < 1

3 .
Now, fx = 1

2 , fy = 0,

(aij) =




5
4

0

0 1


 , det ‖aij‖ =

5
4
, (aij) =




4
5

0

0 1


 ,

and b̃1 = 2
5 , b̃2 = 0 and b2 = 1

5 .
Following the calculus from above, we get:

d11
2 = 10.7621695,

d12
2 = d21

2 = 0,

d22
2 = 18.5916118,

d11
4 = 4.1619406,

d12
4 = d21

4 = 0,

d22
4 = 3.3692342,

d11
8 = 255.0575035,
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d12
8 = d21

8 = 0,

d22
8 = 185.6868118,

d11
9 = 24.6023378,

d12
9 = d21

9 = 0,

d22
9 = 23.1147203,

and for the four quadratic forms and β∗ we get:

α∗22 = 10.7621695t2 + 18.5916118s2,

α∗24 = 4.1619406t2 + 3.3692342s2,

α∗28 = 255.0575035t2 + 185.6868118s2,

α∗29 = 24.6023378t2 + 23.1147203s2,

β∗ = 0.4t.
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