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On spectra of abelian group rings

By ANDRE GIMENEZ BUENO (São Paulo) and MICHAEL DOKUCHAEV (São Paulo)

Dedicated to Professor Adalbert Bovdi on the occasion of his seventieth birthday

Abstract. In this paper we study the spectrum of integral group rings of finitely

generated abelian groups G from the scheme-theoretic viewpoint. We prove that the

(closed) singular points of Spec Z[G], the (closed) intersection points of the irreducible

components of Spec Z[G] and the (closed) points over the prime divisors of |t(G)| coin-

cide. We also determine the formal completion of Spec Z[G] at a singular point.

1. Introduction

Despite the great interest in the algebraic study of group rings, their units
and modules (see [5], [6], [7], [13], [14], [17], [18]), explicit questions from the
point of view of algebraic geometry do not seem to be discussed so far. Let G be
a finitely generated abelian group and Z[G] its integral group ring. Then Z[G]
is a noetherian commutative ring and it is natural to study the affine scheme
associated to Z[G], i.e. the spectrum SpecZ[G], that is, the set of all prime ideals
in Z[G], considered as a topological space with the Zariski (spectral) topology
(also denoted by SpecZ[G]), endowed with the structural sheaf. It is well-known
(see [19, Sec. 2.2]) that Z[G] is a Hopf algebra representing a diagonalizable
group scheme over Z, i.e. an affine group scheme that is a finite product of copies
of Gm and various µn. More generally, this holds over any commutative base
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ring k. If k is a field, the topological structure of Spec(k[G]) is simpler than that
of SpecZ[G], since the decomposition into irreducible components is actually one
into connected components. If, moreover, G is finite then each component consists
of a single point.

However, greater complications arise when k is a ring such as the ring of
integers of an algebraic number field that does not contain the primitive roots of
unity of order |t(G)|, where t(G) is the torsion part of G. Evidently Z is the most
natural ring to start with. In this case even the topological structure of Spec(Z[G])
can be nontrivial in the sense that its irreducible components may intersect at
several points (or even at higher dimensional subschemes). The intersections
reflect the decomposition of certain ideals in some rings of cyclotomic integers, and
show the importance of the arithmetic of such rings to the topology of Spec(Z[G]).
When we pass to the level of sheaves, we obtain singularities, and the dimensions
of the tangent spaces at these points are directly linked to the rank of the free
part of G and to the minimal number of generators of the Sylow p-subgroup of G

(p being a prime divisor of |t(G)|, lying below a given singularity). It is proven
that the singular points, the intersection points and the points over the prime
divisors of |t(G)| are one and the same set (see Theorem 3.1).

The simplest example is that of Cp, the group of prime order p. In this case
SpecZ[Cp], consists of two irreducible components, one of which is isomorphic
to SpecZ and the other to SpecZ[ζp], where ζp is a primitive p-th root of unity.
The components intersect at a single point, which is the only singular point of
SpecZ[Cp] (see Example 3.6). That the intersection consists of a single point
is a consequence of the fact that there is only one prime in Z[ζp] lying over p,
thereby showing how the arithmetic of Z[ζp] influences the topological structure
(see examples 3.4 and 3.5).

The topological description of SpecZ[G] with finite abelian G also follows
from M. Atiyah’s paper [2], in which, in particular, the topology of the spectrum
of the representation ring for finite G was studied, and, more generally, from G.

Segal’s article [16] in which G is a compact Lie group. It can also be obtained
using results by J. E. Roseblade [15] on prime ideals in group rings of polycyclic
groups. There is, however, a short elementary argument for this description, which
we gave in [8] and is generalized here (see (i) of Theorem 3.1).

In this paper we deal with a finitely generated abelian G. The case of a finite
abelian G was previously considered in [8] where we described the decomposition
of SpecZ[G] into irreducible components, the intersection points and the singu-
larities. The latter were determined by using the Kähler differentials, which also
permit to find easily the ramification points of SpecZ[G] over SpecZ.
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The present paper is organized as follows. In Section 2 we set up some no-
tation and calculate the modules of Kähler differentials of group rings, recalling
previously some basic facts about them. As in the case of a finite G this is used
to explain the ramifications of the morphism SpecZ[G] → SpecZ (see Proposi-
tion 2.10) and, moreover, is essential for the determination of the singularities.
Our first result in Section 3 is Theorem 3.1, which generalizes the corresponding
result from [8]. The proof permits to determine the dimensions of the Zariski tan-
gent spaces at the singular points (see Corollary 3.3). A more detailed study of
singularities is made by the determination of the formal completion of SpecZ[G]
at a given singular point, which is done in Theorem 3.7. The case of a finite
(abelian) p-group G is simpler and is described in Corollary 3.8.

We shall use the following notations. For an ideal I in A we denote by V (I)
the set of prime ideals in A containing I. By dim A we mean the Krull dimension
of A. For a commutative ring R and an ideal I of R, we denote by R̂I the I-adic
completion lim←−R/In of R. The symbol Fp stands for the field with p elements.
As it is usual in Algebraic Geometry, given a scheme X and a point x ∈ X, the
symbol Ox = OX,x denotes the local ring of x and mx its maximal ideal. For an
abelian group G we shall denote by t(G) its torsion part, Gp its Sylow p-subgroup
for some prime p and Gp′ the p′-part of t(G). Given a homomorphism A → B

of commutative rings, the B-module of Kähler differentials over A is denoted
by ΩB/A.

2. Kähler differentials of group rings

In this section we shall make some remarks on Kähler differentials of group
rings, the basic facts on differentials can be found, for example, in [1, Chapters 5,
6, 7], [12, Chapter 1]. For readers conveniens we remind the following well-known
properties of the module ΩB/A, which will be useful for us. Given ring maps
A → B → C, we have the exact sequence of C-modules:

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0. (1)

If now C = B/K, where K is any ideal of B, we have another exact sequence of
C-modules:

K/K2 → ΩB/A ⊗B C → ΩC/A → 0, (2)

the first map in which being k + K2 7→ dB/A(k)⊗ 1̄. Furthermore, the module of
differentials is compatible with localisation, i.e., if S ⊂ A is a multiplicative set
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being mapped into a multiplicative set T ⊂ B,

ΩT−1B/S−1A = T−1ΩB/A. (3)

The modules of differentials of group rings with finite abelian G were com-
puted in [8], which can be easily extended to the case of a finitely generated
abelian G. For we recall first that given a finite abelian G, one has the formula

ΩZ[G]/Z =
⊕

(Z/pαi
i Z)[Cp

αi
i

]⊗Z[C
p

αi
i

] Z[G], (4)

in which the direct sum is taken over the cyclic p-groups in the decomposition
of G (so that the pi’s are not necessarily distinct).

Remark 2.1. The integral group ring of the r-generated torsion-free abelian
group G is isomorphic to Z[T1, T

−1

1 , . . . , Tr, T
−1

r ]. Since the latter ring is the
localisation of Z[T1, . . . , Tr] at the element T1 · T2 · . . . · Tr, the proposition [1,
Proposition 1.20] shows that ΩZ[G]/Z = (Z[G])⊕r is free of rank r over Z[G].
We also observe that SpecZ[G] is regular, being the principal open subscheme
D(T1·. . .·Tr) of SpecZ[T1, . . . , Tr], which is regular by [1, Chapter 7, Theorem 4.5].

Thus in view of [1, Proposition 1.12], (4) and Remark 2.1, we have the
following:

Proposition 2.2. Let G be a finitely generated abelian group whose free

part has rank r. Then

ΩZ[G]/Z =
⊕

(Z/pαi
i Z)[Cp

αi
i

]⊗Z[C
p

αi
i

] Z[G]
⊕

(Z[G])⊕r.

Now, by Proposition 2.2 and [1, Proposition 1.18] we obtain at once:

Corollary 2.3. Let G be as in Proposition 2.2 and suppose that k is a field

of characteristic p. Then

Ωk[G]/k = (k[G])⊕(lp+r), (5)

where lp is the number of p-cyclic factors of G.

The question of regularity for some schemes over fields can be decided by
looking at the Kähler differentials. The next result is a generalization of Theo-
rem 8.8 of [11, Chapter 2].

Theorem 2.4. Let (A, m) be a local ring contaning a perfect field k such

that A is a localisation of a finitely generated k-algebra. Then A is regular if and

only if the module ΩA/k is free over A of rank dim(A)+tr.d. κ/k, where κ = A/m

and tr. d. κ/k stands for the transcendence degree of κ over k.
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Proof. See [11, Chapter 2, Example 8.1]. ¤

Now we are ready to prove the following:

Proposition 2.5. Let G be a finitely generated abelian group. Then the

tangent space at all closed points of Spec(Fp[G]) has dimension lp + r. In partic-

ular, Spec(Fp[G]) is singular if and only if Gp 6= 1.

Proof. Suppose first that Gp = 1. Then Fp[t(G)] is a direct product of
fields, and consequently Fp[G] is a direct product of group algebras of a free
abelian group over field extensions of Fp. Clearly any of these factors is a regular
ring, since its spectrum is a principal open subscheme of an affine space over a
field (see Remark 2.1). It follows that Fp[G] is regular.

Suppose now that Gp 6= 1 and let p be any maximal ideal of Fp[G]. The local
ring (Fp[G])p evidently satisfies the conditions of Theorem 2.4. By the version of
Nullstellensatz in [3, Example 18, p. 70], the residue field of (Fp[G])p is a finite
extension of Fp. On the other hand, by ([1, Proposition 1.20]) and Corollary 2.3
the module Ω(Fp[G])p/Fp

is free of rank lp + r, while dim(Fp[G])p ≤ dim(Fp[G]).
The latter equals r by [3, Example 7, p. 126]. Consequently, p is a singular point
of SpecFp[G]. ¤

We have proved in fact the next:

Corollary 2.6. The tangent space of SpecFp[G] has dimension lp + r at all

(closed) points of SpecFp[G].

Proof. This is an immediate consequence of Corollary 2.3 and [11, Chap-
ter 2, Example 8.1(a)]. ¤

Corollary 2.7. If G is a finitely generated abelian group with Gp 6= 1, then

each (closed) point of SpecFp[G] is singular.

Remark 2.8. Let G be a finitely generated abelian group whose free part has
rank r. Evidently Fp[Gp′ ] ∼=

∏
Ki, a finite product of finite extensions of Fp.

Then the decomposition of SpecFp[G] into irreducible components is the disjoint
sum of spectra of the localizations of the polynomial rings (Ki[Gp])[T1, . . . Tr] at
the element f = T1 · T2 · . . . Tr:

SpecFp[G] ∼=
∐

Spec((Ki[Gp])[T1, . . . Tr])(f).

In fact, the radical of Ki[Gp] (which is the augmentation ideal ∆(Gp) of Ki[Gp])
generates that of (Ki[Gp])[T1, . . . Tr] and since the latter is prime, it follows that
Spec(Ki[Gp])[T1, . . . Tr] is irreducible. Consequently, so is its principal open sub-
scheme Spec((Ki[Gp])[T1, . . . Tr])(f).
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We examine next the ramification question. The appropriate base ring in
this context is Z[F ], where F is the free part of G, i.e. G = t(G)×F . We observe
first the next

Remark 2.9. Let G be a finitely generated abelian group. The fiber of

Spec(Z[G]) → Spec(Z[F ])

over a prime p ∈ Spec(Z[F ]) is Spec(κ(p)[t(G)]), where κ(p) is the residue field
of p, i.e. the field of fractions of Z[F ]/p. In particular, over the generic point it
is Spec(Q(T1, . . . Tr)[t(G)]), where Q(T1, . . . , Tr) stands for the field of rational
functions over Q in r variables. Indeed, the fibre Xp of X = Spec(Z[G]) over a p

is, by definition, X ×Spec(Z) Spec(κ(p)). Thus we have that Xp = Spec(Z[G]⊗ZF

κ(p)) ∼= Spec(Z[t(G)]⊗Z κ(p)) ∼= Spec(κ(p)[t(G)]). The case of the generic point
follows immediately.

Proposition 2.10. Let G be a finitely generated abelian group, G=t(G)×F .

(i) The morphism Xp → Spec(κ(p)), for a prime p ∈ Spec(Z[F ]) lying over pZ,

is ramified if and only if p divides the order of t(G).

(ii) The ramification points of Spec(Z[G]) → Spec(Z[F ]) are precisely those

primes lying over the prime divisors of |t(G)|, in particular, Spec(Z[G]) →
Spec(Z[F ]) is not étale.

Proof. (i) We know that a morphism of noetherian schemes X → S, which
is locally of finite type, is unramified at x ∈ X if and only if the stalk (ΩX/S)x

is 0 (see [1, Chapter 6, Proposition 3.3]). Thus, taking X = Spec(κ(p)[t(G)]) and
S = Spec(κ(p)), (ii) follows immediately from Corollary 2.3.

By [12, Chapter 1, Proposition 3.2] a morphism of noetherian schemes φ :
X → S, which is locally of finite type, is unramified at x ∈ X if and only if the
fibre over φ(x) is unramified over the residue field of φ(x). Thus (i) implies (ii)
(taking X = Spec(Z[G]) and S = Spec(Z[F ])). ¤

Remark 2.11. It obviously follows from the proof of (i) that if p lies over a
prime divisor of |t(G)|, then Xp → Spec(κ(p)) is ramified at all points.

Remark 2.12. The dimension of Z[G] can be obtained using [15], however we
give below a short argument, which does not use any deep result on primes of
group rings.

Since Z[G] is flat over Z, if G is a finitely generated abelian group and r

the rank of its free part, then the fibre of Spec(Z[G]) → Spec(Z) over pZ is
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Spec(Fp[G]), which is a principal open subscheme in the spectrum of the polyno-
mial ring (Fp[t(G)])[T1, . . . , Tr] with coefficients in the group ring Fp[t(G)]. By
[3, Example 7, p. 126], the dimension of (Fp[t(G)])[T1, . . . , Tr] is r, and conse-
quently dimFp[G] = r. Using [12, Chapter 1, Remark 2.6] we conclude that
dimZ[G] = r + 1.

3. Geometric properties of abelian integral group rings

Let G be an arbitrary finitely generated abelian group and write G = t(G)×F ,
where F is the free part of G, i.e. a finitely generated free abelian group, whose
rank we denote by r. Given a finite subgroup H of G, denote by h its order. For a
prime p of Z[G] write mp for the maximal ideal of (Z[G])p and κ(p) = (Z[G])p/mp,
the residue field of p.

Theorem 3.1. Using the above notation we have:

(i) There is a one-to-one correspondence between the finite cyclic subgroups H

of G and the minimal prime ideals aH (generic points of the components) of

Z[G] such that

SpecZ[G] =
⋃

H

V (aH), (6)

is the decomposition of SpecZ[G] into irreducible components. Moreover,

V (aH) ∼= Spec(Z[ζh])[F ], (7)

where ζh is a primitive h-th root of unity, and

Q[t(G)] ∼=
∏

H

Q(ζh) (8)

is the Wedderburn decomposition of Q[t(G)]. For a fixed h dividing the

exponent of G, the number of irreducible components satisfying (7) is equal

to the number of cyclic subgroups of G of order h. If p is an intersection

point, i.e., belongs to at least two components, then p lies over a prime

divisor of |t(G)|.
(i) If q ∈ SpecZ[G] belongs to only one component of SpecZ[G], say V ∼=

Spec(Z[ζh])[F ], then (Z[G])q
∼= ((Z[ζh])[F ])q̃, where q̃ ∈ Spec(Z[ζh])[F ] is

the prime corresponding to q. In particular, q is regular.
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(iii) The (closed) singular points of SpecZ[G] are exactly those maximal ideals

p ∈ SpecZ[G] that lie over the prime divisors of |t(G)|. In particular, each

(closed) singular point is an intersection point, i.e. it belongs to at least two

components.

Proof. (i) By [14, p. 148], the Wedderburn decomposition of Q[t(G)] is
given by (8), and corresponding to it we have the standard epimorphisms ψ0 :
t(G) → 〈ζh〉, ψ1 : Z[G] → (Z[ζh])[F ] and ψ2 : Q[G] → Q(ζh)[F ]. Defining
aH = Ker(ψ1), we have the exact sequence

0 → aH → Z[G] → (Z[ζh])[F ] → 0.

On tensoring it with Q (over Z), we obtain the exact sequence

0 → aH ⊗Q→ Q[G] → Q(ζh)[F ] → 0,

because Q is flat over Z. Since

Q[G] ∼=
∏

H

Q(ζh)[F ],

we have that
SpecQ[G] =

∐

H

SpecQ(ζh)[F ]

is the decomposition into irreducible (and connected) components. Thus we
have the bijection aH ←→ aH ⊗ Q between the aH ’s and the minimal primes
of SpecQ[G] (the generic points of its components). Extending the coefficients
from Z to Q is a localisation, which gives a one-to-one correspondence between
the primes of Z[G] lying over 0 and the primes of Q[G]. This evidently preserves
the heights of the primes and their inclusions, and consequently, the aH ’s are the
minimal primes of Z[G].

Let q ∈ SpecZ[G] be such that q∩Z = (q) and q does not divide |t(G)|. Let
further f be the product of all prime divisors of |t(G)|. All primitive idempotents
of Q[t(G)] lie in the group ring Z[ 1

f ][t(G)] and so we have

SpecZ[1/f ][G] =
∐

H

Spec(Z[1/f, ζh])[F ].

Since (Z[1/f, ζh])[F ] has no non-trivial idempotents, the above is the decomposi-
tion into connected components. We see that no intersection point of SpecZ[G]
belongs to the principal open subset D(f) = Spec(Z[1/f ])[G] of SpecZ[G]. How-
ever, q ∈ D(f) as q does not divide f . This completes the proof of (i).
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(ii) Evidently, since q is not an intersection point, removing from SpecA all
components but V we obtain an open neighbourhood in Spec(Z[ζh])[F ]. The latter
scheme is regular, being a principal open subscheme in Spec(Z[ζh])[T1, . . . , Tr]
(see Remark 2.1). Because the local ring of a point x is determined in any open
neighbourhood of x, we have that q is regular and (Z[G])q

∼= ((Z[ζh])[F ])q̃.

(iii) Suppose that p ∈ SpecZ[G] is maximal and lies over the prime divisor p

of |t(G)|. Write m = mp and κ = κ(p). We shall derive the singularity of p from
the exact sequence (2), which in our case becomes:

m/m2 δ−→ Ω(Z[G])p/Z ⊗(Z[G])p
κ → Ωκ/Z → 0. (9)

Because p lies over p and δ annihilates the image of Z ∩ p in m/m2, we see
that p ∈ Ker(δ). It is easily seen that p /∈ p2. For the image of p under the
augmentation homomorphism ε : ZG → Z is a prime ideal in Z, which must be
pZ, as p ∈ p. Hence ε(p2) = p2Z and thus p cannot be in p2. Since p is maximal,
one has a canonical isomorphism p/p2 ∼= m/m2 given by x+p2 7→ x/1+m2, x ∈ p

(see [4, Chapter II, §3.3, Proposition 9]). Consequently, p/1 /∈ m2, and thus
Ker(δ) 6= 0.

Applying (1) to Z→ Fp → κ, we have the exact sequence

ΩFp/Z ⊗Fp κ → Ωκ/Z → Ωκ/Fp
→ 0. (10)

Since p is maximal, κ ∼= Z[G]/p, hence κ is a finitely generated algebra over Fp.
An appropriate version of the Nullstellensatz (see [3, Example 18, p. 70]) implies
that κ ⊇ Fp is a finite algebraic extension. Since Fp is perfect, it is also separable.
It follows that the module Ωκ/Fp

is 0, and so is ΩFp/Z, in view of the epimorphism
Z→ Fp. Hence Ωκ/Z = 0 and (9) becomes

m/m2 δ−→ Ω(Z[G])p/Z ⊗(Z[G])p
κ → 0. (11)

By Proposition 2.2,

ΩZ[G]/Z =
⊕

q
σ∈Σq

(Z/o(σ)Z) 〈σ〉 ⊗Z〈σ〉 Z[G]
⊕

(Z[G])⊕r, (12)

where q runs over the prime divisors of |t(G)|, and Σq is a minimal set of generators
of the Sylow q-subgroup of G. Taking S = {1} and T = Z[G] \ p in (3), one has

Ω(Z[G])p/Z = (ΩZ[G]/Z)p = ΩZ[G]/Z ⊗Z[G] (Z[G])p.
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It follows from (12) that

Ω(Z[G])p/Z =
⊕

σ∈Σp

(Z/o(σ)Z) 〈σ〉 ⊗Z〈σ〉 (Z[G])p

⊕
(Z[G])⊕r

p ,

where (Z[G])p is a Z〈σ〉-module via Z〈σ〉 → Z[G] → (Z[G])p. Consequently,

Ω(Z[G])p/Z ⊗(Z[G])p
κ =

( ⊕

σ∈Σp

(Z/o(σ)Z)〈σ〉 ⊗Z〈σ〉 (Z[G])p

⊕
(Z[G])⊕r

p

)
⊗(Z[G])p

κ

=
⊕

σ∈Σp

(Z/o(σ)Z) 〈σ〉 ⊗Z〈σ〉 κ
⊕

κ⊕r,

where κ is a Z〈σ〉-module by means of Z〈σ〉 → Z[G] → (Z[G])p → (Z[G])p/m = κ.
Since σ is a p-element, o(σ) is zero in κ and thus o(σ)Z · κ = 0 and

(Z/o(σ)Z) 〈σ〉 ⊗Z〈σ〉 κ ∼= Z 〈σ〉/(o(σ)Z〈σ〉)⊗Z〈σ〉 κ ∼= κ/(o(σ)Z〈σ〉) · κ = κ,

using the canonical isomorphism A/I ⊗A M ∼= M/I · M with A = Z〈σ〉, I =
o(σ)Z〈σ〉 and M = κ. Hence

Ω(Z[G])p/Z ⊗(Z[G])p
κ ∼= κ⊕(lp+r), (13)

where lp is the number of elements in Σp. Therefore, the exact sequence (11)
becomes

m/m2 δ−→ κ⊕(lp+r) → 0.

As Ker(δ) 6= 0, we conclude that

dimκ(m/m2) ≥ lp + r + 1 = lp + dimZ[G] > dimZ[G] ≥ dim (Z[G])p. (14)

This means, in particular, that p is singular.
Obviously by (ii) p must be an intersection point.

¤

Remark 3.2. Item (i) of the above theorem establishes a one-to-one corre-
spondence between the irreducible components of SpecZ[G] and the connected
components (which are also irreducible) of SpecQ[G]. We observe here that the
map p 7→ Q ⊗ p, with p ∩ Z = 0, gives a homeomorphism between the fiber of
SpecZ[G] over 0 and SpecQ[G].
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Given a morphism of schemes f : X → Y , the Zariski tangent space of X/Y

at x ∈ X is the vector κ(x)-space

TX/Y (x) := Homκ(x)(ΩX/Y (x), κ(x)),

where ΩX/Y (x) := ΩX/Y ⊗OX
κ(x).

Corollary 3.3. With the above notation, the Zariski tangent space of

Spec(Z[G]) → Spec(Z) at p has dimension lp + r.

Proof. This follows directly from (13), as ΩZ[G]/Z ⊗Z[G] κ ∼= (ΩZ[G]/Z ⊗Z[G]

(Z[G])p)⊗(Z[G])p
κ ∼= Ω(Z[G])p/Z ⊗(Z[G])p

κ, by ([1, Proposition 1.20]). ¤

Using the well-known formula

V (I) ∩ V (J) ∼= Spec(A/I ⊗A A/J),

where I and J are some ideals in a ring A, one can eventually determine the inter-
section of irreducible components of Spec(Z[G]). The arithmetic of the cyclotomic
integers influences the intersections as illustrated in the examples below.

Example 3.4. Let G be a cyclic group of order 12, generated by σ. The
irreducible components V1 := Spec(Z[i]) and V2 := Spec(Z[ζ12]) intersect at a
single point. Indeed, Φ12(x) = x4−x2 +1 and by the formula for the intersection
given above, we have V1 ∩ V2

∼= Spec(Z[i]/(Φ12(i))) = Spec(Z[i]/(3)) ∼= Spec(F9),
since 3 remains prime in Z[i].

Example 3.5. For an example of an intersection with two points, take for
instance the scheme X = Spec(Z[G]), where G = 〈σ〉 is the cyclic group of
order 20. The components V1 := V (Φ20(σ)) = Spec(Z[ζ20]) and V2 := V (1+σ2) =
Spec(Z[i]) intersect at two points. In fact, Φ20(x) = x8 − x6 + x4 − x2 + 1 and
V1 ∩ V2

∼= Spec(Z[i]/(Φ20(i))) ∼= Spec(Z[i]/(5)), and since (5) = (2 + i)(2− i), we
have V1 ∩ V2 = Spec(F5)

∐
Spec(F5).

The case of a finite abelian p-group admits a simpler description, and more-
over can be obtained by a direct inspection, as given in the next example.

Example 3.6. Let G be a finite abelian p-group, G = 〈σ1, . . . , σm : σpni

i = 1,
i = 1, . . . , m〉. Then any two irreducible components of SpecZ[G] intersect at the
single point p = (1− σ1, . . . , 1− σm, p); p is the only singular point of SpecZ[G],
at which the tangent space (mp/m2

p)
∨ has dimension m + 1.

Indeed, p = (1 − σ1, . . . , 1 − σm, p) is a prime of Z[G] over pZ, with residue
field κ(p) = Fp. By Proposition 2.10 the fibre of SpecZ[G] over pZ is SpecFp[G],
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which is a local ring of dimension 0, and thus SpecZ[G] has exactly one prime
over pZ, which must be p.

Using the notation from the proof of item (i) of Theorem 3.1, observe that
each aH is of the form (∆(Ker ψ0), Φh(σ)) for some σ ∈ G, where Φh(T ) is the
h-th cyclotomic polynomial. Since h is a power of p the augmentation of Φh(σ)
is p. Evidently,

V (aH1) ∩ V (aH2) ∼= SpecZ[G]/(aH1 + aH2).

We have that the augmentation of any element from aH1 + aH2 belongs to pZ
and consequently aH1 + aH2 6= Z[G]. Thus any two irreducible components of
SpecZ[G] have a non-empty intersection, which by the above consists of the single
point p.

Evidently, the images of 1− σ1, . . . , 1− σm, p are generators of the Fp-space
p/p2 and thus dimFp(p/p2) ≤ m+1. But by (14) dimFp(p/p2) ≥ m+1 and hence
dimFp(mp/m2

p)
∨ = dimFp(p/p2) = m + 1, as claimed.

More complete information about a (closed) singular point x in a noetherian
scheme X is contained in the formal completion X̂ of X at {x}. The latter
consists of a one point space {x} with the ring lim←−OX,x/mn

x as its structural sheaf
(see [11, p. 195]). We determine next lim←−(Z[G])p/mn

p , with G finitely generated
abelian and p lying over a prime divisor p of the order of t(G).

Write t(G) = Gp × Gp′ (with p dividing |t(G)|). The coefficients of the
primitive idempotents of Q[Gp′ ] lie in Z(p), where Z(p) is the localization of Z at
pZ, so that the Wedderburn decomposition Q[Gp′ ] ∼=

∏
H Q(ζh) gives rise to the

decomposition Z(p)[Gp′ ] ∼=
∏

H Z(p)[ζh]. Then

Z(p)[G] ∼=
∏

H

Z(p)[ζh][Gp × F ],

and

SpecZ(p)[G] ∼=
∐

H

Spec(Z(p)[ζh][Gp × F ]), (15)

with H running over the cyclic subgroups of Gp′ . We have that (15) is the decom-
position of SpecZ(p)[G] into its connected components. For if e ∈ Z(p)[ζh][Gp×F ]
is an idempotent, then by A. E. Zalesski’s Theorem [20], the trace tr e of e must
be in Q, so one can write tr e = s/t, s, t ∈ Z, gcd(s, t) = 1. If e 6= 0, 1 then by
I. Kaplansky’s Theorem [13, Chapter 2, Theorem 1.8], 0 < tr e < 1, and hence
t 6= 1. By a result of G. Cliff and S. K. Sehgal (see [9] or [17, Chapter I.,
Theorem 2.15]), for each prime divisor q of t, there exists a q-element in Gp × F ,
hence q = p (see also Problem 2 in [18, Chapter 7]). Since p is not invertible in
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Z(p)[ζh], it follows that the ring Z(p)[ζh][Gp × F ] has no non-trivial idempotents.
Hence it is indecomposable, as claimed.

Let p ∈ SpecZ[G] be a maximal prime lying over p and p(p) the (maxi-
mal) prime in SpecZ(p)[G] corresponding to it, i.e. p(p) ∩ Z[G] = p. Then p(p)

belongs to exactly one of the components in (15), i.e., we have that p(p) ∈
Spec(Z(p)[ζ][Gp × F ]) for some ζ = ζh. We have that Spec(Z(p)[ζh][Gp × F ])
is an open subscheme of the affine scheme of the group ring R[Gp] of Gp over the
polynomial ring R = Z(p)[ζ][T1, . . . , Tr] of r variables with coefficients in Z(p)[ζ].
Indeed, Z(p)[ζh][Gp×F ] is the localization of R[Gp] at the element T1 ·T2 · . . . ·Tr,
and thus Spec(Z(p)[ζ][Gp×F ]) ∼= D(T1 ·T2 · . . . ·Tr), the principal open subscheme
of Spec R[Gp] determined by the element T1 · T2 · . . . · Tr. The prime of R[Gp]
corresponding to x shall be denoted by p′.

Now we are ready to state the next result.

Theorem 3.7. With the above notation the completion lim←−(Z[G])p/mn
p of

Z[G] at the (closed) singular point {p} is isomorphic to the group ring R̂p̄ [Gp] of

Gp over the p̄-adic completion of R, where p̄ = R∩ p′. If q is a nonsingular closed

point from V (aH) ∼= SpecZ[ζh][F ] then lim←−(Z[G])q/mn
q is isomorphic to the q′-adic

completion of Z[ζh][T1, . . . , Tr], where q′ is the prime corresponding to q, when

SpecZ[ζh][F ] is viewed as a principal open subscheme of SpecZ[ζh][T1, . . . , Tr].

Proof. The canonical homomorphism Z[G] → (Z[G])p factors through the
embedding Z[G] ↪→ Z(p)[G] and the canonical map Z(p)[G] → (Z[G])p. Clearly
p(p) is the inverse image of the maximal ideal mp of (Z[G])p with respect to
the latter map. Since p is maximal, so is p(p) and (Z[G])p is isomorphic to the
localization of Z(p)[G] at p(p). Thus OSpecZ(p)[G], p(p)

∼= OSpecZ[G], p.

Because the local ring of x = p(p) ∈ SpecZ(p)[G] is determined in its open
neighbourhood SpecB, B = Z(p)[ζ][Gp × F ], we have that OSpecZ(p)[G], x

∼=
OSpec B, x. On the other hand, as it was mentioned already, SpecB is an open
subscheme of the affine scheme of the group ring R[Gp]. Hence OSpec B, x

∼=
OSpec R[Gp], x = (R[Gp])p′ . Since x is closed, p′ is maximal, and by [4, Chapter II,
§3.3, Proposition 9] we have

(R[Gp])p′/mn
p′
∼= (R[Gp])/(p′)n.

Consequently,
lim←−(R[Gp])p′/mn

p′
∼= lim←−(R[Gp])/(p′)n.

Since R[Gp] is a free R-module, the map R → R[Gp] is faithfully flat, and
hence Spec R[Gp] → Spec R is surjective (see, for example, [19, p. 105]). It follows
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that p̄ = R ∩ p′ is maximal. Since p̄ lies over p, R/p̄ is a field of characteristic p,
and by a result of D. B. Coleman (see [14, p. 208]), the augmentation ideal
of the modular group algebra of Gp over R/p̄ is nilpotent. It coincides with the
image of p′ modulo p̄, as the unique prime of the local artinian ring (R/p̄)[Gp] is
its augmentation ideal. It follows that (p′)f ⊆ p̄ R[Gp], for some f > 0.

Given an integer n ≥ 0, write it in the form n = sf + r with 0 ≤ r ≤ f − 1
and let

ψn : R[Gp]/(p′)n → (R/p̄s)[Gp]

be the map obtained from the natural homomorphism R[Gp] → (R/p̄s)[Gp] by
going modulo (p′)n ⊆ p̄sR[Gp]. Observe that ψo : 0 → 0 and for 1 ≤ n ≤
f − 1 we have that s = 0 and thus the maps ψ0, ψ1, . . . , ψf−1 are all zero. Set
Kn = Ker(ψn) = p̄sR[Gp]/(p′)n and Rn = (R/p̄s)[Gp] (n ≥ 0). Notice that each
(R/p̄s)[Gp] is repeated consecutively f times in the sequence R0, R1, . . . . The
sequences {Kn}, {R[Gp]/(p′)n} and {Rn} can be considered as inverse systems
by taking the following maps. In {R[Gp]/(p′)n} the maps are the natural ones.
The map Rn+1 → Rn is identity if Rn = Rn+1, and natural otherwise. As to
{Kn}, for p̄sR[Gp]/(p′)n+1 → p̄sR[Gp]/(p′)n we take the natural map, whereas
for p̄sR[Gp]/(p′)n+1 → p̄s−1R[Gp]/(p′)n we compose the embedding p̄sR[Gp] ↪→
p̄s−1R[Gp] with the natural homomorphism R[Gp] → R[Gp]/(p′)n and take it
modulo (p′)n+1. The maps ψn together with the embeddings Kn ↪→ R[Gp]/(p′)n

give rise to the short exact sequence of inverse systems

0 → {Kn} → {R[Gp]/(p′)n} → {Rn} → 0.

For each n ≥ 1 we have that Knf = p̄nR[Gp]/(p′)nf → p̄sR[Gp]/(p′)n = Kn

is the zero map, because p̄nR[Gp] ⊆ (p′)n. Consequently lim←−Kn = 0 and moreover
the inverse system {Kn} satisfies the Mittag–Leffler condition (see [11, p. 192]).
Therefore we come to the short exact sequence of inverse limits

0 → lim←−Kn → lim←−R[Gp]/(p′)n → lim←−Rn → 0

and thus lim←−R[Gp]/(p′)n ∼= lim←−Rn.

Clearly in lim←−Rn one can omit the repetitions, so that

lim←−Rn = lim←−(R/p̄n [Gp]) = (lim←−R/p̄n)[Gp],

which is the group ring R̂p̄ [Gp] of Gp over the p̄-adic completion R̂p̄ = lim←−R/p̄n.
Finally let q ∈ V (aH) ∼= Spec(Z[ζh])[F ] be non-singular. Hence it is not an in-

tersection point and removing all other components from SpecZ[G], we have that
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the local ring (Z[G])q is isomorphic to the corresponding local ring of (Z[ζh])[F ].
Similarly as we have seen above, Spec(Z[ζh])[F ] can be seen as a principal open
subscheme of SpecZ[ζh][T1, . . . , Tr], and so the completions are the same. ¤

We obviously have the following

Corollary 3.8. Let G be a finite abelian p-group. Then the formal com-

pletion lim←−(Z[G])p/mn
p of SpecZ[G] at the singular point {p} is isomorphic to

the group ring Zp[G] of G over the p-adic integers Zp. If q 6= p is a closed

point from the irreducible component V ∼= SpecZ[ζpk ] then lim←−(Z[G])q/mn
q
∼=

lim←−Z[ζpk ]q′/mn
q′ .
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