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Best approximation of trigonometric series with coefficients

satisfying some regularity conditions

By LÁSZLÓ LEINDLER (Szeged)

Dedicated to Professor Zoltán Daróczy on his 70th birthday

Abstract. Recently we have defined a new very large class of numerical sequences

of monotone type, and now we prove two theorems utilizing the sequences of this class

as the coefficients of the series
P

bn sin nx. The origin of these theorems goes back to

A. A. Konyushkov.

1. Introduction

Recently several papers deal with extension of monotone decreasing sequences

purposely that the results proved for monotone sequences should hold true for

wider classes, too.

A short survey of extensions and their applications can be found e.g. in [4],

[6] and [7].

Now we shall give two further applications utilizing one of the widest classes.

In the present paper we shall recall only a few definitions of these classes. For

the notations and notions, please, see the third section.

In [5] we proved the analogues of two essential theorems of Konyushkov [2]

replacing his monotone and quasi-monotone coefficients by coefficients belonging

to the RBV S-class. Namely in [3] we showed that the classes CQMS and RBV S

are not comparable.
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Our results proved in [5] read as follows:

Theorem A. Let

g(x) :=

∞
∑

n=1

bn sin nx, (1.1)

where b := {bn} ∈ RBV S. If 1 < p < ∞ and

∞
∑

n=1

bp
n np−2 < ∞, (1.2)

then

En(p, g) ≪ bn+1(n + 1)1/p′

+

(

∞
∑

k=n+1

bp
kkp−2

)1/p

, (1.3)

where p′ := p/(p − 1).

Theorem B. Let 1 < p < ∞, b ∈ RBV S and

∞
∑

n=1

n−1/pbn < ∞. (1.4)

Then the series
∞
∑

n=1

bn sinnx

is the Fourier series of a function g ∈ Lp
2π and

En(p, g) ≪ n1/p′

bn+1 +

∞
∑

k=n+1

k−1/pbk. (1.5)

2. New theorems

In the present paper we shall prove that the condition b ∈ RBV S in Theo-

rems A and B can be replaced by the weaker assumption b ∈ MRBV S, and the

new results give analogous estimates for the best approximations which reduce to

(1.3) and (1.5) if b ∈ RBV S.

Theorem 1. Under the assumptions of Theorem A with b ∈ MRBV S in

place of b ∈ RBV S we have

En(p, g) ≪ n1/p′

(

n−1
2n+1
∑

k=n+1

bk

)

+

(

∞
∑

k=n+1

bp
kkp−2

)1/p

. (2.1)
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Theorem 2. Under the assumptions of Theorem B with b ∈ MRBV S in

place of b ∈ RBV S we have

En(p, g) ≪ n1/p′

(

n−1
2n+1
∑

k=n+1

bk

)

+

∞
∑

k=n+2

k−1/pbk. (2.2)

We mention that the proofs will show that analogous results for cosine series

are also valid.

3. Notations and notions

Denote by sn = sn(x) = sn(g; x) the nth partial sum of (1.1), furthermore

by En(p, g) the best approximation of g by trigonometric polynomials of order at

most n in Lp
2π-space.

We use the notation L ≪ R (L ≫ R) at inequalities if there exists a positive

constant K such that L ≤ KR (KL ≥ R) holds.

The classical quasi-monotone sequences are defined by the inequalities

0 ≤ bn+1 ≤ bn

(

1 +
α

n

)

, α > 0 and n ≥ n0(α),

in symbol: b ∈ CQMS.

Let γ := {γn} be a given positive sequence. A null-sequence c := {cn} (cn → 0)

of real numbers satisfying the inequalities

∞
∑

n=m

|∆cn| ≤ K(c)γm (∆cn := cn − cn+1), m = 1, 2, . . . (3.1)

with a positive constant K(c) is said to be a sequence of γ rest bounded variation,

in symbol c ∈ γRBV S.

If (3.1) holds with γm = cm then c is called a sequence of rest bounded

variation, in brief c ∈ RBV S.

If for all n cn ≥ 0 and γm = m−1
∑2m−1

ν=m cν (> 0), then this sequence c is

said to be a sequence of mean rest bounded variation, in symbol: c ∈ MRBV S.

It is easy to see that if c ∈ RBV S then it is also almost monotonic, that is,

for all n ≥ m

(0 ≤)cn ≤ K(c)cm,

but not if c ∈ MRBV S. A sequence c ∈ MRBV S may have a lot of zero terms

as well.
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4. Lemmas

We require the following lemmas.

Lemma 1. If λk ≥ 0, then
∣

∣

∣

∣

∣

n
∑

k=m

λk sinkx sin
x

2

∣

∣

∣

∣

∣

≤
1

2

(

λm +

n−1
∑

k=m

|λk − λk+1| + λn

)

.

This is clear by Abel rearrangement.

Lemma 2. If the series

∞
∑

n=1

n−1bn sin nx

is the Fourier series of some function h1(x) ∈ Lp
2π, 1 < p < ∞ and

∞
∑

n=1

En(p, h1) < ∞,

then the series
∞
∑

n=1

bn sinnx

is the Fourier series of some function h(x) ∈ Lp
2π and

En(p, h) ≪ nEn(p, h1) +
∞
∑

k=n+1

Ek(p, h1).

This lemma is a special case of [2, Theorem 1].

Lemma 3 (see [1]). If dn ≥ 0, c > 1 and p > 1, then

∞
∑

n=1

n−c

(

n
∑

k=1

dk

)p

≤ K(p, c)

∞
∑

n=1

n−c(ndn)p.

Lemma 4. If {γn} ∈ MRBV S and the inequality
∣

∣

∣

∣

∣

m
∑

n=1

an

∣

∣

∣

∣

∣

≤ A

holds for any m ≥ 1, then the series
∑

∞

n=1 anγn converges and

∣

∣

∣

∣

∣

∞
∑

n=m+1

anγn

∣

∣

∣

∣

∣

≪ Am−1
2m+1
∑

k=m+1

γk.
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Proof. Using the notation

αn :=

n
∑

k=1

ak

and the assumptions of Lemma 4, we get that

∣

∣

∣

∣

∣

q
∑

n=m+1

anγn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

q−1
∑

n=m+1

αn(γn − γn+1) + αqγq − αmγm+1

∣

∣

∣

∣

∣

≤ A

(

q−1
∑

n=m+1

|∆γn| + γq + γm+1

)

≤ 2A

(

q−1
∑

n=m+1

|∆γn| + γq

)

≪ A

(

γq + m−1
2m+1
∑

k=m+1

γk

)

,

which proves the assertions of Lemma 4. �

5. Proofs

Proof of Theorem 1. Let 0 < x < π. Lemmas 1 and 4, furthermore

b ∈ MRBV S imply that

|g(x) − sn(x)| =

∣

∣

∣

∣

∣

∞
∑

k=n+1

bk sin kx

∣

∣

∣

∣

∣

≪ x−1n−1
2n+1
∑

k=n+1

bk.

Thus, if π/(m + 1) < x < π, then

|g(x) − sn(x)| ≪ mn−1
2n+1
∑

k=n+1

bk,

whence for any n ≥ m, we obtain that

π
∫

π/(n+1)

|g − sn|
pdx =

n
∑

m=1

∫ π/m

π/(m+1)

|g − sn|
pdx ≪

n
∑

m=1

mp

(

n−1
2n+1
∑

k=n+1

bk

)p

m−2

≪

(

n−1
2n+1
∑

k=n+1

bk

)p

np−1 ≪ n−1

(

2n+1
∑

k=n+1

bk

)p

. (5.1)



290 László Leindler

If m > n + 1, then

∣

∣

∣

∣

∣

∞
∑

k=n+1

bk sin kx

∣

∣

∣

∣

∣

≪
m
∑

k=n+1

bk + x−1m−1
2m+1
∑

k=m+1

bk,

whence we get that

∫ π/(n+1)

0

|g − sn|
pdx =

∞
∑

m=n+1

∫ π/m

π/(m+1)

|g − sn|
pdx

≪
∞
∑

m=n+1

((

m
∑

k=n+1

bk

)p

m−2 + m−2

(

2m+1
∑

k=m+1

bk

)p)

. (5.2)

Here the first sum can be estimated by Lemma 3, whence we get that

∞
∑

m=n+1

m−2

(

m
∑

k=n+1

bk

)p

≤ K(p, 2)

∞
∑

m=n+1

m−2(mbm)p. (5.3)

On the other hand, using Hölder inequality, we get that

∞
∑

m=n+1

m−2

(

2m+1
∑

k=m+1

bk

)p

≪

∞
∑

m=n+1

m−2mp−1
2m+1
∑

k=m+1

bp
k ≪

∞
∑

k=n+2

kp−2bp
k. (5.4)

The inequalities (5.1)–(5.4) clearly imply (2.1), and the proof is complete. �

Proof of Theorem 2. First we show that if {bn} ∈ MRBV S, then {bn/n}

also belongs to MRBV S. Namely

∞
∑

k=n

∣

∣

∣

∣

bk

k
−

bk+1

k + 1

∣

∣

∣

∣

≤

∞
∑

k=n

1

k
|bk − bk+1| +

∞
∑

k=n

1

k2
bk+1

≪
1

n
·
1

n

2n
∑

ν=n

bν +

∞
∑

k=n

1

k2

∞
∑

ν=k+1

|∆bν |

≪ n−2
2n
∑

ν=n

bν + n−1
∞
∑

ν=n+1

|∆bν | ≪ n−2
2n
∑

ν=n

bν ≪ n−1
2n
∑

ν=n

bν

ν
.

Next we consider the series

g1(x) ∼
∞
∑

n=1

n−1bn sin nx.
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The coefficients of g1 satisfy the condition (1.2), we refer to condition (1.4) and

the well-known inequality

∑

ap
n ≤

(

∑

an

)p

, p ≥ 1 and an ≥ 0,

therefore we can apply Theorem 1, which gives that

En(p, g1) ≪ n1/p′

(

n−1
2n+1
∑

k=n+1

bk

k

)

+

(

∞
∑

k=n+1

(

bk

k

)p

kp−2

)1/p

≪ n1/p′
−1

(

n−1
2n+1
∑

k=n+1

bk

)

+

(

∞
∑

k=n+1

(

∞
∑

ν=k

|∆bν |

)p

k−2

)1/p

≪ n1/p′
−1

(

n−1
2n+1
∑

k=n+1

bk

)

+

(

∞
∑

ν=n+1

|∆bν |

)

n−1/p

≪ n1/p′
−1

(

n−1
2n+1
∑

k=n+1

bk

)

.

Using this and Lemma 2, we get that

En(p, g) ≪ nEn(p, g1) +

∞
∑

k=n+1

Ek(p, g1)

≪ n1/p′

(

n−1
2n+1
∑

k=n+1

bk

)

+

∞
∑

k=n+1

k−1/p

(

k−1
2k+1
∑

ν=k+1

bν

)

≪ n1/p′

(

n−1
2n+1
∑

k=n+1

bk

)

+
∞
∑

ν=n+2

ν−1/pbν ,

that is, (2.2) is verified.

The proof is complete. �
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