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Embeddable probability measures and infinitesimal systems

of probability measures on a Moore Lie group

By MICHAEL S. BINGHAM (Hull) and GYULA PAP (Debrecen)

Abstract. We show that, under natural conditions, a sequence of Poisson mea-

sures, close to the row products of the accompanying Poisson system of an infinitesimal

system of probability measures on a Moore Lie group, converges to an embeddable

probability measure.

1. Introduction

The central limit problem on a Lie group G can be formulated as follows.

There is given a system {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} of probability measures

on G satisfying the infinitesimality condition

max
1≤ℓ≤kn

µn,ℓ(G \ N) → 0 as n → ∞

valid for all Borel neighbourhoods N of the identity e of G. There is also given a

probability measure µ on G. One searches for necessary and sufficient conditions

on the system so that weak convergence

µn,1 ∗ · · · ∗ µn,kn
→ µ

holds.
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Although the functional version of this problem has already been solved (see

Feinsilver [1], Pap [6]), the above non-functional version is still open. There

are only some partial results due to Parthasarathy [7] and to Heyer [3].

In this paper we consider the above problem on a Moore Lie group, that is, on

a Lie group such that all of its irreducible representations are finite dimensional.

(For example, each compact Lie group is a Moore Lie group.) First we show that

under some conditions convergence of row products of an infinitesimal system is

equivalent to convergence of row products of the accompanying Poisson system,

and in case of convergence the limits coincide. Then we prove that under the

natural conditions a sequence of Poisson measures, close to the row products

of the accompanying Poisson system, converges to an embeddable probability

measure. The missing link is to show that under the same natural conditions

the row products of the accompanying Poisson system converges to the same

embeddable limit measure (see Remarks 7.2 and 7.4).

2. Preliminaries

Let G be a Moore Lie group of dimension d, that is, a Lie group of dimension d

such that all of its irreducible representations are finite dimensional. By N (e) we

denote the system of all Borel neighbourhoods of the identity e in G. The Lie

algebra of G will be denoted by L(G). Let expG : L(G) → G be the exponential

mapping. By C(G) we denote the space of real-valued continuous functions on G

furnished with the supremum norm ‖·‖. By D(G) we denote the space of infinitely

differentiable real-valued functions with compact support on G.

If f ∈ C(G) is continuously differentiable in some neighbourhood of a y ∈ G

then for every D ∈ L(G) there exists the left derivative of f in y with respect

to D defined by

Df(y) := lim
t→0

f(expG(tD)y) − f(y)

t
.

Let {D1, . . . , Dd} be a basis of L(G). Let x1, . . . , xd ∈ D(G) be a system of

skew-symmetric canonical local coordinates of the first kind adapted to the basis

{D1, . . . , Dd} and valid in a compact neighbourhood N0 ∈ N (e); i.e.,

y = expG

(
d∑

i=1

xi(y)Di

)
for all y ∈ N0,

the mapping (x1, . . . , xd) : N0 → Rd is injective, and xi(y
−1) = −xi(y) for

i = 1, . . . , d. Let ϕ : G → [0, 1] be a Hunt function for G; i.e., 1 − ϕ ∈ D(G),
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ϕ(y) > 0 for all y ∈ G \ {e}, and

ϕ(y) =
d∑

i=1

xi(y)2 for all y ∈ N0.

Let M1(G) denote the semigroup of probability measures on G. For every x ∈ G,

εx denotes the Dirac measure in x.

Let M+(G) denote the set of positive measures on G. A measure η ∈ M+(G)

is said to be a Lévy measure on G if η({e}) = 0 and
∫

G
ϕ(y) η(dy) < ∞.

Let P(G) be the set of triplets (a, B, η), where a ∈ Rd, B ∈ Rd×d is a

symmetric positive semidefinite matrix, and η is a Lévy measure on G.

A family (µt)t≥0 in M1(G) is called a continuous convolution semigroup if

µs∗µt = µs+t for all s, t ≥ 0, µ0 = εe and limt↓0 µt = µ0. Its generating functional

(A,A) is defined by

A :=

{
f ∈ C(G)

∣∣∣ A(f) := lim
t↓0

1

t

(∫

G

f(y)µt(dy) − f(e)

)
exists

}
.

We have D(G) ⊂ A, and there is a uniquely determined triplet (a, B, η) ∈ P(G)

such that on D(G) the functional A admits the canonical decomposition (Lévy–

Khinchine formula)

A(f) =
d∑

i=1

ai(Dif)(e) +
1

2

d∑

i,j=1

bi,j(DiDjf)(e)

+

∫

G

(
f(y) − f(e) −

d∑

i=1

xi(y)(Dif)(e)

)
η(dy),

(2.1)

where a =(a1, . . . , ad) and B =(bi,j)1≤i,j≤d. Moreover, for each triplet (a, B, η)∈

P(G) there exists a uniquely determined continuous convolution semigroup

(µt)t≥0 in M1(G) such that (2.1) holds for all f ∈ D(G). (See, e.g., Heyer

[5, 4.2.8 Theorem].)

3. Unitary representations

A unitary representation of G is a homomorphism U from G into the group

U(H(U)) of unitary operators on a complex Hilbert space H(U) such that the

mapping x 7→ U(x)u from G into H(U) is continuous for all u ∈ H(U). The
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set of all unitary representations of G will be denoted by Rep(G). A represen-

tation U ∈ Rep(G) is said to be irreducible if there exists no nontrivial closed

U -invariant subspace of H(U). Since G is a Moore group, the set Irr(G) of ir-

reducible representations of G contains only finite dimensional representations.

For U ∈ Irr(G) let dim(U) denote the dimension of the representation space

H(U). Then H(U) and U(H(U)) can be identified with Cdim(U) and with the

unitary group U(dim(U)) consisting of the unitary matrices in Cdim(U)×dim(U),

respectively.

The Fourier transform µ̂ of a bounded measure µ on G is given by

〈µ̂(U)u, v〉 =

∫

G

〈U(x)u, v〉µ(dx)

whenever U ∈ Rep(G), u, v ∈ H(U). Clearly, for given U ∈ Rep(G), µ̂(U)

belongs to the space L(H(U)) of bounded linear operators on H(U), and one has

‖µ̂(U)‖ ≤ 1 whenever µ is a probability measure on G. If U ∈ Irr(G) then

µ̂(U) =

∫

G

U(x)µ(dx) ∈ C
dim(U)×dim(U).

Moreover, the mapping µ 7→ µ̂ from M1(G) into the set of mappings Rep(G) →⋃
{L(H(U)) : U ∈ Rep(G)} is injective (even on Irr(G)), linear, multiplicative in

the sense that (µ1 ∗ µ2)̂ (U) = µ̂1(U)µ̂2(U) for all U ∈ Rep(G), and sequentially

bicontinuous in the sense of the following equivalences expressed for sequences

(µn)n≥0 of measures in M1(G):

(i) µn → µ0.

(ii) 〈µ̂n(U)u, v〉 → 〈µ̂0(U)u, v〉 for all U ∈ Irr(G), u, v ∈ H(U).

(iii) µ̂n(U)u → µ̂0(U)u for all U ∈ Irr(G), u ∈ H(U).

(iv) µ̂n(U) → µ̂0(U) for all U ∈ Irr(G).

(For the proof of the equivalence of (i)–(iii) see, for example, Siebert [8]. The

equivalence of (iii) and (iv) follows from the assumption that G is a Moore group,

so each irreducible representation is finite dimensional. See also Heyer [5, The-

orem 1.4.5].)

Let D ∈ L(G) and U ∈ Irr(G). Then the mapping t 7→ U(expG(tD)) is a

continuous homomorphism from the (real) Lie group R into the (complex) Lie

group U(dim(U)); hence t 7→ U(expG(tD)) is infinitely differentiable (see, e.g.,

Varadarajan [11, pp. 92–94]). Consequently the limit

D(U) := lim
t→0

U(expG(tD)) − U(e)

t
∈ C

dim(U)×dim(U)
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exists. Moreover, D(U) is a skew-Hermitian matrix. Indeed,

D(U)
⊤

= lim
t→0

U(expG(tD))
⊤
− U(e)

⊤

t
= lim

t→0

(
U(expG(tD))

)−1
− U(e)

t

= lim
t→0

U
(
expG(tD)−1

)
− U(e)

t
= lim

t→0

U(expG(−tD)) − U(e)

t
= −D(U)

Lemma 3.1. For U ∈ Irr(G) we have

U(y) = exp

(
d∑

i=1

xi(y)Di(U)

)
for y ∈ N0,

where exp : Cdim(U)×dim(U) → Cdim(U)×dim(U) denotes the exponential function

defined by

exp(A) := eA :=

∞∑

k=0

Ak

k!
.

Proof. Let D :=
∑d

i=1 xi(y)Di. Defining f(t) := U(expG(tD)) for t ∈ R,

we have

f ′(t) = lim
h→0

U(expG((t + h)D)) − U(expG(tD))

h

= lim
h→0

U(expG(hD)) − U(e)

h
U(expG(tD)) = D(U)f(t)

and f(0) = U(e) = I (where I always denotes the appropriate identity matrix);

hence f(t) = exp(tD(U)). Substituting t = 1 we obtain U(y) = exp(D(U)), since

y ∈ N0 implies

y = expG

(
d∑

i=1

xi(y)Di

)
= expG(D);

hence U(y) = U(expG(D)) = f(1) = exp(D(U)). Finally,

D(U) =

d∑

i=1

xi(y)Di(U). (3.1)

Indeed, f(t) = g(x1(y)t, . . . , xd(y)t), where g : Rd → Cdim(U)×dim(U), defined by

g(t1, . . . , td) := U
(
expG

(∑d
i=1 tiDi

))
is differentiable. We have ∂ig(0, . . . , 0) =

Di(U); hence

f ′(0) =

d∑

i=1

xi(y)∂ig(0, . . . , 0) =

d∑

i=1

xi(y)Di(U).

We already know that f ′(0) = D(U), so (3.1) holds. �
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Lemma 3.2. Let U ∈ Irr(G).

(i) For the mapping y 7→ U(y) from G into U(dim(U)) the Taylor formula

U(y) = U(e) +
d∑

i=1

xi(y)Di(U) +
1

2

d∑

i,j=1

xi(y)xj(y)Di(U)Dj(U)

+
1

6

d∑

i,j,k=1

xi(y)xj(y)xk(y)T (U)(y)Di(U)Dj(U)Dk(U)

is valid for all y ∈ N0. Here each T (U)(y) is a matrix in Cdim(U)×dim(U) with

‖T (U)(y)‖ ≤ 1.

(ii) The following estimates hold for all y ∈ N0:

∥∥∥∥U(y) − U(e) −
d∑

i=1

xi(y)Di(U)

∥∥∥∥ ≤
1

2
ϕ(y)

d∑

i,j=1

‖Di(U)Dj(U)‖

and

∥∥∥∥U(y) − U(e) −
d∑

i=1

xi(y)Di(U) −
1

2

d∑

i,j=1

xi(y)xj(y)Di(U)Dj(U)

∥∥∥∥

≤
1

6
ϕ(y)3/2

d∑

i,j,k=1

‖Di(U)Dj(U)Dk(U)‖.

Proof. Similar to the proof of Lemma 5.1 in Siebert [9]. �

4. Convergence of embeddable measures

If (µt)t≥0 is a continuous convolution semigroup in M1(G) belonging to a

triplet (a, B, η) ∈ P(G), then (µ̂t(U))t≥0 is a strongly continuous semigroup of

contractions on H(U) for all U ∈ Rep(G). If U ∈ Irr(G), then the infinitesimal

generator A(U) of (µ̂t(U))t≥0 is given by

A(U) =
d∑

i=1

aiDi(U) +
1

2

d∑

i,j=1

bi,jDi(U)Dj(U)

+

∫

G

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy).
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This is a consequence of the Corollary of Proposition 3.2 in Siebert [9] taking

into account that the subspace H0(U), consisting of the differentiable vectors in

H(U) for U , coincides with H(U), since H0(U) is dense in H(U) and H(U) is finite

dimensional. (See Lemma 1.1 in Siebert [9].) Clearly A(U) ∈ C
dim(U)×dim(U);

hence we have

µ̂t(U) = exp

{
t

[
d∑

i=1

aiDi(U) +
1

2

d∑

i,j=1

bi,jDi(U)Dj(U)

+

∫

G

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy)

]}

for all U ∈ Irr(G) and for all t ≥ 0.

Definition 4.1. A probability measure µ on G is said to be embeddable if

there exists a convolution semigroup (µt)t≥0 in M
1(G) such that µ = µ1.

If µ is an embeddable probability measure then it is clearly infinitely divisible,

and there exists a triplet (a, B, η) ∈ P(G) such that

µ̂(U) = exp

{
d∑

i=1

aiDi(U) +
1

2

d∑

i,j=1

bi,jDi(U)Dj(U)

+

∫

G

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy)

}

holds for all U ∈ Irr(G). In this case we say that µ is an embeddable probability

measure with triplet (a, B, η). In general, the triplet (a, B, η) ∈ P(G) is not

uniquely determined by the measure µ.

For a triplet (a, B, η) ∈ P(G) with B = (bi,j)1≤i,j≤d we define the matrix

B̃ = (̃bi,j)1≤i,j≤d by

b̃i,j := bi,j +

∫

G

xi(y)xj(y) η(dy). (4.1)

Theorem 4.2. For each n ∈ Z+ let µn ∈ M1(G) be an embeddable proba-

bility measure with a triplet (a(n), B(n), η(n)). Suppose that

(i) a(n) → a(0) as n → ∞,

(ii) B̃(n) → B̃(0) as n → ∞,

(iii) η(n)(G\N) → η(0)(G\N) as n → ∞ for all N ∈N (e) with η(0)(∂N)=0.
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Then µn → µ0 as n → ∞.

Proof. It suffices to show µ̂n(U) → µ̂0(U) as n → ∞ for all U ∈ Irr(G).

Let

h(y, U) := U(y) − U(e) −
d∑

i=1

xi(y)Di(U) −
1

2

d∑

i,j=1

xi(y)xj(y)Di(U)Dj(U)

for all y ∈ G and all U ∈ Irr(G). Then µ̂n(U) can be written in the form

exp

{
d∑

i=1

a
(n)
i Di(U) +

1

2

d∑

i,j=1

b̃
(n)
i,j Di(U)Dj(U) +

∫

G

h(y, U) η(n)(dy)

}

for all n ∈ Z+ and all U ∈ Irr(G). Taking into account the assumptions (i) and

(ii), it is enough to show that

∫

G

h(y, U) η(n)(dy) →

∫

G

h(y, U) η(0)(dy) (4.2)

as n → ∞ for all U ∈ Irr(G).

By Lemma 3.2

‖h(y, U)‖ ≤ cUϕ(y)3/2 for y ∈ N0,

where

cU :=
1

6

d∑

i,j,k=1

‖Di(U)Dj(U)Dk(U)‖.

Consequently for all N ∈ N (e) with N ⊂ N0

∥∥∥∥
∫

G

h(y, U) η(n)(dy) −

∫

G

h(y, U) η(0)(dy)

∥∥∥∥ ≤ I
(n)
1 (N) + I

(n)
2 (N),

where

I
(n)
1 (N) = cU

∫

N

ϕ(y)3/2 (η(n) + η(0))(dy),

I
(n)
2 (N) =

∥∥∥∥
∫

G\N

h(y, U) η(n)(dy) −

∫

G\N

h(y, U) η(0)(dy)

∥∥∥∥.

We have

I
(n)
1 (N) ≤ cU sup

y∈N
ϕ(y)1/2

∫

N

ϕ(y) (η(n) + η(0))(dy)
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and ∫

N

ϕ(y) (η(n) + η(0))(dy) ≤ Tr B̃(n) + Tr B̃(0).

By the assumption (ii)

sup
n≥1

Tr B̃(n) < ∞.

Let ε > 0. Then there exists N1 ∈ N (e) such that N1 ⊂ N0, η(0)(∂N1) = 0 and

such that supy∈N1
ϕ(y)1/2 is small enough to guarantee that

cU sup
y∈N1

ϕ(y)1/2

(
Tr B̃(0) + sup

n≥1
Tr B̃(n)

)
<

ε

2
.

Then

I
(n)
1 (N1) <

ε

2
.

By assumption (iii)

I
(n)
2 (N1) <

ε

2

for sufficiently large n. Hence we obtain

∥∥∥∥
∫

G

h(y, U) η(n)(dy) −

∫

G

h(y, U) η(0)(dy)

∥∥∥∥ < ε

for sufficiently large n, which implies (4.2). �

5. Local mean and local covariance matrix

Definition 5.1. A probability measure µ on G is said to have a local mean

m ∈ N0 and a local covariance matrix B = (bij)i,j=1,...,d if

xi(m) =

∫

G

xi(y)µ(dy) for all i ∈ {1, . . . , d},

and

bij =

∫

G

(xi(y) − xi(m))(xj(y) − xj(m))µ(dy) for all i, j ∈ {1, . . . , d}.

If the numbers
∣∣∫

G xi(y)µ(dy)
∣∣, i = 1, . . . , d are sufficiently small, then µ has

a uniquely determined local mean m ∈ N0. The local covariance matrix always

exists and is uniquely determined. Both the local mean and local covariance

matrix will depend upon the choice of the coordinate functions on G.
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We shall use the local mean for local centering and consider the shifted

measure µ ∗ εm−1 . More specifically, we want to prove convergence theorems for

a triangular system {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} of probability measures on G.

We use local centering and consider the sequences of convolutions (µn,1 ∗ εm−1

n,1
) ∗

· · · (µn,kn
∗ εm−1

n,kn

), where mn,ℓ is the local mean of µn,ℓ. We have to estimate

how close a shifted measure ν := µ ∗ εm−1 is to the measure εe for a probability

measure µ with local mean m. To this end we shall estimate the distance between

their Fourier transforms; i.e., the quantity ‖ν̂(U)− I‖. (This will be an analogue

of Lemma 1.6 in Siebert [10] providing an estimate for the distance between the

convolution operators of µ and εe.)

Now we choose an appropriate neighbourhood of the identity e in G. There

exists N ′
0 ∈ N (e) such that N ′

0(N
′
0)

−1 ⊂ N0. Moreover, there exists c0 > 0 such

that N ′′
0 :=

{
y ∈ N0 :

∑d
i=1 xi(y)2 ≤ c0

}
⊂ N ′

0. Then N ′′
0 is compact, and it is

convex in the sense that u, v ∈ N ′′
0 implies

λu + (1 − λ)v := expG

(
d∑

i=1

(λxi(u) + (1 − λ)xi(v))Di

)
∈ N ′′

0

for all λ ∈ [0, 1].

Lemma 5.2. For every U ∈ Irr(G) there exists a constant c(U) > 0 such

that

‖(µ ∗ εm−1 )̂ (U) − I‖ ≤ c(U)
(
µ(G \ N ′′

0 ) + Tr(B)
)

whenever µ is a probability measure on G with local mean m ∈ N ′′
0 and local

covariance matrix B.

Proof. Let µ be a probability measure on G with local mean m ∈ N ′′
0 and

local covariance matrix B. Let U ∈ Irr(G). Then

(µ ∗ εm−1 )̂ (U) − I =

∫

G

(
U(ym−1) − U(e)

)
µ(dy).

We are going to find a Taylor formula for U(ym−1) valid for y ∈ N ′′
0 . If g : G → R

is differentiable in y ∈ N0 then there exist the partial derivatives

∂ig(y) :=
d

dt

∣∣∣∣
t=0

g
(
expG

(
tDi +

d∑

ℓ=1

xℓ(y)Dℓ

))

for i = 1, . . . , d and y ∈ N0. Consider the function f : Rd → Cdim(U)×dim(U)

defined by

f(t1, . . . , td) := U

(
expG

(
d∑

i=1

tiDi

)
m−1

)
.



Infinitesimal systems of probability measures on a Lie group. . . 303

By Lemma 3.1 we have that, if y ∈ N0 and ti = xi(y) for all i, then

f(t1, . . . , td) = exp

(
d∑

i=1

tiDi(U)

)
U(m−1).

Hence f is infinitely differentiable at each point (x1(y), . . . , xd(y)) ∈ Rd such that

y ∈ N0. For t = (x1(y), . . . , xd(y)) and s = (x1(m), . . . , xd(m)), where y, m ∈ N ′′
0 ,

the Taylor formula for matrix-valued functions yields

f(t) = f(s) +

d∑

i=1

(ti − si)∂if(s)

+

d∑

i,j=1

(ti − si)(tj − sj)

∫ 1

0

(1 − λ)∂i∂jf(λt + (1 − λ)s) dλ.

But, for y, m ∈ N ′′
0 , we have

f(t) = U(ym−1) = Rm−1U(y),

f(s) = U(e),

∂if(s) = ∂iRm−1U(m),

∂i∂jf(λt + (1 − λ)s) = ∂i∂jRm−1U(λy + (1 − λ)m),

where for a function h on G and z ∈ G the shifted function Rzh is defined by

Rzh(y) := h(yz) for y ∈ G. Hence U(ym−1) can be written in the form

U(e) +

d∑

i=1

(xi(y) − xi(m))∂iRm−1U(m)

+
1

2

d∑

i,j=1

(xi(y) − xi(m))(xj(y) − xj(m))∂i∂jRm−1U(m) + R(U, y, m), (5.1)

where R(U, y, m) denotes the quantity

d∑

i,j=1

(xi(y) − xi(m))(xj(y) − xj(m))

×

∫ 1

0

(1 − λ)
(
∂i∂jRm−1U(λy + (1 − λ)m) − ∂i∂jRm−1U(m)

)
dλ.
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Consequently

(µ ∗ εm−1 )̂ (U) − I =

∫

G\N ′′

0

(
U(ym−1) − U(e) −

d∑

i=1

(xi(y) − xi(m))∂iRm−1U(m)

−
1

2

d∑

i,j=1

(xi(y) − xi(m))(xj(y) − xj(m))∂i∂jRm−1U(m)

)
µ(dy)

+
1

2

d∑

i,j=1

bij∂i∂jRm−1U(m) +

∫

N ′′

0

R(U, y, m)µ(dy).

For v ∈ N0 we have

∂iRm−1U(v) =
d

dt

∣∣∣∣
t=0

U

(
expG

(
tDi +

d∑

ℓ=1

xℓ(v)Dℓ

)
m−1

)

=
d

dt

∣∣∣∣
t=0

exp

(
tDi(U) +

d∑

ℓ=1

xℓ(v)Dℓ(U)

)
U(m−1)

=
d

dt

∣∣∣∣
t=0

∞∑

k=0

1

k!

(
tDi(U) +

d∑

ℓ=1

xℓ(v)Dℓ(U)

)k

U(m−1)

=

∞∑

k=1

1

k!

k−1∑

r=0

(
d∑

ℓ=1

xℓ(v)Dℓ(U)

)r

Di(U)

(
d∑

ℓ=1

xℓ(v)Dℓ(U)

)k−1−r

U(m−1).

Since the coordinate functions x1, . . . , xd are continuous, the function

(m, v) 7→ ∂iRm−1U(v)

from N ′′
0 × N ′′

0 into Cdim(U)×dim(U) is continuous, hence bounded, because of the

compactness of N0. Similarly, the function (m, v) 7→ ∂i∂jRm−1U(v) is bounded

on N ′′
0 × N ′′

0 ; thus we conclude the assertion. �

6. Infinitesimal systems of probability measures

Definition 6.1. A system {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} of probability mea-

sures on G is said to be infinitesimal if

max
1≤ℓ≤kn

µn,ℓ(G \ N) → 0 as n → ∞

for all N ∈ N (e).
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Lemma 6.2. A system {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} of probability measures

on G is infinitesimal if and only if for each U ∈ Irr(G) we have

max
1≤ℓ≤kn

‖µ̂n,ℓ(U) − I‖ → 0 as n → ∞.

Proof. Similar to the proof of Lemma 8.1 in Siebert [9]. �

Lemma 6.3. If {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} is an infinitesimal sys-

tem of probability measures on G then for sufficiently large n, the measures

µn,1, . . . , µn,kn
have local means mn,1, . . . , mn,kn

, and the systems {εmn,ℓ
: n ∈ N,

ℓ = 1, . . . , kn} and
{
µn,ℓ ∗ εm−1

n,ℓ
: n ∈ N, ℓ = 1, . . . , kn

}
are infinitesimal.

Proof. For all N ∈ N (e), n ∈ N, ℓ = 1, . . . , kn and i = 1, . . . , d we have

∣∣∣∣
∫

G

xi(y)µn,ℓ(dy)

∣∣∣∣ ≤ sup
y∈N

|xi(y)| + ‖xi‖µn,ℓ(G \ N);

hence

lim sup
n→∞

max
1≤ℓ≤kn

∣∣∣∣
∫

G

xi(y)µn,ℓ(dy)

∣∣∣∣ ≤ sup
y∈N

|xi(y)|.

Since N ∈ N (e) is arbitrary, we conclude

max
1≤ℓ≤kn

∣∣∣∣
∫

G

xi(y)µn,ℓ(dy)

∣∣∣∣→ 0 as n → ∞ for all i = 1, . . . , d, (6.1)

which implies existence of local mean of the measures µn,1, . . . , µn,kn
for suffi-

ciently large n ∈ N. Convergence (6.1) also implies that for each N ∈ N (e)

we have mn,1, . . . , mn,kn
∈ N for sufficiently large n ∈ N; thus the system

{εmn,ℓ
: n ∈ N, ℓ = 1, . . . , kn} is infinitesimal.

If a probability measure µ on G has local mean m then for all U ∈ Irr(G)

‖(µ ∗ εm−1 )̂ (U) − I‖ = ‖µ̂(U)U(m)−1 − I‖ = ‖(µ̂(U) − U(m))U(m)−1‖

≤ ‖µ̂(U) − U(m)‖ = ‖µ̂(U) − ε̂m(U)‖ ≤ ‖µ̂(U) − I‖ + ‖ε̂m(U) − I‖.

Hence Lemma 6.2 implies infinitesimality of the system
{
µn,ℓ ∗ εm−1

n,ℓ

: n ∈ N,

ℓ = 1, . . . , kn

}
. �

For a positive bounded measure µ on G, the Poisson measure ν = eµ−µ(G)εe ∈

M1(G) with exponent µ is defined by

eµ−µ(G)εe := e−µ(G)
(
εe + µ +

µ ∗ µ

2!
+

µ ∗ µ ∗ µ

3!
+ · · ·

)
.
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Clearly

ν̂(U) = ebµ(U)−µ(G)·I

for all U ∈ Rep(G); hence ν is an embeddable probability measure with triplet

(a, 0, µ), where a = (a1, . . . , ad) with ai =
∫

G xi(y)µ(dy), i = 1, . . . , d.

Theorem 6.4. Let {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} be an infinitesimal system

of probability measures on G. Denote the local mean and the local covariance

matrix of µn,1, . . . , µn,kn
by mn,1, . . . , mn,kn

and by Bn,1, . . . , Bn,kn
(which exist

for sufficiently large n ∈ N by Lemma 6.3). Let

µ′
n,ℓ := µn,ℓ ∗ εm−1

n,ℓ
, ν′

n,ℓ := exp(µ′
n,ℓ − εe).

Suppose that

sup
n∈N

kn∑

ℓ=1

(
µn,ℓ(G \ N ′′

0 ) + Tr(Bn,ℓ)
)

< ∞. (6.2)

Then

‖(µn,1 ∗ · · · ∗ µn,kn
)̂ (U) − (ν′

n,1 ∗ εmn,1
∗ · · · ∗ ν′

n,kn
∗ εmn,kn

)̂ (U)‖ → 0

as n → ∞ for all U ∈ Irr(G). In particular, the sequence
(
µn,1 ∗ · · · ∗µn,kn

)
n≥1

of

row products is convergent if and only if the sequence
(
ν′

n,1 ∗ εmn,1
∗ · · · ∗ ν′

n,kn
∗

εmn,kn

)
n≥1

of row products is convergent. In the affirmative case the limits of

these sequences coincide.

Moreover,

‖(µ′
n,1 ∗ · · · ∗ µ′

n,kn
)̂ (U) − (ν′

n,1 ∗ · · · ∗ ν′
n,kn

)̂ (U)‖ → 0 as n → ∞

for all U ∈ Irr(G). In particular, the sequence
(
µ′

n,1 ∗ · · · ∗ µ′
n,kn

)
n≥1

of row

products is convergent if and only if the sequence
(
ν′

n,1 ∗ · · · ∗ ν′
n,kn

)
n≥1

of row

products is convergent, and in the affirmative case the limits of these sequences

coincide.

Proof. Let

µn := µn,1 ∗ · · · ∗ µn,kn
= µ′

n,1 ∗ εmn,1
∗ · · · ∗ µ′

n,kn
∗ εmn,kn

,

ν′
n := ν′

n,1 ∗ εmn,1
∗ · · · ∗ ν′

n,kn
∗ εmn,kn

.

If A1, . . . , Ak, B1, . . . , Bk ∈ Cdim(U)×dim(U) with ‖Aℓ‖ ≤ 1 and ‖Bℓ‖ ≤ 1 for all

ℓ = 1, . . . , kn, then

‖A1 · · ·Ak − B1 · · ·Bk‖ ≤
k∑

ℓ=1

‖Aℓ − Bℓ‖.
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Hence

‖µ̂n(U) − (ν′
n )̂ (U)‖ =

∥∥(µ′
n,1)̂ (U)(εmn,1

)̂ (U) · · · (µ′
n,kn

)̂ (U)(εmn,kn
)̂ (U)

−(ν′
n,1)̂ (U)(εmn,1

)̂ (U) · · · (ν′
n,kn

)̂ (U)(εmn,kn
)̂ (U)

∥∥

≤
kn∑

ℓ=1

∥∥(µ′
n,ℓ)̂ (U) − (ν′

n,ℓ)̂ (U)
∥∥ =

kn∑

ℓ=1

∥∥(µ′
n,ℓ)̂ (U) − exp((µ′

n,ℓ)̂ (U) − I)
∥∥.

For a matrix A ∈ C
dim(U)×dim(U) we have

‖eA − I − A‖ =

∥∥∥∥∥

∞∑

k=2

Ak

k!

∥∥∥∥∥ ≤
∞∑

k=2

‖A‖k

k!
= ‖A‖2

∞∑

k=0

‖A‖k

(k + 2)!

≤ ‖A‖2
∞∑

k=0

‖A‖k

k!
= ‖A‖2 e‖A‖.

Applying this for A = (µ′
n,ℓ)̂ (U) − I we obtain

‖µ̂n(U) − (ν′
n)̂ (U)‖ ≤

kn∑

ℓ=1

‖(µ′
n,ℓ)̂ (U) − I‖2 e‖(µ

′

n,ℓ)b(U)−I‖

≤ e2

(
max

1≤ℓ≤kn

‖(µ′
n,ℓ)̂ (U) − I‖

) kn∑

ℓ=1

‖(µ′
n,ℓ)̂ (U) − I‖.

By Lemma 6.3, the system {µ′
n,ℓ : n ∈ N, ℓ = 1, . . . , kn} is infinitesimal; thus by

Lemma 6.2

max
1≤ℓ≤kn

‖(µ′
n,ℓ)̂ (U) − I‖ → 0 as n → ∞.

Hence it suffices to show that

sup
n∈N

kn∑

ℓ=1

‖(µ′
n,ℓ)̂ (U) − I‖ < ∞.

By Lemma 5.2, this is a consequence of assumption (6.2).

The proof for the other system is similar. �
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7. Further investigations: convergence of a system

to an embeddable measure

Theorem 7.1. Let {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} be an infinitesimal system

of probability measures on G. Denote the local mean and the local covariance

matrix of µn,1, . . . , µn,kn
by mn,1, . . . , mn,kn

and by Bn,1, . . . , Bn,kn
(which exist

for sufficiently large n ∈ N by Lemma 6.3). Let

µ′
n,ℓ := µn,ℓ ∗ εm−1

n,ℓ
.

Suppose that there exists (0, B, η) ∈ P(G) such that

(i)
∑kn

ℓ=1 Bn,ℓ → B̃ as n → ∞,

(ii)
∑kn

ℓ=1 µn,ℓ(G \ N)→|, η(G \ N) as n→∞ for all N ∈N (e) with η(∂N)=0,

where B̃ is defined in (4.1). Then

exp

(
kn∑

ℓ=1

(µ′
n,ℓ − εe)

)
→ ν,

where ν is an embeddable probability measure on G with triplet (0, B, η).

Proof. The measure

ν′
n := exp

(
kn∑

ℓ=1

(µ′
n,ℓ − εe)

)

is a Poisson measure with

(ν′
n)̂ (U) = exp

(
kn∑

ℓ=1

(
(µ′

n,ℓ)̂ (U) − I
)
)

for all U ∈ Irr(G). Moreover ν̂(U) has the form

exp

{
1

2

d∑

i,j=1

bi,jDi(U)Dj(U) +

∫

G

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy)

}

for all U ∈ Irr(G). Hence it is enough to show that

kn∑

ℓ=1

(
(µ′

n,ℓ)̂ (U) − I
)

→
1

2

d∑

i,j=1

bi,jDi(U)Dj(U) +

∫

G

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy) (7.1)
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as n → ∞ for all U ∈ Irr(G). By the Taylor formula (5.1) the quantity (µ′
n,ℓ)̂ (U)−

I can be written in the form

1

2

d∑

i,j=1

∫

N

(xi(y) − xi(mn,ℓ))(xj(y) − xj(mn,ℓ))∂i∂jRm−1

n,ℓ

U(mn,ℓ)µn,ℓ(dy)

+

∫

G\N

(
U(ym−1

n,ℓ)−U(e)−
d∑

i=1

(xi(y)−xi(mn,ℓ))∂iRm−1

n,ℓ
U(mn,ℓ)

)
µn,ℓ(dy)

+

∫

N

R(U, y, mn,ℓ)µn,ℓ(dy) (7.2)

for each N ∈ N (e) with N ⊂ N ′′
0 . Hence (7.1) follows from the following five

limiting relationships:

kn∑

ℓ=1

∫

G\N

(
U(ym−1

n,ℓ)−U(e)−
d∑

i=1

(xi(y) − xi(mn,ℓ))∂iRm−1

n,ℓ
U(mn,ℓ)

)
µn,ℓ(dy)

→

∫

G\N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy) as n → ∞, (7.3)

∫

N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy) → 0 asN → {e}, (7.4)

d∑

i,j=1

kn∑

ℓ=1

∫

N

(xi(y)−xi(mn,ℓ))(xj(y)−xj(mn,ℓ))∂i∂jRm−1

n,ℓ
U(mn,ℓ)µn,ℓ(dy)

→
d∑

i,j=1

(
bi,j +

∫

N

xi(y)xj(y) η(dy)

)
Di(U)Dj(U) as n → ∞, (7.5)

∫

N

xi(y)xj(y) η(dy) → 0 as N → {e}, (7.6)

lim sup
n→∞

kn∑

ℓ=1

∫

N

‖R(U, y, mn,ℓ)‖ µn,ℓ(dy) → 0 as N → {e}, (7.7)

where (7.3) and (7.5) are valid for N ∈ N (e) with N ⊂ N ′′
0 and η(∂N) = 0.

In order to show (7.3) it is sufficient to prove that

kn∑

ℓ=1

∫

G\N

(
U(ym−1

n,ℓ) − U(y)
)
µn,ℓ(dy) → 0, (7.8)
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kn∑

ℓ=1

∫

G\N

(xi(y)−xi(mn,ℓ))
(
∂iRm−1

n,ℓ
U(mn,ℓ)−∂iU(e)

)
µn,ℓ(dy) → 0, (7.9)

kn∑

ℓ=1

∫

G\N

xi(mn,ℓ)∂iU(e)µn,ℓ(dy) → 0, (7.10)

kn∑

ℓ=1

∫

G\N

(
U(y) − U(e) −

d∑

i=1

xi(y)∂iU(e)

)
µn,ℓ(dy)

→

∫

G\N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy) (7.11)

as n → ∞. Clearly (7.8) follows from

max
1≤ℓ≤kn

sup
y∈G

‖U(ym−1
n,ℓ) − U(y)‖ → 0 as n → ∞

(which is a consequence of the uniform continuity of U and the uniform conver-

gence mn,ℓ → e as n → ∞, see (6.1)), and from assumption (ii).

The mapping y 7→ ∂iRy−1U(y) from N0 into Cdim(U)×dim(U) is continuous

(see the exact formula for ∂iRy−1U(y) in the proof of Lemma 5.2); hence it is

uniformly continuous because of the compactness of N0. Thus by the uniform

convergence mn,ℓ → e as n → ∞ we conclude

max
1≤ℓ≤kn

‖∂iRm−1

n,ℓ
U(mn,ℓ) − ∂iU(e)‖ → 0 as n → ∞,

which together with assumption (ii) imply (7.9). Obviously (7.10) and (7.11)

follows from assumption (ii), since ∂iU(e) = Di(U) and y 7→ U(y) − U(e) −∑d
i=1 xi(y)Di(U) is a bounded continuous function.

By the estimate (ii) in Lemma 3.2 we obtain

∥∥∥∥
∫

N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy)

∥∥∥∥

≤
1

2

∫

N

ϕ(y) η(dy)

d∑

i,j=1

‖Di(U)Dj(U)‖ → 0

as N → {e}; hence (7.4) holds.

In order to show (7.5) it is sufficient to prove that

kn∑

ℓ=1

∫

N

(xi(y) − xi(mn,ℓ))(xj(y) − xj(mn,ℓ))µn,ℓ(dy)



Infinitesimal systems of probability measures on a Lie group. . . 311

→ bi,j +

∫

N

xi(y)xj(y) η(dy), (7.12)

kn∑

ℓ=1

∫

N

(xi(y) − xi(mn,ℓ))(xj(y) − xj(mn,ℓ))

×
(
∂i∂jRm−1

n,ℓ
U(mn,ℓ) − ∂i∂jU(e)

)
µn,ℓ(dy) → 0 (7.13)

as n → ∞, since

∂i∂jU(e) =
1

2

(
Di(U)Dj(U) + Dj(U)Di(U)

)
.

Indeed, by Lemma 3.1 we have

∂jU(expG(tDi)) =
d

dh

∣∣∣∣
h=0

U(expG(hDj + tDi))

=
d

dh

∣∣∣∣
h=0

exp
(
hDj(U) + tDi(U)

)
=

d

dh

∣∣∣∣
h=0

∞∑

k=0

(
hDj(U) + tDi(U)

)k

k!

=

∞∑

k=1

tk−1

k!

k−1∑

r=0

Di(U)rDj(U)Di(U)k−1−r,

implying

∂i∂jU(e) =
d

dt

∣∣∣∣
t=0

∂jU(expG(tDi)) =
1

2

(
Di(U)Dj(U) + Dj(U)Di(U)

)
.

Convergence (7.12) will follow from

kn∑

ℓ=1

∫

G\N

(xi(y) − xi(mn,ℓ))(xj(y) − xj(mn,ℓ))µn,ℓ(dy)

→

∫

G\N

xi(y)xj(y) η(dy) (7.14)

and assumption (i). Assumption (ii) implies

kn∑

ℓ=1

∫

G\N

xi(y)xj(y)µn,ℓ(dy) →

∫

G\N

xi(y)xj(y) η(dy) as n → ∞.
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By (6.1) and assumption (ii),

kn∑

ℓ=1

∫

G\N

(
xi(mn,ℓ)xj(mn,ℓ) − xi(y)xj(mn,ℓ) − xj(y)xi(mn,ℓ)

)
µn,ℓ(dy) → 0,

and we conclude (7.14). Convergence (7.13) follows from (7.12) and

max
1≤ℓ≤kn

‖∂i∂jRm−1

n,ℓ
U(mn,ℓ) − ∂i∂jU(e)‖ → 0 as n → ∞

(which is again a consequence of the uniform continuity of the mapping y 7→

∂i∂jRy−1U(y) on N0 and the uniform convergence mn,ℓ → e as n → ∞); hence

(7.5) holds.

We have ∣∣∣∣
∫

N

xi(y)xj(y) η(dy)

∣∣∣∣ ≤
∫

N

ϕ(y) η(dy);

thus we get (7.6).

In order to show (7.7) it suffices to prove that

lim
n→∞

kn∑

ℓ=1

∫

N

∣∣(xi(y) − xi(mn,ℓ))(xj(y) − xj(mn,ℓ))
∣∣
∫ 1

0

∣∣∂i∂jRm−1

n,ℓ

× U(λy + (1 − λ)mn,ℓ) − ∂i∂jU(λy + (1 − λ)e)
∣∣ dλµn,ℓ(dy) = 0, (7.15)

lim
n→∞

kn∑

ℓ=1

∫

N

∣∣(xi(y) − xi(mn,ℓ))(xj(y) − xj(mn,ℓ))
∣∣

×
∣∣∂i∂jRm−1

n,ℓ

U(mn,ℓ) − ∂i∂jU(e)
∣∣µn,ℓ(dy) = 0, (7.16)

lim
N→{e}

lim sup
n→∞

kn∑

ℓ=1

∫

N

∣∣(xi(y) − xi(mn,ℓ))(xj(y) − xj(mn,ℓ))
∣∣

×

∫ 1

0

∣∣∂i∂jU(λy + (1 − λ)e) − ∂i∂jU(e)
∣∣ dλµn,ℓ(dy) = 0. (7.17)

The convergences (7.15) and (7.16) follow from (7.12) and

max
1≤ℓ≤kn

sup
y∈N

‖∂i∂jRm−1

n,ℓ
U(λy + (1 − λ)mn,ℓ) − ∂i∂jU(λy + (1 − λ)e)‖ → 0

as n → ∞. Finally, (7.17) is a consequence of (7.12) and

sup
y∈N

sup
λ∈[0,1]

‖∂i∂jU(λy + (1 − λ)e) − ∂i∂jU(e)‖ → 0 as N → {e},

which follows from the uniform continuity of the function y 7→ ∂i∂jU(λy+(1−λ)e)

on N ′′
0 . �
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Remark 7.2. If under the assumptions of Theorem 7.1

‖(ν′
n,1 ∗ · · · ∗ ν′

n,kn
)̂ (U) − (ν′

n )̂ (U)‖ → 0 as n → ∞ (7.18)

for all U ∈ Irr(G), where

ν′
n,ℓ := exp(µ′

n,ℓ − εe), ν′
n := exp

(
kn∑

ℓ=1

(µ′
n,ℓ − εe)

)
,

then Theorems 7.1 and 6.4 would imply

µ′
n,1 ∗ · · · ∗ µ′

n,kn
→ ν,

but it is not clear whether (7.18) holds. In fact, (7.18) is equivalent to

‖eAn,1 · · · eAn,kn − eAn,1+···+An,kn‖ → 0 as n → ∞,

where the matrices An,ℓ, n ∈ N, ℓ = 1, . . . , kn are defined by

An,ℓ := (µ′
n,ℓ)̂ (U) − I,

and we have the Taylor formula (7.2).

Theorem 7.3. Let {µn,ℓ : n ∈ N, ℓ = 1, . . . , kn} be an infinitesimal system

of probability measures on G. Denote the local mean and the local covariance

matrix of µn,1, . . . , µn,kn
by mn,1, . . . , mn,kn

and by Bn,1, . . . , Bn,kn
(which exist

for sufficiently large n ∈ N by Lemma 6.3). Suppose that there exists (a, B, η) ∈

P(G) such that

(i)
∑kn

ℓ=1 xi(mn,ℓ) → ai as n → ∞ for all i = 1, . . . , d,

(ii)
∑kn

ℓ=1 Bn,ℓ → B̃ as n → ∞,

(iii)
∑kn

ℓ=1 µn,ℓ(G \ N) → η(G \ N) as n → ∞ for all N ∈N (e) with η(∂N)=0,

where B̃ is defined in (4.1). Then

exp

(
kn∑

ℓ=1

(µn,ℓ − εe)

)
→ µ,

where µ is an embeddable probability measure on G with triplet (a, B, η).
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Proof. The measure

νn := exp

(
kn∑

ℓ=1

(µn,ℓ − εe)

)
belowdisplayskip = 0pt

is a Poisson measure with

ν̂n(U) = exp

(
kn∑

ℓ=1

(
µ̂n,ℓ(U) − I

)
)

for all U ∈ Irr(G). Moreover

µ̂(U) = exp

{
d∑

i=1

aiDi(U) +
1

2

d∑

i,j=1

bi,jDi(U)Dj(U)

+

∫

G

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy)

}

holds for all U ∈ Irr(G). Hence it is enough to show that

kn∑

ℓ=1

(
µ̂n,ℓ(U) − I

)
→

d∑

i=1

aiDi(U) +
1

2

d∑

i,j=1

bi,jDi(U)Dj(U)

+

∫

G

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy)

(7.19)

as n → ∞ for all U ∈ Irr(G). By the Taylor formula (5.1) with m = e we obtain

µ̂n,ℓ(U) − I =
d∑

i=1

Di(U)

∫

G

xi(y)µn,ℓ(dy)

+
1

2

d∑

i,j=1

Di(U)Dj(U)

∫

N

xi(y)xj(y)µn,ℓ(dy)

+

∫

G\N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
µn,ℓ(dy)

+

∫

N

R(U, y, e)µn,ℓ(dy) (7.20)

for each N ∈ N (e) with N ⊂ N ′′
0 . Hence (7.19) follows from the following six

limiting relationships:

kn∑

ℓ=1

∫

G\N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
µn,ℓ(dy)
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→

∫

G\N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy) as n → ∞, (7.21)

∫

N

(
U(y) − U(e) −

d∑

i=1

xi(y)Di(U)

)
η(dy)to0 as N → {e}, (7.22)

kn∑

ℓ=1

∫

N

xi(y)xj(y)µn,ℓ(dy) → bi,j +

∫

N

xi(y)xj(y) η(dy) as n → ∞, (7.23)

∫

N

xi(y)xj(y) η(dy) → 0 as N → {e}, (7.24)

lim sup
n→∞

kn∑

ℓ=1

∫

N

‖R(U, y, e)‖ µn,ℓ(dy) → 0 as N → {e}, (7.25)

kn∑

ℓ=1

∫

G

xi(y)µn,ℓ(dy) → ai as n → ∞, (7.26)

where (7.21) and (7.23) are valid for N ∈N (e) with N ⊂ N ′′
0 and η(∂N) = 0.

Clearly (7.21), (7.22), (7.23) and (7.24) are the same as (7.11), (7.4), (7.12)

and (7.6), respectively. Moreover, (7.25) can be proved similarly to (7.7). Finally,

(7.26) follows from assumption (i). �

Remark 7.4. If under the assumptions of Theorem 7.3

‖(ν′
n,1 ∗ εmn,1

∗ · · · ∗ ν′
n,kn

∗ εmn,kn
)̂ (U) − ν̂n(U)‖ → 0 as n → ∞ (7.27)

for all U ∈ Irr(G), where

νn,ℓ := exp(µn,ℓ − εe), νn := exp

(
kn∑

ℓ=1

(µn,ℓ − εe)

)
,

then Theorems 7.3 and 6.4 would imply

µn,1 ∗ · · · ∗ µn,kn
→ µ,

but it is not clear whether (7.27) holds. In fact, (7.27) can be written in the form
∥∥∥eAn,1C−1

n,1−ICn,1 · · · e
An,knC−1

n,kn
−ICn,kn

− e
Pkn

ℓ=1
(An,ℓ−I)

∥∥∥→ 0 as n → ∞,

where the matrices An,ℓ, Cn,ℓ, n ∈ N, ℓ = 1, . . . , kn are defined by

An,ℓ := µ̂n,ℓ(U), Cn,ℓ := U(mn,ℓ),

and we have the Taylor formula (7.20).
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