Embeddable probability measures and infinitesimal systems of probability measures on a Moore Lie group

By MICHAEL S. BINGHAM (Hull) and GYULA PAP (Debrecen)

Abstract

We show that, under natural conditions, a sequence of Poisson measures, close to the row products of the accompanying Poisson system of an infinitesimal system of probability measures on a Moore Lie group, converges to an embeddable probability measure.

1. Introduction

The central limit problem on a Lie group G can be formulated as follows. There is given a system $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ of probability measures on G satisfying the infinitesimality condition

$$
\max _{1 \leq \ell \leq k_{n}} \mu_{n, \ell}(G \backslash N) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

valid for all Borel neighbourhoods N of the identity e of G. There is also given a probability measure μ on G. One searches for necessary and sufficient conditions on the system so that weak convergence

$$
\mu_{n, 1} * \cdots * \mu_{n, k_{n}} \rightarrow \mu
$$

holds.

[^0]Although the functional version of this problem has already been solved (see Feinsilver [1], Pap [6]), the above non-functional version is still open. There are only some partial results due to Parthasarathy [7] and to Heyer [3].

In this paper we consider the above problem on a Moore Lie group, that is, on a Lie group such that all of its irreducible representations are finite dimensional. (For example, each compact Lie group is a Moore Lie group.) First we show that under some conditions convergence of row products of an infinitesimal system is equivalent to convergence of row products of the accompanying Poisson system, and in case of convergence the limits coincide. Then we prove that under the natural conditions a sequence of Poisson measures, close to the row products of the accompanying Poisson system, converges to an embeddable probability measure. The missing link is to show that under the same natural conditions the row products of the accompanying Poisson system converges to the same embeddable limit measure (see Remarks 7.2 and 7.4).

2. Preliminaries

Let G be a Moore Lie group of dimension d, that is, a Lie group of dimension d such that all of its irreducible representations are finite dimensional. By $\mathcal{N}(e)$ we denote the system of all Borel neighbourhoods of the identity e in G. The Lie algebra of G will be denoted by $\mathfrak{L}(G)$. Let $\exp _{G}: \mathfrak{L}(G) \rightarrow G$ be the exponential mapping. By $\mathfrak{C}(G)$ we denote the space of real-valued continuous functions on G furnished with the supremum norm $\|\cdot\|$. By $\mathfrak{D}(G)$ we denote the space of infinitely differentiable real-valued functions with compact support on G.

If $f \in \mathfrak{C}(G)$ is continuously differentiable in some neighbourhood of a $y \in G$ then for every $D \in \mathfrak{L}(G)$ there exists the left derivative of f in y with respect to D defined by

$$
D f(y):=\lim _{t \rightarrow 0} \frac{f\left(\exp _{G}(t D) y\right)-f(y)}{t}
$$

Let $\left\{D_{1}, \ldots, D_{d}\right\}$ be a basis of $\mathfrak{L}(G)$. Let $x_{1}, \ldots, x_{d} \in \mathfrak{D}(G)$ be a system of skew-symmetric canonical local coordinates of the first kind adapted to the basis $\left\{D_{1}, \ldots, D_{d}\right\}$ and valid in a compact neighbourhood $N_{0} \in \mathcal{N}(e)$; i.e.,

$$
y=\exp _{G}\left(\sum_{i=1}^{d} x_{i}(y) D_{i}\right) \quad \text { for all } y \in N_{0}
$$

the mapping $\left(x_{1}, \ldots, x_{d}\right): N_{0} \rightarrow \mathbb{R}^{d}$ is injective, and $x_{i}\left(y^{-1}\right)=-x_{i}(y)$ for $i=1, \ldots, d$. Let $\varphi: G \rightarrow[0,1]$ be a Hunt function for G; i.e., $1-\varphi \in \mathfrak{D}(G)$,
$\varphi(y)>0$ for all $y \in G \backslash\{e\}$, and

$$
\varphi(y)=\sum_{i=1}^{d} x_{i}(y)^{2} \quad \text { for all } y \in N_{0}
$$

Let $\mathfrak{M}^{1}(G)$ denote the semigroup of probability measures on G. For every $x \in G$, ε_{x} denotes the Dirac measure in x.

Let $\mathfrak{M}_{+}(G)$ denote the set of positive measures on G. A measure $\eta \in \mathfrak{M}_{+}(G)$ is said to be a Lévy measure on G if $\eta(\{e\})=0$ and $\int_{G} \varphi(y) \eta(\mathrm{d} y)<\infty$.

Let $\mathcal{P}(G)$ be the set of triplets (a, B, η), where $a \in \mathbb{R}^{d}, B \in \mathbb{R}^{d \times d}$ is a symmetric positive semidefinite matrix, and η is a Lévy measure on G.

A family $\left(\mu_{t}\right)_{t \geq 0}$ in $\mathfrak{M}^{1}(G)$ is called a continuous convolution semigroup if $\mu_{s} * \mu_{t}=\mu_{s+t}$ for all $s, t \geq 0, \mu_{0}=\varepsilon_{e}$ and $\lim _{t \downarrow 0} \mu_{t}=\mu_{0}$. Its generating functional (A, \mathcal{A}) is defined by

$$
\mathcal{A}:=\left\{f \in \mathfrak{C}(G) \mid A(f):=\lim _{t \downarrow 0} \frac{1}{t}\left(\int_{G} f(y) \mu_{t}(\mathrm{~d} y)-f(e)\right) \text { exists }\right\}
$$

We have $\mathfrak{D}(G) \subset \mathcal{A}$, and there is a uniquely determined triplet $(a, B, \eta) \in \mathcal{P}(G)$ such that on $\mathfrak{D}(G)$ the functional A admits the canonical decomposition (LévyKhinchine formula)

$$
\begin{align*}
A(f)= & \sum_{i=1}^{d} a_{i}\left(D_{i} f\right)(e)+\frac{1}{2} \sum_{i, j=1}^{d} b_{i, j}\left(D_{i} D_{j} f\right)(e) \\
& +\int_{G}\left(f(y)-f(e)-\sum_{i=1}^{d} x_{i}(y)\left(D_{i} f\right)(e)\right) \eta(\mathrm{d} y) \tag{2.1}
\end{align*}
$$

where $a=\left(a_{1}, \ldots, a_{d}\right)$ and $B=\left(b_{i, j}\right)_{1 \leq i, j \leq d}$. Moreover, for each triplet $(a, B, \eta) \in$ $\mathcal{P}(G)$ there exists a uniquely determined continuous convolution semigroup $\left(\mu_{t}\right)_{t \geq 0}$ in $\mathfrak{M}^{1}(G)$ such that (2.1) holds for all $f \in \mathfrak{D}(G)$. (See, e.g., HEYER [5, 4.2.8 Theorem].)

3. Unitary representations

A unitary representation of G is a homomorphism U from G into the group $\mathcal{U}(\mathcal{H}(U))$ of unitary operators on a complex Hilbert space $\mathcal{H}(U)$ such that the mapping $x \mapsto U(x) u$ from G into $\mathcal{H}(U)$ is continuous for all $u \in \mathcal{H}(U)$. The
set of all unitary representations of G will be denoted by $\operatorname{Rep}(G)$. A representation $U \in \operatorname{Rep}(G)$ is said to be irreducible if there exists no nontrivial closed U-invariant subspace of $\mathcal{H}(U)$. Since G is a Moore group, the set $\operatorname{Irr}(G)$ of irreducible representations of G contains only finite dimensional representations. For $U \in \operatorname{Irr}(G)$ let $\operatorname{dim}(U)$ denote the dimension of the representation space $\mathcal{H}(U)$. Then $\mathcal{H}(U)$ and $\mathcal{U}(\mathcal{H}(U))$ can be identified with $\mathbb{C}^{\operatorname{dim}(U)}$ and with the unitary group $\mathcal{U}(\operatorname{dim}(U))$ consisting of the unitary matrices in $\mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$, respectively.

The Fourier transform $\widehat{\mu}$ of a bounded measure μ on G is given by

$$
\langle\widehat{\mu}(U) u, v\rangle=\int_{G}\langle U(x) u, v\rangle \mu(\mathrm{d} x)
$$

whenever $U \in \operatorname{Rep}(G), u, v \in \mathcal{H}(U)$. Clearly, for given $U \in \operatorname{Rep}(G), \widehat{\mu}(U)$ belongs to the space $\mathcal{L}(\mathcal{H}(U))$ of bounded linear operators on $\mathcal{H}(U)$, and one has $\|\widehat{\mu}(U)\| \leq 1$ whenever μ is a probability measure on G. If $U \in \operatorname{Irr}(G)$ then

$$
\widehat{\mu}(U)=\int_{G} U(x) \mu(\mathrm{d} x) \in \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}
$$

Moreover, the mapping $\mu \mapsto \widehat{\mu}$ from $\mathfrak{M}^{1}(G)$ into the set of mappings $\operatorname{Rep}(G) \rightarrow$ $\bigcup\{\mathcal{L}(\mathcal{H}(U)): U \in \operatorname{Rep}(G)\}$ is injective (even on $\operatorname{Irr}(G))$, linear, multiplicative in the sense that $\left(\mu_{1} * \mu_{2}\right)^{\wedge}(U)=\widehat{\mu}_{1}(U) \widehat{\mu}_{2}(U)$ for all $U \in \operatorname{Rep}(G)$, and sequentially bicontinuous in the sense of the following equivalences expressed for sequences $\left(\mu_{n}\right)_{n \geq 0}$ of measures in $\mathfrak{M}^{1}(G)$:
(i) $\mu_{n} \rightarrow \mu_{0}$.
(ii) $\left\langle\widehat{\mu}_{n}(U) u, v\right\rangle \rightarrow\left\langle\widehat{\mu}_{0}(U) u, v\right\rangle$ for all $U \in \operatorname{Irr}(G), u, v \in \mathcal{H}(U)$.
(iii) $\widehat{\mu}_{n}(U) u \rightarrow \widehat{\mu}_{0}(U) u$ for all $U \in \operatorname{Irr}(G), u \in \mathcal{H}(U)$.
(iv) $\widehat{\mu}_{n}(U) \rightarrow \widehat{\mu}_{0}(U)$ for all $U \in \operatorname{Irr}(G)$.
(For the proof of the equivalence of (i)-(iii) see, for example, Siebert [8]. The equivalence of (iii) and (iv) follows from the assumption that G is a Moore group, so each irreducible representation is finite dimensional. See also Heyer [5, Theorem 1.4.5].)

Let $D \in \mathfrak{L}(G)$ and $U \in \operatorname{Irr}(G)$. Then the mapping $t \mapsto U\left(\exp _{G}(t D)\right)$ is a continuous homomorphism from the (real) Lie group \mathbb{R} into the (complex) Lie group $\mathcal{U}(\operatorname{dim}(U))$; hence $t \mapsto U\left(\exp _{G}(t D)\right)$ is infinitely differentiable (see, e.g., Varadarajan [11, pp. 92-94]). Consequently the limit

$$
D(U):=\lim _{t \rightarrow 0} \frac{U\left(\exp _{G}(t D)\right)-U(e)}{t} \in \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}
$$

exists. Moreover, $D(U)$ is a skew-Hermitian matrix. Indeed,

$$
\begin{aligned}
\overline{D(U)}^{\top} & =\lim _{t \rightarrow 0} \frac{{\overline{U\left(\exp _{G}(t D)\right.}}^{\top}-\overline{U(e)}^{\top}}{t}=\lim _{t \rightarrow 0} \frac{\left(U\left(\exp _{G}(t D)\right)\right)^{-1}-U(e)}{t} \\
& =\lim _{t \rightarrow 0} \frac{U\left(\exp _{G}(t D)^{-1}\right)-U(e)}{t}=\lim _{t \rightarrow 0} \frac{U\left(\exp _{G}(-t D)\right)-U(e)}{t}=-D(U)
\end{aligned}
$$

Lemma 3.1. For $U \in \operatorname{Irr}(G)$ we have

$$
U(y)=\exp \left(\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \quad \text { for } y \in N_{0}
$$

where $\exp : \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)} \rightarrow \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$ denotes the exponential function defined by

$$
\exp (A):=\mathrm{e}^{A}:=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

Proof. Let $D:=\sum_{i=1}^{d} x_{i}(y) D_{i}$. Defining $f(t):=U\left(\exp _{G}(t D)\right)$ for $t \in \mathbb{R}$, we have

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{U\left(\exp _{G}((t+h) D)\right)-U\left(\exp _{G}(t D)\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{U\left(\exp _{G}(h D)\right)-U(e)}{h} U\left(\exp _{G}(t D)\right)=D(U) f(t)
\end{aligned}
$$

and $f(0)=U(e)=I$ (where I always denotes the appropriate identity matrix); hence $f(t)=\exp (t D(U))$. Substituting $t=1$ we obtain $U(y)=\exp (D(U))$, since $y \in N_{0}$ implies

$$
y=\exp _{G}\left(\sum_{i=1}^{d} x_{i}(y) D_{i}\right)=\exp _{G}(D)
$$

hence $U(y)=U\left(\exp _{G}(D)\right)=f(1)=\exp (D(U))$. Finally,

$$
\begin{equation*}
D(U)=\sum_{i=1}^{d} x_{i}(y) D_{i}(U) \tag{3.1}
\end{equation*}
$$

Indeed, $f(t)=g\left(x_{1}(y) t, \ldots, x_{d}(y) t\right)$, where $g: \mathbb{R}^{d} \rightarrow \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$, defined by $g\left(t_{1}, \ldots, t_{d}\right):=U\left(\exp _{G}\left(\sum_{i=1}^{d} t_{i} D_{i}\right)\right)$ is differentiable. We have $\partial_{i} g(0, \ldots, 0)=$ $D_{i}(U)$; hence

$$
f^{\prime}(0)=\sum_{i=1}^{d} x_{i}(y) \partial_{i} g(0, \ldots, 0)=\sum_{i=1}^{d} x_{i}(y) D_{i}(U)
$$

We already know that $f^{\prime}(0)=D(U)$, so (3.1) holds.

Lemma 3.2. Let $U \in \operatorname{Irr}(G)$.
(i) For the mapping $y \mapsto U(y)$ from G into $\mathcal{U}(\operatorname{dim}(U))$ the Taylor formula

$$
\begin{aligned}
U(y)= & U(e)+\sum_{i=1}^{d} x_{i}(y) D_{i}(U)+\frac{1}{2} \sum_{i, j=1}^{d} x_{i}(y) x_{j}(y) D_{i}(U) D_{j}(U) \\
& +\frac{1}{6} \sum_{i, j, k=1}^{d} x_{i}(y) x_{j}(y) x_{k}(y) T(U)(y) D_{i}(U) D_{j}(U) D_{k}(U)
\end{aligned}
$$

is valid for all $y \in N_{0}$. Here each $T(U)(y)$ is a matrix in $\mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$ with $\|T(U)(y)\| \leq 1$.
(ii) The following estimates hold for all $y \in N_{0}$:

$$
\left\|U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right\| \leq \frac{1}{2} \varphi(y) \sum_{i, j=1}^{d}\left\|D_{i}(U) D_{j}(U)\right\|
$$

and

$$
\begin{aligned}
& \| U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)- \frac{1}{2} \\
& \sum_{i, j=1}^{d} x_{i}(y) x_{j}(y) D_{i}(U) D_{j}(U) \| \\
& \leq \frac{1}{6} \varphi(y)^{3 / 2} \sum_{i, j, k=1}^{d}\left\|D_{i}(U) D_{j}(U) D_{k}(U)\right\|
\end{aligned}
$$

Proof. Similar to the proof of Lemma 5.1 in Siebert [9].

4. Convergence of embeddable measures

If $\left(\mu_{t}\right)_{t \geq 0}$ is a continuous convolution semigroup in $\mathfrak{M}^{1}(G)$ belonging to a triplet $(a, B, \eta) \in \mathcal{P}(G)$, then $\left(\widehat{\mu}_{t}(U)\right)_{t \geq 0}$ is a strongly continuous semigroup of contractions on $\mathcal{H}(U)$ for all $U \in \operatorname{Rep}(G)$. If $U \in \operatorname{Irr}(G)$, then the infinitesimal generator $A(U)$ of $\left(\widehat{\mu}_{t}(U)\right)_{t \geq 0}$ is given by

$$
\begin{aligned}
A(U)= & \sum_{i=1}^{d} a_{i} D_{i}(U)+\frac{1}{2} \sum_{i, j=1}^{d} b_{i, j} D_{i}(U) D_{j}(U) \\
& +\int_{G}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) .
\end{aligned}
$$

This is a consequence of the Corollary of Proposition 3.2 in Siebert [9] taking into account that the subspace $\mathcal{H}_{0}(U)$, consisting of the differentiable vectors in $\mathcal{H}(U)$ for U, coincides with $\mathcal{H}(U)$, since $\mathcal{H}_{0}(U)$ is dense in $\mathcal{H}(U)$ and $\mathcal{H}(U)$ is finite dimensional. (See Lemma 1.1 in Siebert [9].) Clearly $A(U) \in \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$; hence we have

$$
\begin{aligned}
\widehat{\mu}_{t}(U)=\exp \{t & {\left[\sum_{i=1}^{d} a_{i} D_{i}(U)+\frac{1}{2} \sum_{i, j=1}^{d} b_{i, j} D_{i}(U) D_{j}(U)\right.} \\
& \left.\left.+\int_{G}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y)\right]\right\}
\end{aligned}
$$

for all $U \in \operatorname{Irr}(G)$ and for all $t \geq 0$.
Definition 4.1. A probability measure μ on G is said to be embeddable if there exists a convolution semigroup $\left(\mu_{t}\right)_{t \geq 0}$ in $\mathfrak{M}^{1}(G)$ such that $\mu=\mu_{1}$.

If μ is an embeddable probability measure then it is clearly infinitely divisible, and there exists a triplet $(a, B, \eta) \in \mathcal{P}(G)$ such that

$$
\begin{aligned}
\widehat{\mu}(U)=\exp \{ & \sum_{i=1}^{d} a_{i} D_{i}(U)+\frac{1}{2} \sum_{i, j=1}^{d} b_{i, j} D_{i}(U) D_{j}(U) \\
& \left.+\int_{G}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y)\right\}
\end{aligned}
$$

holds for all $U \in \operatorname{Irr}(G)$. In this case we say that μ is an embeddable probability measure with triplet (a, B, η). In general, the triplet $(a, B, \eta) \in \mathcal{P}(G)$ is not uniquely determined by the measure μ.

For a triplet $(a, B, \eta) \in \mathcal{P}(G)$ with $B=\left(b_{i, j}\right)_{1 \leq i, j \leq d}$ we define the matrix $\widetilde{B}=\left(\widetilde{b}_{i, j}\right)_{1 \leq i, j \leq d}$ by

$$
\begin{equation*}
\widetilde{b}_{i, j}:=b_{i, j}+\int_{G} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y) . \tag{4.1}
\end{equation*}
$$

Theorem 4.2. For each $n \in \mathbb{Z}_{+}$let $\mu_{n} \in \mathfrak{M}^{1}(G)$ be an embeddable probability measure with a triplet $\left(a^{(n)}, B^{(n)}, \eta^{(n)}\right)$. Suppose that
(i) $a^{(n)} \rightarrow a^{(0)}$ as $n \rightarrow \infty$,
(ii) $\widetilde{B}^{(n)} \rightarrow \widetilde{B}^{(0)}$ as $n \rightarrow \infty$,
(iii) $\eta^{(n)}(G \backslash N) \rightarrow \eta^{(0)}(G \backslash N)$ as $n \rightarrow \infty$ for all $N \in \mathcal{N}(e)$ with $\eta^{(0)}(\partial N)=0$.

Then $\mu_{n} \rightarrow \mu_{0}$ as $n \rightarrow \infty$.
Proof. It suffices to show $\widehat{\mu}_{n}(U) \rightarrow \widehat{\mu}_{0}(U)$ as $n \rightarrow \infty$ for all $U \in \operatorname{Irr}(G)$. Let

$$
h(y, U):=U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)-\frac{1}{2} \sum_{i, j=1}^{d} x_{i}(y) x_{j}(y) D_{i}(U) D_{j}(U)
$$

for all $y \in G$ and all $U \in \operatorname{Irr}(G)$. Then $\widehat{\mu}_{n}(U)$ can be written in the form

$$
\exp \left\{\sum_{i=1}^{d} a_{i}^{(n)} D_{i}(U)+\frac{1}{2} \sum_{i, j=1}^{d} \widetilde{b}_{i, j}^{(n)} D_{i}(U) D_{j}(U)+\int_{G} h(y, U) \eta^{(n)}(\mathrm{d} y)\right\}
$$

for all $n \in \mathbb{Z}_{+}$and all $U \in \operatorname{Irr}(G)$. Taking into account the assumptions (i) and (ii), it is enough to show that

$$
\begin{equation*}
\int_{G} h(y, U) \eta^{(n)}(\mathrm{d} y) \rightarrow \int_{G} h(y, U) \eta^{(0)}(\mathrm{d} y) \tag{4.2}
\end{equation*}
$$

as $n \rightarrow \infty$ for all $U \in \operatorname{Irr}(G)$.
By Lemma 3.2

$$
\|h(y, U)\| \leq c_{U} \varphi(y)^{3 / 2} \quad \text { for } y \in N_{0}
$$

where

$$
c_{U}:=\frac{1}{6} \sum_{i, j, k=1}^{d}\left\|D_{i}(U) D_{j}(U) D_{k}(U)\right\|
$$

Consequently for all $N \in \mathcal{N}(e)$ with $N \subset N_{0}$

$$
\left\|\int_{G} h(y, U) \eta^{(n)}(\mathrm{d} y)-\int_{G} h(y, U) \eta^{(0)}(\mathrm{d} y)\right\| \leq I_{1}^{(n)}(N)+I_{2}^{(n)}(N)
$$

where

$$
\begin{aligned}
& I_{1}^{(n)}(N)=c_{U} \int_{N} \varphi(y)^{3 / 2}\left(\eta^{(n)}+\eta^{(0)}\right)(\mathrm{d} y) \\
& I_{2}^{(n)}(N)=\left\|\int_{G \backslash N} h(y, U) \eta^{(n)}(\mathrm{d} y)-\int_{G \backslash N} h(y, U) \eta^{(0)}(\mathrm{d} y)\right\|
\end{aligned}
$$

We have

$$
I_{1}^{(n)}(N) \leq c_{U} \sup _{y \in N} \varphi(y)^{1 / 2} \int_{N} \varphi(y)\left(\eta^{(n)}+\eta^{(0)}\right)(\mathrm{d} y)
$$

and

$$
\int_{N} \varphi(y)\left(\eta^{(n)}+\eta^{(0)}\right)(\mathrm{d} y) \leq \operatorname{Tr} \widetilde{B}^{(n)}+\operatorname{Tr} \widetilde{B}^{(0)} .
$$

By the assumption (ii)

$$
\sup _{n \geq 1} \operatorname{Tr} \widetilde{B}^{(n)}<\infty
$$

Let $\varepsilon>0$. Then there exists $N_{1} \in \mathcal{N}(e)$ such that $N_{1} \subset N_{0}, \eta^{(0)}\left(\partial N_{1}\right)=0$ and such that $\sup _{y \in N_{1}} \varphi(y)^{1 / 2}$ is small enough to guarantee that

$$
c_{U} \sup _{y \in N_{1}} \varphi(y)^{1 / 2}\left(\operatorname{Tr} \widetilde{B}^{(0)}+\sup _{n \geq 1} \operatorname{Tr} \widetilde{B}^{(n)}\right)<\frac{\varepsilon}{2}
$$

Then

$$
I_{1}^{(n)}\left(N_{1}\right)<\frac{\varepsilon}{2} .
$$

By assumption (iii)

$$
I_{2}^{(n)}\left(N_{1}\right)<\frac{\varepsilon}{2}
$$

for sufficiently large n. Hence we obtain

$$
\left\|\int_{G} h(y, U) \eta^{(n)}(\mathrm{d} y)-\int_{G} h(y, U) \eta^{(0)}(\mathrm{d} y)\right\|<\varepsilon
$$

for sufficiently large n, which implies (4.2).

5. Local mean and local covariance matrix

Definition 5.1. A probability measure μ on G is said to have a local mean $m \in N_{0}$ and a local covariance matrix $B=\left(b_{i j}\right)_{i, j=1, \ldots, d}$ if

$$
x_{i}(m)=\int_{G} x_{i}(y) \mu(\mathrm{d} y) \quad \text { for all } i \in\{1, \ldots, d\}
$$

and

$$
b_{i j}=\int_{G}\left(x_{i}(y)-x_{i}(m)\right)\left(x_{j}(y)-x_{j}(m)\right) \mu(\mathrm{d} y) \quad \text { for all } i, j \in\{1, \ldots, d\}
$$

If the numbers $\left|\int_{G} x_{i}(y) \mu(\mathrm{d} y)\right|, i=1, \ldots, d$ are sufficiently small, then μ has a uniquely determined local mean $m \in N_{0}$. The local covariance matrix always exists and is uniquely determined. Both the local mean and local covariance matrix will depend upon the choice of the coordinate functions on G.

We shall use the local mean for local centering and consider the shifted measure $\mu * \varepsilon_{m^{-1}}$. More specifically, we want to prove convergence theorems for a triangular system $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ of probability measures on G. We use local centering and consider the sequences of convolutions $\left(\mu_{n, 1} * \varepsilon_{m_{n, 1}^{-1}}\right) *$ $\cdots\left(\mu_{n, k_{n}} * \varepsilon_{m_{n, k_{n}}^{-1}}\right)$, where $m_{n, \ell}$ is the local mean of $\mu_{n, \ell}$. We have to estimate how close a shifted measure $\nu:=\mu * \varepsilon_{m^{-1}}$ is to the measure ε_{e} for a probability measure μ with local mean m. To this end we shall estimate the distance between their Fourier transforms; i.e., the quantity $\|\widehat{\nu}(U)-I\|$. (This will be an analogue of Lemma 1.6 in Siebert [10] providing an estimate for the distance between the convolution operators of μ and ε_{e}.)

Now we choose an appropriate neighbourhood of the identity e in G. There exists $N_{0}^{\prime} \in \mathcal{N}(e)$ such that $N_{0}^{\prime}\left(N_{0}^{\prime}\right)^{-1} \subset N_{0}$. Moreover, there exists $c_{0}>0$ such that $N_{0}^{\prime \prime}:=\left\{y \in N_{0}: \sum_{i=1}^{d} x_{i}(y)^{2} \leq c_{0}\right\} \subset N_{0}^{\prime}$. Then $N_{0}^{\prime \prime}$ is compact, and it is convex in the sense that $u, v \in N_{0}^{\prime \prime}$ implies

$$
\lambda u+(1-\lambda) v:=\exp _{G}\left(\sum_{i=1}^{d}\left(\lambda x_{i}(u)+(1-\lambda) x_{i}(v)\right) D_{i}\right) \in N_{0}^{\prime \prime}
$$

for all $\lambda \in[0,1]$.
Lemma 5.2. For every $U \in \operatorname{Irr}(G)$ there exists a constant $c(U)>0$ such that

$$
\left\|\left(\mu * \varepsilon_{m^{-1}}\right)^{\wedge}(U)-I\right\| \leq c(U)\left(\mu\left(G \backslash N_{0}^{\prime \prime}\right)+\operatorname{Tr}(B)\right)
$$

whenever μ is a probability measure on G with local mean $m \in N_{0}^{\prime \prime}$ and local covariance matrix B.

Proof. Let μ be a probability measure on G with local mean $m \in N_{0}^{\prime \prime}$ and local covariance matrix B. Let $U \in \operatorname{Irr}(G)$. Then

$$
\left(\mu * \varepsilon_{m^{-1}}\right)^{\mathcal{C}}(U)-I=\int_{G}\left(U\left(y m^{-1}\right)-U(e)\right) \mu(\mathrm{d} y) .
$$

We are going to find a Taylor formula for $U\left(y m^{-1}\right)$ valid for $y \in N_{0}^{\prime \prime}$. If $g: G \rightarrow \mathbb{R}$ is differentiable in $y \in N_{0}$ then there exist the partial derivatives

$$
\partial_{i} g(y):=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} g\left(\exp _{G}\left(t D_{i}+\sum_{\ell=1}^{d} x_{\ell}(y) D_{\ell}\right)\right)
$$

for $i=1, \ldots, d$ and $y \in N_{0}$. Consider the function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$ defined by

$$
f\left(t_{1}, \ldots, t_{d}\right):=U\left(\exp _{G}\left(\sum_{i=1}^{d} t_{i} D_{i}\right) m^{-1}\right)
$$

By Lemma 3.1 we have that, if $y \in N_{0}$ and $t_{i}=x_{i}(y)$ for all i, then

$$
f\left(t_{1}, \ldots, t_{d}\right)=\exp \left(\sum_{i=1}^{d} t_{i} D_{i}(U)\right) U\left(m^{-1}\right)
$$

Hence f is infinitely differentiable at each point $\left(x_{1}(y), \ldots, x_{d}(y)\right) \in \mathbb{R}^{d}$ such that $y \in N_{0}$. For $t=\left(x_{1}(y), \ldots, x_{d}(y)\right)$ and $s=\left(x_{1}(m), \ldots, x_{d}(m)\right)$, where $y, m \in N_{0}^{\prime \prime}$, the Taylor formula for matrix-valued functions yields

$$
\begin{aligned}
f(t)= & f(s)+\sum_{i=1}^{d}\left(t_{i}-s_{i}\right) \partial_{i} f(s) \\
& +\sum_{i, j=1}^{d}\left(t_{i}-s_{i}\right)\left(t_{j}-s_{j}\right) \int_{0}^{1}(1-\lambda) \partial_{i} \partial_{j} f(\lambda t+(1-\lambda) s) \mathrm{d} \lambda
\end{aligned}
$$

But, for $y, m \in N_{0}^{\prime \prime}$, we have

$$
\begin{gathered}
f(t)=U\left(y m^{-1}\right)=R_{m^{-1}} U(y) \\
f(s)=U(e) \\
\partial_{i} f(s)=\partial_{i} R_{m^{-1}} U(m) \\
\partial_{i} \partial_{j} f(\lambda t+(1-\lambda) s)=\partial_{i} \partial_{j} R_{m^{-1}} U(\lambda y+(1-\lambda) m)
\end{gathered}
$$

where for a function h on G and $z \in G$ the shifted function $R_{z} h$ is defined by $R_{z} h(y):=h(y z)$ for $y \in G$. Hence $U\left(y m^{-1}\right)$ can be written in the form

$$
\begin{align*}
& U(e)+\sum_{i=1}^{d}\left(x_{i}(y)-x_{i}(m)\right) \partial_{i} R_{m^{-1}} U(m) \\
& \quad+\frac{1}{2} \sum_{i, j=1}^{d}\left(x_{i}(y)-x_{i}(m)\right)\left(x_{j}(y)-x_{j}(m)\right) \partial_{i} \partial_{j} R_{m^{-1}} U(m)+R(U, y, m) \tag{5.1}
\end{align*}
$$

where $R(U, y, m)$ denotes the quantity

$$
\begin{aligned}
\sum_{i, j=1}^{d}\left(x_{i}(y)\right. & \left.-x_{i}(m)\right)\left(x_{j}(y)-x_{j}(m)\right) \\
& \times \int_{0}^{1}(1-\lambda)\left(\partial_{i} \partial_{j} R_{m^{-1}} U(\lambda y+(1-\lambda) m)-\partial_{i} \partial_{j} R_{m^{-1}} U(m)\right) \mathrm{d} \lambda
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& \left(\mu * \varepsilon_{m^{-1}}\right)^{\wedge}(U)-I=\int_{G \backslash N_{o}^{\prime \prime}}\left(U\left(y m^{-1}\right)-U(e)-\sum_{i=1}^{d}\left(x_{i}(y)-x_{i}(m)\right) \partial_{i} R_{m^{-1}} U(m)\right. \\
& \left.\quad-\frac{1}{2} \sum_{i, j=1}^{d}\left(x_{i}(y)-x_{i}(m)\right)\left(x_{j}(y)-x_{j}(m)\right) \partial_{i} \partial_{j} R_{m^{-1}} U(m)\right) \mu(\mathrm{d} y) \\
& \quad+\frac{1}{2} \sum_{i, j=1}^{d} b_{i j} \partial_{i} \partial_{j} R_{m^{-1}} U(m)+\int_{N_{o}^{\prime \prime}} R(U, y, m) \mu(\mathrm{d} y)
\end{aligned}
$$

For $v \in N_{0}$ we have

$$
\begin{aligned}
& \partial_{i} R_{m^{-1}} U(v)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} U\left(\exp _{G}\left(t D_{i}+\sum_{\ell=1}^{d} x_{\ell}(v) D_{\ell}\right) m^{-1}\right) \\
& \quad=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \exp \left(t D_{i}(U)+\sum_{\ell=1}^{d} x_{\ell}(v) D_{\ell}(U)\right) U\left(m^{-1}\right) \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \sum_{k=0}^{\infty} \frac{1}{k!}\left(t D_{i}(U)+\sum_{\ell=1}^{d} x_{\ell}(v) D_{\ell}(U)\right)^{k} U\left(m^{-1}\right) \\
& \quad=\sum_{k=1}^{\infty} \frac{1}{k!} \sum_{r=0}^{k-1}\left(\sum_{\ell=1}^{d} x_{\ell}(v) D_{\ell}(U)\right)^{r} D_{i}(U)\left(\sum_{\ell=1}^{d} x_{\ell}(v) D_{\ell}(U)\right)^{k-1-r} U\left(m^{-1}\right)
\end{aligned}
$$

Since the coordinate functions x_{1}, \ldots, x_{d} are continuous, the function

$$
(m, v) \mapsto \partial_{i} R_{m^{-1}} U(v)
$$

from $N_{0}^{\prime \prime} \times N_{0}^{\prime \prime}$ into $\mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$ is continuous, hence bounded, because of the compactness of N_{0}. Similarly, the function $(m, v) \mapsto \partial_{i} \partial_{j} R_{m^{-1}} U(v)$ is bounded on $N_{0}^{\prime \prime} \times N_{0}^{\prime \prime}$; thus we conclude the assertion.

6. Infinitesimal systems of probability measures

Definition 6.1. A system $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ of probability measures on G is said to be infinitesimal if

$$
\max _{1 \leq \ell \leq k_{n}} \mu_{n, \ell}(G \backslash N) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for all $N \in \mathcal{N}(e)$.

Lemma 6.2. A system $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ of probability measures on G is infinitesimal if and only if for each $U \in \operatorname{Irr}(G)$ we have

$$
\max _{1 \leq \ell \leq k_{n}}\left\|\widehat{\mu}_{n, \ell}(U)-I\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Proof. Similar to the proof of Lemma 8.1 in Siebert [9].
Lemma 6.3. If $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ is an infinitesimal system of probability measures on G then for sufficiently large n, the measures $\mu_{n, 1}, \ldots, \mu_{n, k_{n}}$ have local means $m_{n, 1}, \ldots, m_{n, k_{n}}$, and the systems $\left\{\varepsilon_{m_{n, \ell}}: n \in \mathbb{N}\right.$, $\left.\ell=1, \ldots, k_{n}\right\}$ and $\left\{\mu_{n, \ell} * \varepsilon_{m_{n, \ell}^{-1}}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ are infinitesimal.

Proof. For all $N \in \mathcal{N}(e), n \in \mathbb{N}, \ell=1, \ldots, k_{n}$ and $i=1, \ldots, d$ we have

$$
\left|\int_{G} x_{i}(y) \mu_{n, \ell}(\mathrm{~d} y)\right| \leq \sup _{y \in N}\left|x_{i}(y)\right|+\left\|x_{i}\right\| \mu_{n, \ell}(G \backslash N)
$$

hence

$$
\limsup _{n \rightarrow \infty} \max _{1 \leq \ell \leq k_{n}}\left|\int_{G} x_{i}(y) \mu_{n, \ell}(\mathrm{~d} y)\right| \leq \sup _{y \in N}\left|x_{i}(y)\right|
$$

Since $N \in \mathcal{N}(e)$ is arbitrary, we conclude

$$
\begin{equation*}
\max _{1 \leq \ell \leq k_{n}}\left|\int_{G} x_{i}(y) \mu_{n, \ell}(\mathrm{~d} y)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty \quad \text { for all } i=1, \ldots, d \tag{6.1}
\end{equation*}
$$

which implies existence of local mean of the measures $\mu_{n, 1}, \ldots, \mu_{n, k_{n}}$ for sufficiently large $n \in \mathbb{N}$. Convergence (6.1) also implies that for each $N \in \mathcal{N}(e)$ we have $m_{n, 1}, \ldots, m_{n, k_{n}} \in N$ for sufficiently large $n \in \mathbb{N}$; thus the system $\left\{\varepsilon_{m_{n, \ell}}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ is infinitesimal.

If a probability measure μ on G has local mean m then for all $U \in \operatorname{Irr}(G)$

$$
\begin{aligned}
& \left\|\left(\mu * \varepsilon_{m^{-1}}\right)^{\wedge}(U)-I\right\|=\left\|\widehat{\mu}(U) U(m)^{-1}-I\right\|=\left\|(\widehat{\mu}(U)-U(m)) U(m)^{-1}\right\| \\
& \quad \leq\|\widehat{\mu}(U)-U(m)\|=\left\|\widehat{\mu}(U)-\widehat{\varepsilon_{m}}(U)\right\| \leq\|\widehat{\mu}(U)-I\|+\left\|\widehat{\varepsilon_{m}}(U)-I\right\|
\end{aligned}
$$

Hence Lemma 6.2 implies infinitesimality of the system $\left\{\mu_{n, \ell} * \varepsilon_{m_{n, \ell}^{-1}}: n \in \mathbb{N}\right.$, $\left.\ell=1, \ldots, k_{n}\right\}$.

For a positive bounded measure μ on G, the Poisson measure $\nu=\mathrm{e}^{\mu-\mu(G) \varepsilon_{e}} \in$ $\mathfrak{M}^{1}(G)$ with exponent μ is defined by

$$
\mathrm{e}^{\mu-\mu(G) \varepsilon_{e}}:=\mathrm{e}^{-\mu(G)}\left(\varepsilon_{e}+\mu+\frac{\mu * \mu}{2!}+\frac{\mu * \mu * \mu}{3!}+\cdots\right) .
$$

Clearly

$$
\widehat{\nu}(U)=\mathrm{e}^{\widehat{\mu}(U)-\mu(G) \cdot I}
$$

for all $U \in \operatorname{Rep}(G)$; hence ν is an embeddable probability measure with triplet $(a, 0, \mu)$, where $a=\left(a_{1}, \ldots, a_{d}\right)$ with $a_{i}=\int_{G} x_{i}(y) \mu(\mathrm{d} y), i=1, \ldots, d$.

Theorem 6.4. Let $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ be an infinitesimal system of probability measures on G. Denote the local mean and the local covariance matrix of $\mu_{n, 1}, \ldots, \mu_{n, k_{n}}$ by $m_{n, 1}, \ldots, m_{n, k_{n}}$ and by $B_{n, 1}, \ldots, B_{n, k_{n}}$ (which exist for sufficiently large $n \in \mathbb{N}$ by Lemma 6.3). Let

$$
\mu_{n, \ell}^{\prime}:=\mu_{n, \ell} * \varepsilon_{m_{n, \ell}^{-1}}, \quad \nu_{n, \ell}^{\prime}:=\exp \left(\mu_{n, \ell}^{\prime}-\varepsilon_{e}\right)
$$

Suppose that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{\ell=1}^{k_{n}}\left(\mu_{n, \ell}\left(G \backslash N_{0}^{\prime \prime}\right)+\operatorname{Tr}\left(B_{n, \ell}\right)\right)<\infty \tag{6.2}
\end{equation*}
$$

Then

$$
\left\|\left(\mu_{n, 1} * \cdots * \mu_{n, k_{n}}\right)^{\wedge}(U)-\left(\nu_{n, 1}^{\prime} * \varepsilon_{m_{n, 1}} * \cdots * \nu_{n, k_{n}}^{\prime} * \varepsilon_{m_{n, k_{n}}}\right)^{\wedge}(U)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $U \in \operatorname{Irr}(G)$. In particular, the sequence $\left(\mu_{n, 1} * \cdots * \mu_{n, k_{n}}\right)_{n \geq 1}$ of row products is convergent if and only if the sequence $\left(\nu_{n, 1}^{\prime} * \varepsilon_{m_{n, 1}} * \cdots * \nu_{n, k_{n}}^{\prime} *\right.$ $\left.\varepsilon_{m_{n, k_{n}}}\right)_{n \geq 1}$ of row products is convergent. In the affirmative case the limits of these sequences coincide.

Moreover,

$$
\left\|\left(\mu_{n, 1}^{\prime} * \cdots * \mu_{n, k_{n}}^{\prime}\right)^{\wedge}(U)-\left(\nu_{n, 1}^{\prime} * \cdots * \nu_{n, k_{n}}^{\prime}\right)^{\wedge}(U)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for all $U \in \operatorname{Irr}(G)$. In particular, the sequence $\left(\mu_{n, 1}^{\prime} * \cdots * \mu_{n, k_{n}}^{\prime}\right)_{n \geq 1}$ of row products is convergent if and only if the sequence $\left(\nu_{n, 1}^{\prime} * \cdots * \nu_{n, k_{n}}^{\prime}\right)_{n \geq 1}$ of row products is convergent, and in the affirmative case the limits of these sequences coincide.

Proof. Let

$$
\begin{aligned}
\mu_{n} & :=\mu_{n, 1} * \cdots * \mu_{n, k_{n}}=\mu_{n, 1}^{\prime} * \varepsilon_{m_{n, 1}} * \cdots * \mu_{n, k_{n}}^{\prime} * \varepsilon_{m_{n, k_{n}}} \\
\nu_{n}^{\prime} & :=\nu_{n, 1}^{\prime} * \varepsilon_{m_{n, 1}} * \cdots * \nu_{n, k_{n}}^{\prime} * \varepsilon_{m_{n, k_{n}}}
\end{aligned}
$$

If $A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{k} \in \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$ with $\left\|A_{\ell}\right\| \leq 1$ and $\left\|B_{\ell}\right\| \leq 1$ for all $\ell=1, \ldots, k_{n}$, then

$$
\left\|A_{1} \cdots A_{k}-B_{1} \cdots B_{k}\right\| \leq \sum_{\ell=1}^{k}\left\|A_{\ell}-B_{\ell}\right\|
$$

Hence

$$
\begin{aligned}
& \left\|\widehat{\mu}_{n}(U)-\left(\nu_{n}^{\prime}\right)^{\wedge}(U)\right\|=\|\left(\mu_{n, 1}^{\prime}\right)^{\wedge}(U)\left(\varepsilon_{m_{n, 1}}\right)^{\wedge}(U) \cdots\left(\mu_{n, k_{n}}^{\prime}\right)^{\wedge}(U)\left(\varepsilon_{m_{n, k_{n}}}\right)^{\wedge}(U) \\
& \quad-\left(\nu_{n, 1}^{\prime}\right) \wedge(U)\left(\varepsilon_{m_{n, 1}}\right)^{\wedge}(U) \cdots\left(\nu_{n, k_{n}}^{\prime}\right) \wedge(U)\left(\varepsilon_{m_{n, k_{n}}}\right)^{\wedge}(U) \| \\
& \leq \sum_{\ell=1}^{k_{n}}\left\|\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-\left(\nu_{n, \ell}^{\prime}\right)^{\wedge}(U)\right\|=\sum_{\ell=1}^{k_{n}}\left\|\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-\exp \left(\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right)\right\| .
\end{aligned}
$$

For a matrix $A \in \mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$ we have

$$
\begin{aligned}
\left\|\mathrm{e}^{A}-I-A\right\| & =\left\|\sum_{k=2}^{\infty} \frac{A^{k}}{k!}\right\| \leq \sum_{k=2}^{\infty} \frac{\|A\|^{k}}{k!}=\|A\|^{2} \sum_{k=0}^{\infty} \frac{\|A\|^{k}}{(k+2)!} \\
& \leq\|A\|^{2} \sum_{k=0}^{\infty} \frac{\|A\|^{k}}{k!}=\|A\|^{2} \mathrm{e}^{\|A\|}
\end{aligned}
$$

Applying this for $A=\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I$ we obtain

$$
\begin{aligned}
\left\|\widehat{\mu}_{n}(U)-\left(\nu_{n}^{\prime}\right)^{\wedge}(U)\right\| & \leq \sum_{\ell=1}^{k_{n}}\left\|\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right\|^{2} \mathrm{e}^{\left\|\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right\|} \\
& \leq \mathrm{e}^{2}\left(\max _{1 \leq \ell \leq k_{n}}\left\|\left(\mu_{n, \ell}^{\prime}\right) \wedge(U)-I\right\|\right) \sum_{\ell=1}^{k_{n}}\left\|\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right\|
\end{aligned}
$$

By Lemma 6.3 , the system $\left\{\mu_{n, \ell}^{\prime}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ is infinitesimal; thus by Lemma 6.2

$$
\max _{1 \leq \ell \leq k_{n}}\left\|\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence it suffices to show that

$$
\sup _{n \in \mathbb{N}} \sum_{\ell=1}^{k_{n}}\left\|\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right\|<\infty
$$

By Lemma 5.2, this is a consequence of assumption (6.2).
The proof for the other system is similar.

7. Further investigations: convergence of a system to an embeddable measure

Theorem 7.1. Let $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ be an infinitesimal system of probability measures on G. Denote the local mean and the local covariance matrix of $\mu_{n, 1}, \ldots, \mu_{n, k_{n}}$ by $m_{n, 1}, \ldots, m_{n, k_{n}}$ and by $B_{n, 1}, \ldots, B_{n, k_{n}}$ (which exist for sufficiently large $n \in \mathbb{N}$ by Lemma 6.3). Let

$$
\mu_{n, \ell}^{\prime}:=\mu_{n, \ell} * \varepsilon_{m_{n, \ell}^{-1}}
$$

Suppose that there exists $(0, B, \eta) \in \mathcal{P}(G)$ such that
(i) $\sum_{\ell=1}^{k_{n}} B_{n, \ell} \rightarrow \widetilde{B}$ as $n \rightarrow \infty$,
(ii) $\quad \sum_{\ell=1}^{k_{n}} \mu_{n, \ell}(G \backslash N) \rightarrow \mid, \eta(G \backslash N)$ as $n \rightarrow \infty$ for all $N \in \mathcal{N}(e)$ with $\eta(\partial N)=0$, where \widetilde{B} is defined in (4.1). Then

$$
\exp \left(\sum_{\ell=1}^{k_{n}}\left(\mu_{n, \ell}^{\prime}-\varepsilon_{e}\right)\right) \rightarrow \nu
$$

where ν is an embeddable probability measure on G with triplet $(0, B, \eta)$.
Proof. The measure

$$
\nu_{n}^{\prime}:=\exp \left(\sum_{\ell=1}^{k_{n}}\left(\mu_{n, \ell}^{\prime}-\varepsilon_{e}\right)\right)
$$

is a Poisson measure with

$$
\left(\nu_{n}^{\prime}\right)^{\wedge}(U)=\exp \left(\sum_{\ell=1}^{k_{n}}\left(\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right)\right)
$$

for all $U \in \operatorname{Irr}(G)$. Moreover $\widehat{\nu}(U)$ has the form

$$
\exp \left\{\frac{1}{2} \sum_{i, j=1}^{d} b_{i, j} D_{i}(U) D_{j}(U)+\int_{G}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y)\right\}
$$

for all $U \in \operatorname{Irr}(G)$. Hence it is enough to show that

$$
\begin{align*}
& \sum_{\ell=1}^{k_{n}}\left(\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I\right) \\
& \rightarrow \frac{1}{2} \sum_{i, j=1}^{d} b_{i, j} D_{i}(U) D_{j}(U)+\int_{G}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) \tag{7.1}
\end{align*}
$$

as $n \rightarrow \infty$ for all $U \in \operatorname{Irr}(G)$. By the Taylor formula (5.1) the quantity $\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-$ I can be written in the form

$$
\begin{align*}
& \frac{1}{2} \sum_{i, j=1}^{d} \int_{N}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right) \partial_{i} \partial_{j} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right) \mu_{n, \ell}(\mathrm{~d} y) \\
& +\int_{G \backslash N}\left(U\left(y m_{n, \ell}^{-1}\right)-U(e)-\sum_{i=1}^{d}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right) \partial_{i} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right)\right) \mu_{n, \ell}(\mathrm{~d} y) \\
& +\int_{N} R\left(U, y, m_{n, \ell}\right) \mu_{n, \ell}(\mathrm{~d} y) \tag{7.2}
\end{align*}
$$

for each $N \in \mathcal{N}(e)$ with $N \subset N_{0}^{\prime \prime}$. Hence (7.1) follows from the following five limiting relationships:

$$
\begin{align*}
& \sum_{\ell=1}^{k_{n}} \int_{G \backslash N}\left(U\left(y m_{n, \ell}^{-1}\right)-U(e)-\sum_{i=1}^{d}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right) \partial_{i} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right)\right) \mu_{n, \ell}(\mathrm{~d} y) \\
& \rightarrow \int_{G \backslash N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) \quad \text { as } n \rightarrow \infty \tag{7.3}\\
& \quad \int_{N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) \rightarrow 0 \quad \text { as } N \rightarrow\{e\} \tag{7.4}\\
& \sum_{i, j=1}^{d} \sum_{\ell=1}^{k_{n}} \int_{N}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right) \partial_{i} \partial_{j} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right) \mu_{n, \ell}(\mathrm{~d} y) \\
& \rightarrow \sum_{i, j=1}^{d}\left(b_{i, j}+\int_{N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y)\right) D_{i}(U) D_{j}(U) \tag{7.5}\\
& \quad \int_{N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y) \rightarrow 0 \tag{7.6}\\
& \quad \text { as } n \rightarrow \infty \tag{7.7}\\
& \limsup _{n \rightarrow \infty}^{k_{n}} \sum_{\ell=1} \int_{N}\left\|R\left(U, y, m_{n, \ell}\right)\right\| \mu_{n, \ell}(\mathrm{~d} y) \rightarrow 0 \quad \text { as } N \rightarrow\{e\}
\end{align*}
$$

where (7.3) and (7.5) are valid for $N \in \mathcal{N}(e)$ with $N \subset N_{0}^{\prime \prime}$ and $\eta(\partial N)=0$.
In order to show (7.3) it is sufficient to prove that

$$
\begin{equation*}
\sum_{\ell=1}^{k_{n}} \int_{G \backslash N}\left(U\left(y m_{n, \ell}^{-1}\right)-U(y)\right) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow 0 \tag{7.8}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{\ell=1}^{k_{n}} \int_{G \backslash N}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(\partial_{i} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right)-\partial_{i} U(e)\right) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow 0 \tag{7.9}\\
& \sum_{\ell=1}^{k_{n}} \int_{G \backslash N} x_{i}\left(m_{n, \ell}\right) \partial_{i} U(e) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow 0 \tag{7.10}\\
& \sum_{\ell=1}^{k_{n}} \int_{G \backslash N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) \partial_{i} U(e)\right) \mu_{n, \ell}(\mathrm{~d} y) \\
& \rightarrow \int_{G \backslash N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) \tag{7.11}
\end{align*}
$$

as $n \rightarrow \infty$. Clearly (7.8) follows from

$$
\max _{1 \leq \ell \leq k_{n}} \sup _{y \in G}\left\|U\left(y m_{n, \ell}^{-1}\right)-U(y)\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(which is a consequence of the uniform continuity of U and the uniform convergence $m_{n, \ell} \rightarrow e$ as $n \rightarrow \infty$, see (6.1)), and from assumption (ii).

The mapping $y \mapsto \partial_{i} R_{y^{-1}} U(y)$ from N_{0} into $\mathbb{C}^{\operatorname{dim}(U) \times \operatorname{dim}(U)}$ is continuous (see the exact formula for $\partial_{i} R_{y^{-1}} U(y)$ in the proof of Lemma 5.2); hence it is uniformly continuous because of the compactness of N_{0}. Thus by the uniform convergence $m_{n, \ell} \rightarrow e$ as $n \rightarrow \infty$ we conclude

$$
\max _{1 \leq \ell \leq k_{n}}\left\|\partial_{i} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right)-\partial_{i} U(e)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

which together with assumption (ii) imply (7.9). Obviously (7.10) and (7.11) follows from assumption (ii), since $\partial_{i} U(e)=D_{i}(U)$ and $y \mapsto U(y)-U(e)-$ $\sum_{i=1}^{d} x_{i}(y) D_{i}(U)$ is a bounded continuous function.

By the estimate (ii) in Lemma 3.2 we obtain

$$
\begin{aligned}
&\left\|\int_{N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y)\right\| \\
& \leq \frac{1}{2} \int_{N} \varphi(y) \eta(\mathrm{d} y) \sum_{i, j=1}^{d}\left\|D_{i}(U) D_{j}(U)\right\| \rightarrow 0
\end{aligned}
$$

as $N \rightarrow\{e\}$; hence (7.4) holds.
In order to show (7.5) it is sufficient to prove that

$$
\sum_{\ell=1}^{k_{n}} \int_{N}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right) \mu_{n, \ell}(\mathrm{~d} y)
$$

$$
\begin{align*}
& \rightarrow b_{i, j}+\int_{N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y) \tag{7.12}\\
& \sum_{\ell=1}^{k_{n}} \int_{N}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right) \\
& \quad \times\left(\partial_{i} \partial_{j} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right)-\partial_{i} \partial_{j} U(e)\right) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow 0 \tag{7.13}
\end{align*}
$$

as $n \rightarrow \infty$, since

$$
\partial_{i} \partial_{j} U(e)=\frac{1}{2}\left(D_{i}(U) D_{j}(U)+D_{j}(U) D_{i}(U)\right)
$$

Indeed, by Lemma 3.1 we have

$$
\begin{aligned}
& \partial_{j} U\left(\exp _{G}\left(t D_{i}\right)\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} h}\right|_{h=0} U\left(\exp _{G}\left(h D_{j}+t D_{i}\right)\right) \\
& \quad=\left.\frac{\mathrm{d}}{\mathrm{~d} h}\right|_{h=0} \exp \left(h D_{j}(U)+t D_{i}(U)\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} h}\right|_{h=0} \sum_{k=0}^{\infty} \frac{\left(h D_{j}(U)+t D_{i}(U)\right)^{k}}{k!} \\
& \quad=\sum_{k=1}^{\infty} \frac{t^{k-1}}{k!} \sum_{r=0}^{k-1} D_{i}(U)^{r} D_{j}(U) D_{i}(U)^{k-1-r}
\end{aligned}
$$

implying

$$
\partial_{i} \partial_{j} U(e)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \partial_{j} U\left(\exp _{G}\left(t D_{i}\right)\right)=\frac{1}{2}\left(D_{i}(U) D_{j}(U)+D_{j}(U) D_{i}(U)\right)
$$

Convergence (7.12) will follow from

$$
\begin{align*}
& \sum_{\ell=1}^{k_{n}} \int_{G \backslash N}\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right) \mu_{n, \ell}(\mathrm{~d} y) \\
& \rightarrow \int_{G \backslash N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y) \tag{7.14}
\end{align*}
$$

and assumption (i). Assumption (ii) implies

$$
\sum_{\ell=1}^{k_{n}} \int_{G \backslash N} x_{i}(y) x_{j}(y) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow \int_{G \backslash N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y) \quad \text { as } n \rightarrow \infty
$$

By (6.1) and assumption (ii),

$$
\sum_{\ell=1}^{k_{n}} \int_{G \backslash N}\left(x_{i}\left(m_{n, \ell}\right) x_{j}\left(m_{n, \ell}\right)-x_{i}(y) x_{j}\left(m_{n, \ell}\right)-x_{j}(y) x_{i}\left(m_{n, \ell}\right)\right) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow 0
$$

and we conclude (7.14). Convergence (7.13) follows from (7.12) and

$$
\max _{1 \leq \ell \leq k_{n}}\left\|\partial_{i} \partial_{j} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right)-\partial_{i} \partial_{j} U(e)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(which is again a consequence of the uniform continuity of the mapping $y \mapsto$ $\partial_{i} \partial_{j} R_{y^{-1}} U(y)$ on N_{0} and the uniform convergence $m_{n, \ell} \rightarrow e$ as $\left.n \rightarrow \infty\right)$; hence (7.5) holds.

We have

$$
\left|\int_{N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y)\right| \leq \int_{N} \varphi(y) \eta(\mathrm{d} y)
$$

thus we get (7.6).
In order to show (7.7) it suffices to prove that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sum_{\ell=1}^{k_{n}} \int_{N}\left|\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right)\right| \int_{0}^{1} \mid \partial_{i} \partial_{j} R_{m_{n, \ell}^{-1}} \\
& \quad \times U\left(\lambda y+(1-\lambda) m_{n, \ell}\right)-\partial_{i} \partial_{j} U(\lambda y+(1-\lambda) e) \mid \mathrm{d} \lambda \mu_{n, \ell}(\mathrm{~d} y)=0 \tag{7.15}\\
& \lim _{n \rightarrow \infty} \sum_{\ell=1}^{k_{n}} \int_{N}\left|\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right)\right| \\
& \quad \times\left|\partial_{i} \partial_{j} R_{m_{n, \ell}^{-1}} U\left(m_{n, \ell}\right)-\partial_{i} \partial_{j} U(e)\right| \mu_{n, \ell}(\mathrm{~d} y)=0 \tag{7.16}\\
& \lim _{N \rightarrow\{e\}} \limsup _{n \rightarrow \infty} \sum_{\ell=1}^{k_{n}} \int_{N}\left|\left(x_{i}(y)-x_{i}\left(m_{n, \ell}\right)\right)\left(x_{j}(y)-x_{j}\left(m_{n, \ell}\right)\right)\right| \\
& \quad \times \int_{0}^{1}\left|\partial_{i} \partial_{j} U(\lambda y+(1-\lambda) e)-\partial_{i} \partial_{j} U(e)\right| \mathrm{d} \lambda \mu_{n, \ell}(\mathrm{~d} y)=0 \tag{7.17}
\end{align*}
$$

The convergences (7.15) and (7.16) follow from (7.12) and

$$
\max _{1 \leq \ell \leq k_{n}} \sup _{y \in N}\left\|\partial_{i} \partial_{j} R_{m_{n, \ell}^{-1}} U\left(\lambda y+(1-\lambda) m_{n, \ell}\right)-\partial_{i} \partial_{j} U(\lambda y+(1-\lambda) e)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. Finally, (7.17) is a consequence of (7.12) and

$$
\sup _{y \in N} \sup _{\lambda \in[0,1]}\left\|\partial_{i} \partial_{j} U(\lambda y+(1-\lambda) e)-\partial_{i} \partial_{j} U(e)\right\| \rightarrow 0 \quad \text { as } N \rightarrow\{e\}
$$

which follows from the uniform continuity of the function $y \mapsto \partial_{i} \partial_{j} U(\lambda y+(1-\lambda) e)$ on $N_{0}^{\prime \prime}$.

Remark 7.2. If under the assumptions of Theorem 7.1

$$
\begin{equation*}
\left\|\left(\nu_{n, 1}^{\prime} * \cdots * \nu_{n, k_{n}}^{\prime}\right)^{\wedge}(U)-\left(\nu_{n}^{\prime}\right)^{\wedge}(U)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{7.18}
\end{equation*}
$$

for all $U \in \operatorname{Irr}(G)$, where

$$
\nu_{n, \ell}^{\prime}:=\exp \left(\mu_{n, \ell}^{\prime}-\varepsilon_{e}\right), \quad \nu_{n}^{\prime}:=\exp \left(\sum_{\ell=1}^{k_{n}}\left(\mu_{n, \ell}^{\prime}-\varepsilon_{e}\right)\right)
$$

then Theorems 7.1 and 6.4 would imply

$$
\mu_{n, 1}^{\prime} * \cdots * \mu_{n, k_{n}}^{\prime} \rightarrow \nu
$$

but it is not clear whether (7.18) holds. In fact, (7.18) is equivalent to

$$
\left\|\mathrm{e}^{A_{n, 1}} \cdots \mathrm{e}^{A_{n, k_{n}}}-\mathrm{e}^{A_{n, 1}+\cdots+A_{n, k_{n}}}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where the matrices $A_{n, \ell}, n \in \mathbb{N}, \ell=1, \ldots, k_{n}$ are defined by

$$
A_{n, \ell}:=\left(\mu_{n, \ell}^{\prime}\right)^{\wedge}(U)-I
$$

and we have the Taylor formula (7.2).
Theorem 7.3. Let $\left\{\mu_{n, \ell}: n \in \mathbb{N}, \ell=1, \ldots, k_{n}\right\}$ be an infinitesimal system of probability measures on G. Denote the local mean and the local covariance matrix of $\mu_{n, 1}, \ldots, \mu_{n, k_{n}}$ by $m_{n, 1}, \ldots, m_{n, k_{n}}$ and by $B_{n, 1}, \ldots, B_{n, k_{n}}$ (which exist for sufficiently large $n \in \mathbb{N}$ by Lemma 6.3). Suppose that there exists $(a, B, \eta) \in$ $\mathcal{P}(G)$ such that
(i) $\sum_{\ell=1}^{k_{n}} x_{i}\left(m_{n, \ell}\right) \rightarrow a_{i}$ as $n \rightarrow \infty$ for all $i=1, \ldots, d$,
(ii) $\sum_{\ell=1}^{k_{n}} B_{n, \ell} \rightarrow \widetilde{B}$ as $n \rightarrow \infty$,
(iii) $\sum_{\ell=1}^{k_{n}} \mu_{n, \ell}(G \backslash N) \rightarrow \eta(G \backslash N)$ as $n \rightarrow \infty$ for all $N \in \mathcal{N}(e)$ with $\eta(\partial N)=0$, where \widetilde{B} is defined in (4.1). Then

$$
\exp \left(\sum_{\ell=1}^{k_{n}}\left(\mu_{n, \ell}-\varepsilon_{e}\right)\right) \rightarrow \mu
$$

where μ is an embeddable probability measure on G with triplet (a, B, η).

Proof. The measure

$$
\nu_{n}:=\exp \left(\sum_{\ell=1}^{k_{n}}\left(\mu_{n, \ell}-\varepsilon_{e}\right)\right) \text { belowdisplayskip }=0 p t
$$

is a Poisson measure with

$$
\widehat{\nu}_{n}(U)=\exp \left(\sum_{\ell=1}^{k_{n}}\left(\widehat{\mu}_{n, \ell}(U)-I\right)\right)
$$

for all $U \in \operatorname{Irr}(G)$. Moreover

$$
\begin{aligned}
\widehat{\mu}(U)=\exp \{ & \sum_{i=1}^{d} a_{i} D_{i}(U)+\frac{1}{2} \sum_{i, j=1}^{d} b_{i, j} D_{i}(U) D_{j}(U) \\
& \left.+\int_{G}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y)\right\}
\end{aligned}
$$

holds for all $U \in \operatorname{Irr}(G)$. Hence it is enough to show that

$$
\begin{align*}
\sum_{\ell=1}^{k_{n}}\left(\widehat{\mu}_{n, \ell}(U)-I\right) \rightarrow & \sum_{i=1}^{d} a_{i} D_{i}(U)+\frac{1}{2} \sum_{i, j=1}^{d} b_{i, j} D_{i}(U) D_{j}(U) \\
& +\int_{G}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) \tag{7.19}
\end{align*}
$$

as $n \rightarrow \infty$ for all $U \in \operatorname{Irr}(G)$. By the Taylor formula (5.1) with $m=e$ we obtain

$$
\begin{align*}
\widehat{\mu}_{n, \ell}(U)-I= & \sum_{i=1}^{d} D_{i}(U) \int_{G} x_{i}(y) \mu_{n, \ell}(\mathrm{~d} y) \\
& +\frac{1}{2} \sum_{i, j=1}^{d} D_{i}(U) D_{j}(U) \int_{N} x_{i}(y) x_{j}(y) \mu_{n, \ell}(\mathrm{~d} y) \\
& +\int_{G \backslash N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \mu_{n, \ell}(\mathrm{~d} y) \\
& +\int_{N} R(U, y, e) \mu_{n, \ell}(\mathrm{~d} y) \tag{7.20}
\end{align*}
$$

for each $N \in \mathcal{N}(e)$ with $N \subset N_{0}^{\prime \prime}$. Hence (7.19) follows from the following six limiting relationships:

$$
\sum_{\ell=1}^{k_{n}} \int_{G \backslash N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \mu_{n, \ell}(\mathrm{~d} y)
$$

$$
\begin{align*}
& \quad \rightarrow \int_{G \backslash N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) \quad \text { as } n \rightarrow \infty \tag{7.21}\\
& \int_{N}\left(U(y)-U(e)-\sum_{i=1}^{d} x_{i}(y) D_{i}(U)\right) \eta(\mathrm{d} y) t o 0 \quad \text { as } N \rightarrow\{e\} \tag{7.22}\\
& \sum_{\ell=1}^{k_{n}} \int_{N} x_{i}(y) x_{j}(y) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow b_{i, j}+\int_{N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y) \quad \text { as } n \rightarrow \infty \tag{7.23}\\
& \int_{N} x_{i}(y) x_{j}(y) \eta(\mathrm{d} y) \rightarrow 0 \quad \text { as } N \rightarrow\{e\} \tag{7.24}\\
& \limsup _{n \rightarrow \infty} \sum_{\ell=1}^{k_{n}} \int_{N}\|R(U, y, e)\| \mu_{n, \ell}(\mathrm{~d} y) \rightarrow 0 \quad \text { as } N \rightarrow\{e\}, \tag{7.25}\\
& \sum_{\ell=1}^{k_{n}} \int_{G} x_{i}(y) \mu_{n, \ell}(\mathrm{~d} y) \rightarrow a_{i} \quad \text { as } n \rightarrow \infty, \tag{7.26}
\end{align*}
$$

where (7.21) and (7.23) are valid for $N \in \mathcal{N}(e)$ with $N \subset N_{0}^{\prime \prime}$ and $\eta(\partial N)=0$.
Clearly (7.21), (7.22), (7.23) and (7.24) are the same as (7.11), (7.4), (7.12) and (7.6), respectively. Moreover, (7.25) can be proved similarly to (7.7). Finally, (7.26) follows from assumption (i).

Remark 7.4. If under the assumptions of Theorem 7.3

$$
\begin{equation*}
\left\|\left(\nu_{n, 1}^{\prime} * \varepsilon_{m_{n, 1}} * \cdots * \nu_{n, k_{n}}^{\prime} * \varepsilon_{m_{n, k_{n}}}\right)^{\wedge}(U)-\widehat{\nu}_{n}(U)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{7.27}
\end{equation*}
$$

for all $U \in \operatorname{Irr}(G)$, where

$$
\nu_{n, \ell}:=\exp \left(\mu_{n, \ell}-\varepsilon_{e}\right), \quad \nu_{n}:=\exp \left(\sum_{\ell=1}^{k_{n}}\left(\mu_{n, \ell}-\varepsilon_{e}\right)\right)
$$

then Theorems 7.3 and 6.4 would imply

$$
\mu_{n, 1} * \cdots * \mu_{n, k_{n}} \rightarrow \mu
$$

but it is not clear whether (7.27) holds. In fact, (7.27) can be written in the form

$$
\left\|\mathrm{e}^{A_{n, 1} C_{n, 1}^{-1}-I} C_{n, 1} \cdots \mathrm{e}^{A_{n, k_{n}} C_{n, k_{n}}^{-1}-I} C_{n, k_{n}}-\mathrm{e}^{\sum_{\ell=1}^{k_{n}\left(A_{n, \ell}-I\right)} \| \rightarrow 0 \quad \text { as } n \rightarrow \infty, ~ . ~}\right\| \rightarrow
$$

where the matrices $A_{n, \ell}, C_{n, \ell}, n \in \mathbb{N}, \ell=1, \ldots, k_{n}$ are defined by

$$
A_{n, \ell}:=\widehat{\mu}_{n, \ell}(U), \quad C_{n, \ell}:=U\left(m_{n, \ell}\right)
$$

and we have the Taylor formula (7.20).

316 M. S. Bingham and Gy. Pap : Infinitesimal systems of probability measures...

References

[1] Ph. Feinsilver, Processes with independent increments on a Lie group, Trans. Amer. Math. Soc. 242 (1978), 73-121.
[2] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, Berlin Göttingen, Heidelberg, New York, 1963.
[3] H. Heyer, A central limit theorem for compact Lie groups, Papers from the 'Open House for Probabilists' (Mat. Inst., Aarhus Univ., Aarhus, 1971), Various Publ. Ser., No. 21 (Mat. Inst., Aarhus Univ., Aarhus, 1972), 101-117.
[4] H. Heyer, Infinitely divisible probability measures on compact groups, Lectures on Operator Algebras, Vol. 247, (dedicated to the memory of David M. Topping; Tulane Univ. Ring and Operator Theory Year, 1970-1971, Vol. II), Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1972, 55-249.
[5] H. Heyer, Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
[6] G. Pap, General solution of the functional central limit problems on a Lie group, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7(1) (2004), 43-87.
[7] K. R. Parthasarathy, The central limit theorem for the rotation group, Theory Probab. Appl. 9 (1964), 248-257.
[8] E. Siebert, A new proof of the generalized continuity theorem of Paul Lévy, Math. Ann. 233 (1978), 257-259.
[9] E. Siebert, Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Adv. Math. 39 (1981), 111-154.
[10] E. Siebert, Continuous hemigroups of probability measures on a Lie group, Probability Measures on Groups, Vol. 928, (Proceedings, Oberwolfach 1981), Lecture Notes in Mathematics, (H. Heyer, ed.), Springer-Verlag, Berlin, New York, 1982, 362-402.
[11] V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Prentice-Hall, New York, 1974.

```
MICHAEL S. BINGHAM
```

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HULL
HULL, HU6 7RX
ENGLAND
E-mail: m.s.bingham@hull.ac.uk

```
GYULA PAP
DEPARTMENT OF APPLIED MATHEMATICS AND PROBABILITY THEORY
FACULTY OF INFORMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, P.O. BOX }1
HUNGARY
E-mail: papgy@inf.unideb.hu
URL: http://www.inf.unideb.hu/valseg/dolgozok/papgy/papgy.html
```

(Received August 15, 2006; revised September 28, 2007)

[^0]: Mathematics Subject Classification: 60B15, 60F05.
 Key words and phrases: infinitesimal systems of probability measures.
 This research was carried out during the stay of the second author at University of Hull supported by research grant GR/S57334/01 from the Engineering and Physical Sciences Research Council.

