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Projectively Osserman manifolds

By MIGUEL BROZOS-VÁZQUEZ (Santiago de Compostela), PETER GILKEY (Eugene),

STANA NIKČEVIĆ (Belgrade), and UDO SIMON (Berlin)

Abstract. One says that a smooth manifold M of dimension m is a pseudo-

Riemannian manifold of signature (p, q) if the tangent bundle TM is equipped with a

smooth non-degenerate symmetric inner product g of signature (p, q) where p + q = m.

Similarly one says that M is an affine manifold if TM is equipped with a torsion free

connection ∇. One says g is Osserman if the eigenvalues of the Jacobi operator are con-

stant on the pseudo-sphere bundles of unit timelike and spacelike vectors. We extend

this concept from the pseudo-Riemannian to the affine setting to define the notion of

a projectively Osserman manifold. This notion is the focus of the paper. We establish

some basic results concerning projectively Osserman manifolds and exhibit examples of

this structure which arise in several different geometrical contexts.

1. Introduction

Let M = (M, g) be an m-dimensional pseudo-Riemannian manifold of sig-
nature (p, q) where p + q = m. Let ∇ be the Levi–Civita connection defined
by g, let R(x, y) := ∇x∇y − ∇y∇x − ∇[x,y] be the curvature operator, and let
J (x) : y → R(y, x)x be the Jacobi operator. Let Spec{J (x)} ⊂ C be the set of
eigenvalues of J (x) and let S±(M) be the pseudo-sphere bundles of unit spacelike
(+) and unit timelike (−) tangent vectors. One says that M is spacelike Osser-
man at P ∈ M if for every x, y ∈ S+(TP M, gP ), Spec{J (x)} = Spec{J (y)}. One
says that M is pointwise spacelike Osserman if it is spacelike Osserman at every
point of M and that M is globally spacelike Osserman if the eigenvalue structure
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does not in fact depend on the point in question. The notion timelike Osserman
is defined by replacing S+ by S− as appropriate. Note that if p > 0 and if q > 0,
then work of Garćıa–Ŕıo et al. [4] shows these are equivalent notions. The inves-
tigation of Osserman manifolds has been an extremely active and fruitful one in
recent years; we refer to [5], [6], [7] for further details.

In this paper, we wish to generalize these notions to the affine setting. Let
A := (M,∇) be an affine manifold where ∇ is a torsion free connection on TM .
Again, let R(x, y) be the curvature operator and let J (x) : y → R(y, x)x be
the associated Jacobi operator; we will write J∇ when it is necessary to distin-
guish the role of the connection. Let Spec{J (x)} ⊂ C be the spectrum of the
Jacobi operator; since J (x)x = 0, 0 ∈ Spec{J (x)}. Since J (cx) = c2J (x),
Spec{J (cx)} = c2 Spec{J (x)}. In the pseudo-Riemannian setting, we eliminated
this rescaling effect by assuming that g(x, x) = ±1. As this normalization is not
available in the affine setting, we must proceed slightly differently.

Recall that two non-zero points u, v ∈ Rm are said to be projectively equiv-
alent if u = cv for some 0 6= c ∈ R. This motivates the following definition; the
role of {0} is distinguished and introduces a small amount of technical fuss.

Definition 1.1. We say that an affine manifold A = (M,∇) is projectively
Osserman at a point P ∈ M if there exists a subset SP of C so that for any
tangent vector x ∈ TP M , Spec{J (x)} = c(x)SP for some suitably chosen complex
number c(x). We say that A is pointwise projectively Osserman if it is projectively
Osserman at every point of M . We say that A is globally projectively Osserman
if S can be chosen independently of P .

This is related to earlier work by Garćıa–Ŕıo et al. [4]. One says A = (M,∇)
is affine Osserman if Spec{J (x)} = {0} for all tangent vectors x; such a mani-
fold admits a natural neutral signature Osserman metric, called the Riemannian
extension, on the cotangent bundle T ∗M . Clearly any affine Osserman manifold
is projectively Osserman. The Riemannian extension is Osserman if and only if
A is affine Osserman.

We have chosen to work with Spec{J (x)}, it is also possible to work with the
unordered collection of eigenvalues S̃pec{J (x)} where each eigenvalue is repeated
according to multiplicity; working with S̃pec{J (x)} instead of Spec{J (x)} gives
rise to the notion of strongly projective Osserman. Fortunately, these are equiva-
lent concepts as we will show in Section 2.

In this paper, we will exhibit several examples of projectively Osserman affine
manifolds. In Section 3, we discuss examples which arise from Osserman geometry.
In Section 4, we discuss projectively Osserman Walker manifolds. In Section 5,



Projectively Osserman manifolds 361

we discuss examples from affine hypersurface theory. In Section 6, we discuss the
Weyl projective tensor.

2. Eigenvalue multiplicities

This section is devoted to the proof of the following technical result.

Lemma 2.1. Let A = (M,∇) and let P ∈ M . Then A is projectively

Osserman at P if and only if A is strongly projectively Osserman at P .

Proof. We must show that A is projectively Osserman at P implies that
A is strongly projectively Osserman at P as the reverse implication is trivial.
If Spec{J (x)} = {0} for all x ∈ TP M , then S̃pec{J (x)} is the unordered set
where 0 is repeated with multiplicity m and there is nothing to prove. We
therefore suppose there exists y ∈ TP M so J (y) has a non-zero eigenvalue. As
the eigenvalues vary continuously, as long as the spectrum does not degenerate
to {0}, the multiplicities are constant. Thus there is a small neighborhood O
of y in TP M so S̃pec{J (x)} = c(x)S̃pec{J (y)} for x ∈ O where c(x) 6= 0. Let
p(x; t) := det{J (x)− t id} be the characteristic polynomial. Decompose

p(x; t) =
m∏

i=1

(λi(x)− t) = κm(x) + κm−1(x)t + · · ·+ κktm−k + · · ·+ κ0(x)tm

where the coefficients κν(x) are the elementary symmetric functions of the eigen-
values {λ1(x), . . . , λm(x)}. We note that κν is a polynomial of degree 2k in the
coordinate functions of x relative to some basis for V . Furthermore, if x ∈ O,
then λν(x) = κν(x)λν(y) so

κν(x) = κν(y)c(x)ν for x ∈ O and for 0 ≤ ν ≤ m. (2.a)

As p(y; t) 6= (−t)m, there is 1 ≤ ν ≤ m so κν(y) 6= 0. Thus

c(x) :=
{

κν(x)
κν(y)

}1/k

is an analytic function of x. We may then complexify V and J and consider
the open dense subset U ⊂ V ⊗ C where Spec{J (x)} 6= {0}. We use analytic
continuation to see that equation (2.a) holds for all x ∈ U ∩ V . Consequently
p(y; t) = c(x)−mp(x; c(x)t) if Spec{J (x)} 6= {0} and the desired result follows.

¤
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3. Osserman Manifolds

One has the following observation:

Theorem 3.1. Let M = (M, g) be a pseudo-Riemannian manifold. If M is

Osserman at P ∈ M , then M is projectively Osserman at P .

Proof. Let M have signature (p, q). This is immediate if the metric on M
is positive definite since one has TP M = R · S+(TP M, gP ) and since one also has
J (cx) = c2J (x). The argument is the same if the metric is negative definite and
we therefore suppose p > 0 and q > 0. Let M be spacelike Osserman at P and
let S+

P := Spec{J (x)} for any x ∈ S+(TP M, gP ). Let %ν(x) := Tr{J (x)ν} for
any x ∈ TP M . As Spec{J (x)} is constant on S+(TP M, gP ), the eigenvalues and
hence the eigenvalue multiplicities are constant on S+(TP M, gP ). This implies
%ν(x) = %ν is constant on S+(TP M, gP ). Since %ν(cx) = c2i%ν(x), we have that
%ν(x) = g(x, x)ν%ν if x is spacelike. This polynomial identity holds on an open
subset of TP M and hence holds identically:

Tr{J (x)ν} = g(x, x)ν%ν for all x ∈ TP M.

It now follows, of course, that Spec{J (x)} = g(x, x)S+
P for any x ∈ TP M and

hence M is projectively Osserman at P . ¤

Affine Osserman tensors play a central role:

Theorem 3.2. Let A1 := (M1,∇1) be projectively Osserman at P1 ∈ M1

and let A2 := (M2,∇2) be affine Osserman at P2 ∈ M2. Then the product

A := (M1 ×M2,∇1 ⊕∇2) is projectively Osserman at P = (P1, P2).

Proof. If x = (x1, x2) ∈ T(P1,P2)(M1×M2), then J (x) = J (x1)⊕J (x2) so

Spec{J (x)} = Spec{J (x1)} ∪ Spec{J (x2)}
= Spec{J (x1)} ∪ {0} = Spec{J (x1)} = c(x1)SP1 . ¤

We use this ansatz to construct new examples. Give the sphere Sn and the
torus T k the usual metrics where n ≥ 2 and k ≥ 1. Then Sn is Osserman and
T k is flat so Sn × T k is projectively Osserman. On the other hand, Sn × T k is
not Osserman. Thus there are projectively Osserman manifolds which are not
Osserman. Furthermore, while any flat manifold is affine Osserman, there are
other examples:
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Example 3.3. Follow the discussion in [8]. Let (x1, . . . , xp, x̃1, . . . , x̃p) be
coordinates on R2p. Let ψ be a smooth symmetric 2-tensor field on Rp. Define
a pseudo-Riemannian metric of neutral signature (p, p) on R2p whose non-zero
components are, up to the usual Z2-symmetries, given by:

g(∂xi
, ∂xj

) = ψij(x1, . . . , xp) and g(∂xi
, ∂x̄j

) = δij .

As J (x)2 = 0 for all x, Spec{J (x)} = {0} for all x as desired.

Example 3.4. Follow the discussion in [9]. For s ≥ 2, choose coordinates

(u1, . . . , us, t1, . . . , ts, v1, . . . , vs)

on R3s. Let fi ∈ C∞(R) be given. Define a pseudo-Riemannian metric g of
signature (2s, s) on R3s whose non-zero components are given by:

g(∂ui , ∂ui) = −2(f1(u1) + u1t1 + · · ·+ fs(us) + usts),

g(∂ui , ∂vi) = g(∂vi , ∂ui) = 1, and g(∂ti , ∂ti) = −1.

Then J (x)3 = 0 for all x so A := (R3s,∇) is affine Osserman.

One says that an affine manifold A = (M,∇) is k-affine curvature homoge-
neous if given any two points P, Q ∈ M , there is an isomorphism φ : TP M → TQM

so that φ∗{∇iRP } = ∇iRQ for 0 ≤ i ≤ k.

Example 3.5. Follow the discussion in [10]. Let (x, y, z0, . . . , z`, x̃, ỹ, z̃0, . . . , z̃`)
be coordinates on R6+2`. Let gf be the pseudo-Riemannian neutral signature met-
ric defined by:

gf (∂x, ∂x̃) = gf (∂y, ∂ỹ) = gf (∂zi , ∂z̃i) = 1,

gf (∂x, ∂x) = f(y) + yz0 + · · ·+ y`+1z`.

Assume f (`+3) > 0 and f (`+4) > 0. Let Af := (R6+2`,∇f ) where ∇f is the
Levi–Civita connection defined by gf . Then Af is affine Osserman and Af is
(`+2)-affine curvature homogeneous. Furthermore, Af is (`+3)-affine curvature
homogeneous if and only if f (`+3)(y) = aeby for a > 0 and b > 0 real constants;
this happens if and only if Af is affine homogeneous.

The manifolds in Examples 3.3, 3.4, and 3.5 are generalized plane wave man-
ifolds and hence are geodesically complete. We refer to [7] for other examples and
to [11] for a further discussion of generalized plane wave manifolds.
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4. Walker manifolds

The following family will be crucial for our study.

Definition 4.1. Let (x1, x2, x3, x4) be coordinates on R4. Consider the fol-
lowing Walker manifold M := (R4, g) of signature (2, 2) where

g(∂x1 , ∂x3) = g(∂x2 , ∂x4) = 1 and g(∂x3 , ∂x4) = g34(x1, x2, x3, x4).

Let W be the Weyl conformal curvature operator of a pseudo-Riemannian
manifold and let JW (x) : y → W(y, x)x be the conformal Jacobi operator. One
says that M is pointwise conformally Osserman if JW has constant eigenvalues
on S±(TP M, gP ) for every point P ∈ M . We showed [1] that this is a confor-
mal notion; (M, g) is pointwise conformally Osserman if and only if (M, ehg) is
pointwise conformally Osserman for any h ∈ C∞(M).

Recall that in dimension 4, M is conformally Osserman if and only if M is
either self-dual or anti-self-dual. We take the orientation dx1dx2dx3dx4 for R4.
If f = f(x1, x2, x3, x4), let f/i := ∂xif and f/ij : ∂xi∂xj f . One has the following
result concerning these manifolds [2], [3]:

Theorem 4.2. Let M be as in Definition 4.1. Then

(1) M is self-dual if and only if g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4).

(2) M is anti-self-dual if and only if g34 = x1p(x3, x4)+x2q(x3, x4)+ s(x3, x4)+
ξ(x1, x4) + η(x2, x3) for p/3 = q/4 and g34p/3 − x1p/34 − x2p/33 − s/34 = 0.

(3) The following assertions are equivalent:

(a) M is Osserman.

(b) M is Einstein.

(c) The Ricci tensor is zero.

(d) g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4) where p2 = 2p/4, q2 = 2q/3,

and pq = p/3 + q/4.

Remark 4.3. Let M be as in Definition 4.1. Results of [3] show that if M is
Einstein, then g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4) where p and q have one
of the following forms:

(1) p = q = 0.

(2) p = 0 and q = −2(x3 + b(x4))−1.

(3) p = −2(x4 + a(x3))−1 and q = 0.

(4) p = −2(x4 + a)−1 and q = −2(x3 + b)−1.
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(5) p = −2(x3 + b0 + b1x4)−1 and q = −2(x4 + a0 + a1x3)−1 where a1b1 = 1 and
a0 = b0a1.

We now come to the main result of this section:

Theorem 4.4. Let M be as in Definition 4.1. Then M is globally projec-

tively Osserman if and only if at least one of the following conditions holds:

(1) g34 = p(x1, x4) + s(x3).

(2) g34 = q(x2, x3) + s(x4).

(3) g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4).

Proof. This is a computer assisted computation. We begin by verifying the
defining functions of Theorem 4.4 (1)–(3) define projectively Osserman manifolds.
Let ξ :=

∑
i vi∂xi . Suppose that

g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4).

Then Spec{J (ξ)} = {0, a(ξ)} where 0 and a(ξ) appear with multiplicity 2 with

a(ξ) =
1
4

{−v2
4p(x3, x4)2 + 2v3v4p(x3, x4)q(x3, x4)− v2

3q(x3, x4)2

+2v2
4p/4(x3, x4)− 2v3v4q/4(x3, x4)− 2v3v4p/3(x3, x4) + 2v2

3q/3(x3, x4)
}

.

Next suppose that g34 = p(x1, x4) + s(x3); the case g34 = q(x2, x3) + s(x4)
being analogous. One has Spec{J (ξ)} = {0, a(ξ)} where 0 and a(ξ) appear with
multiplicity 2 with

a(ξ) = −1
4
v4{v4p/1(x1, x4)2 − 2v4p/14(x1, x4)− 2v1p/11(x1, x4)}.

Conversely, supposeM is as given in Definition 4.1 and thatM is projectively
Osserman. We suppose first that 0 is at least a double eigenvalue. The coefficients
of λv3

1v2
3v4 and of λv1v

2
2v2

3v4 in the characteristic polynomial are seen to be

1
2
g34/11(g2

34/12 − g34/11g34/22) and
1
2
g34/22(g2

34/12 − g34/11g34/22).

To ensure 0 is at least a double eigenvalue, we set these two terms to zero and
obtain two cases:

Case 1: (g2
34/12 − g34/11g34/22) 6= 0. We then have g34/11 = g34/22 = 0 so

g34 = x1p(x3, x4) + x2q(x3, x4) + x1x2r(x3, x4) + s(x3, x4).
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One computes the coefficient of λv1v2v
3
3v4x

2
1 in the characteristic polynomial to

be − 1
2r(x3, x4)4. Setting this to zero implies r = 0 so g34 is affine in {x1, x2}

which is one of the possibilities enumerated in the Theorem.

Case 2: We have the identity g2
34/12 = g34/11g34/22. Only the first and second

derivatives appear in the calculation of the curvature tensor. Thus we may ap-
proximate by the second order Taylor polynomial. For simplicity, we suppose the
point in question to be x1 = x2 = 0. Set

g34 = a0(x3, x4) + x1a1(x3, x4) + x2a2(x3, x4)

+ x2
1a11(x3, x4)2 + x2

2a22(x3, x4)2 + 4x1x2a11(x3, x4)a22(x3, x4).

When x1 = x2 = 0, the coefficient of λv1v
2
2v2

3v4 in the characteristic polynomial
is seen to be 12a11(x3, x4)2a22(x3, x4)4. Thus we have g34/12 = 0 and, without
loss of generality g34/11 = 0. This means that

g34 = x1p(x3, x4) + q(x2, x3, x4).

Setting the coefficient of λ in the characteristic polynomial to zero then leads to:

0 = −1
8
{−2p/3(x3, x4) + p(x3, x4)q/2(x2, x3, x4)}2q/22(x2, x3, x4),

0 =
1
4
{p(x3, x4)2 − 2p/4(x3, x4)}{−2p/3(x3, x4) + p(x3, x4)q/2(x2, x3, x4)}

× q/22(x2, x3, x4),

0 = −1
8
{p(x3, x4)2 − 2p/4(x3, x4)}2q/22(x2, x3, x4).

One possibility is q/22 = 0. This implies g34 is affine in {x1, x2} as desired. The
other possibility is q/22 6= 0 so 2p/3(x3, x4) = p(x3, x4)q/2(x2, x3, x4). Differenti-
ating this relation with respect to ∂x2 yields 0 = pq/22 so p = 0 and

g34 = q(x2, x3, x4).

Zero is at least a double eigenvalue and the other eigenvalues are

λ±(x2, x3, x4) =
1
4
(−v2

3q2
/2 − 2v3v4q/24 + 2v2

3q/23 + 2v2v3q/22)

±
√
−v3

3v4q/34q/22 − v2v2
3v4q/24q/22.

Since q/22 6= 0, q/2 6= 0. Setting v4 = 0 and v3 = 2 yields λ± = −q2
/2 6= 0.

By Lemma 2.1, the remaining eigenvalue must be always be double eigenvalue
so the square root must vanish identically. Consequently q/34 = q/24 = 0 so
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g34 = q(x2, x3) + s(x4) which is the possibility given in (2) of the Theorem.
We complete the proof by analyzing what happens if there is a tangent vector

ξ0 so that 0 is a simple eigenvalue of J (ξ0). Lemma 2.1 then shows that for any
tangent vector ξ that either Spec{J (ξ)} = {0} or 0 is a simple eigenvalue of J (ξ).

We specialize and set v4 = 0. Zero is then a double eigenvalue and the other
eigenvalue a(ξ) is double eigenvalue as well where:

a(ξ) =
1
4
v3{−v3g34/2(x1, x2, x3, x4)2 + 2v3g34/23(x1, x2, x3, x4)

+ 2v2g34/22(x1, x2, x3, x4) + 2v1g34/12(x1, x2, x3, x4)}.

Consequently, a(ξ) = 0. This implies g34/12 = g34/22 = 0; specializing to set
v3 = 0 instead of v4 = 0 yields g34/11 = 0 as well. Thus g34 is affine in (x1, x2). ¤

5. Relative hypersurfaces

We refer to [12], [13] for further material concerning the theory of relative
hypersurfaces. Let A = (M,∇). We begin with a technical observation. Suppose
there is a quadratic form τ so that

J∇(x)y = τ(x, x)y − τ(x, y)x. (5.a)

Because J∇(x)x = 0, 0 ∈ Spec{J∇(x)}. Suppose that τ(x, x) = 0. One then
has that J∇(x)y = −τ(x, y)x and thus J∇(x)2y = 0. Since J∇(x) is nilpotent,
Spec{J∇(x)} = {0}. On the other hand, suppose τ(x, x) 6= 0. Let y ∈ x⊥, i.e.
τ(x, y) = 0. Then J (x)y = τ(x, x)y and we conclude Spec{J∇(x)} = {0, τ(x, x)}.
Thus ∇ is projectively Osserman by equation (5.a) as Spec{J∇} = {0, τ(x, x)}.

Fix a relative normalization for a hypersurface M in affine space Am+1.
Let (∇, g,∇∗) be the induced connection, the relative metric, and the conormal
connection; this forms a conjugate triple and one has that:

xg(y, z) = g(∇xy, z) + g(y,∇∗xz).

Let R and R∗ be the associated curvature operators, let Ric∗ be the Ricci tensor
of ∇∗, and let ρ∗ be the Ricci operator of ∇∗. One then has

R∗(v1, v2)w =
1

m− 1
{Ric∗(v2, w)v1 − Ric∗(v1, w)v2},

R(v1, v2)w =
1

m− 1
{g(v2, w)ρ∗v1 − g(v1, w)ρ∗v2},
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J∇∗y = R∗(y, x)x =
1

m− 1
{Ric∗(x, x)y − Ric∗(y, x)x} ,

J∇y = R(y, x)x =
1

m− 1
{g(x, x)ρ∗y − g(y, x)ρ∗x} .

Let HP be the relative mean curvature; M is said to be a relative umbilic at
a point P of M if Ric∗ = (m− 1)HP g at P . In this setting, Ric∗ = Ric so

J∇∗(x)y = J∇(x)y = HP {g(x, x)y − g(x, y)x}

and consequently both (M,∇) and (M,∇∗) are projectively Osserman at P . If
all points on M are relative umbilics, then the hypersurface with its relative
normalization is said to be a relative sphere; (M,∇) and (M,∇∗) are globally
projectively Osserman in such a situation. In particular: the spectra of the two
connections, which are in general different, coincide on M .

5.1. Centroaffine geometry. The centroaffine normalization of an affine hy-
persurface is given by a transversal position vector; this is a relative normalization,
and in terms of this relative normalization, any centroaffine hypersurface is a rel-
ative sphere. Thus, for all centroaffine hypersurfaces, the discussion of the last
section applies.

5.2. Examples. Affine spheres in the unimodular hypersurface theory, relative
spheres and centroaffine hypersurfaces are very big classes of hypersurfaces that
play an important role in the theory. Thus the foregoing sections give further
examples having the projectively Osserman property either pointwise or globally.

6. The Weyl projective tensor

There is no analogue of the Weyl conformal tensor in the geometry of a
manifold M equipped with an affine connection ∇, and thus we can not speak
of conformally Osserman in this context. Instead, a similar role is played by
the Weyl projective curvature tensor which is an invariant of the projective class
generated by ∇.

Recall that two connections ∇ and ∇] are said to be projectively equivalent
if there exists a 1-form θ so that

∇uv −∇]
uv = θ(u)v + θ(v)u. (6.a)
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We remark that the unparametrized geodesics of ∇ and ∇] coincide if and only if
both connections are projectively equivalent. Thus the algebraic definition given
in equation (6.a) has great geometric significance.

The projective curvature operator P = P∇ is defined by:

P(v1, v2)w : = R(v1, v2)w +
1

m2 − 1
{mRic(v1, w)v2 + Ric(w, v1)v2}

− 1
m2 − 1

{m Ric(v2, w)v1 + Ric(w, v2)v1}

+
1

m + 1
{Ric(v1, v2)w − Ric(v2, v1)w} .

If ∇ is Ricci symmetric, we have a somewhat simpler form:

P(v1, v2)w := R(v1, v2)w − 1
m− 1

{Ric(v2, w)v1 − Ric(v1, w)v2} .

This operator satisfies the identities:

P(v1, v2) = −P(v2, v1), and

P(v1, v2)v3 + P(v2, v3)v1 + P(v3, v1)v2 = 0.

If ∇ and ∇] are projectively equivalent and Ricci symmetric, then P∇ = P∇] .
We use P to define the projective Jacobi operator JP (x) : y → P(y, x)x; the
fundamental observation is then that if ∇ is projectively equivalent to ∇], then

JP,∇(x) = JP,∇](x) for all x.

We note that we are using the word projective in two different settings. We
shall say that (M,∇) is pointwise projectively Weyl Osserman if for every point
P ∈ M , there is a subset SP ⊂ C so that for any tangent vector x ∈ TP M ,
Spec{JP,∇(x)} = c(x)SP for a suitably chosen constant c(x). This notion plays
the role in the affine setting that the notion ‘conformal Osserman’ plays in the
geometric setting. In particular, any projectively flat manifold is necessarily pro-
jectively Weyl Osserman.
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