

Title: On homomorphisms of an abelian group into the group of invertible formal power series

Author(s): Wojciech Jabłoński and Ludwig Reich

We study solutions of the translation equation in rings of formal power series $\mathbb{K}[X]$, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ (the so called one-parameter groups or flows), and even, more generally, homomorphisms Θ from an abelian group (G, +) into the group (Γ, \circ) of invertible power series in $\mathbb{K}[X]$. This problem can equivalently be formulated as the question of finding homomorphisms Φ from (G, +) into the differential group $L^1_{\infty} = (Z_{\infty}, \cdot)$ describing the chain rules of higher order of C^{∞} -functions with fixed point 0. We prove the general form of the homomorphisms $\Theta : G \to \Gamma, \Theta(t) = \sum_{k=1}^{\infty} c_k(t)X^k$ and $\Phi : G \to Z_{\infty}, \Phi = (f_n)_{n\geq 1}$, for which c_1 and f_1 take infinitely many values (Theorems ?? and ??). These representations use sequences $(P_n)_{n\geq 2}$ of universal polynomials in c_1 , and $(v_n)_{n\geq 2}$ of universal polynomials in f_1 , and some sequences of parameters, which determine the individual homomorphism. We describe the connection between these forms of the homomorphisms. These results are deduced from the special case $|f_1| \neq 1$ (Theorem ??) and the case when c_1 is a regular function (Theorem ??).

Address:

Wojciech Jabłoński Department of Mathematics University of Rzeszow Rejtana 16 A 35-310 Rzeszów POLAND

Address:

Ludwig Reich Institute of Mathematics Karl-Franzens-University Graz Heinrichstrasse 36 A-8010 Graz AUSTRIA