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Maps from Mn(F) to F that are multiplicative with respect
to the Jordan triple product

By MIRKO DOBOVIŠEK (Ljubljana)

Abstract. Let F be the field of complex numbers C or the field of real numbers R.

Denote by Mn(F) the set of all n× n matrices over the field F. We show that if Φ is a

map from Mn(F) to F that is multiplicative with respect to Jordan triple product, that

is, a map: Φ : Mn(F) → F satisfying

Φ(ABA) = Φ(A)Φ(B)Φ(A), A, B ∈ Mn(F)

then there exists a multiplicative function ϕ : F → F such that either Φ(A) = ϕ(det A)

for all A ∈ Mn(F) or Φ(A) = −ϕ(det A) for all A ∈ Mn(F).

There is a lot of papers on so called preserver problems. Reader can find many
facts and references in an excellent survey paper written by Šemrl [8]. In the
paper many open problems are mentioned. One of the problems is to characterize
maps that are multiplicative with respect to the Jordan triple product, that is,
maps Φ from Mn(F) to Mm(F) satisfying

Φ(ABA) = Φ(A)Φ(B)Φ(A) (1)

for all A,B ∈ Mn(F). Molnár [6] found the general form of such bijective
mappings on Mn(C) for n ≥ 3, Lu [5] presented a purely algebraic proof that
worked also in the dimension 2, Lešnjak and Sze [4] characterized all such
injective maps, Kuzma [3] characterized nondegenerate maps that preserve the
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Jordan triple product on Mn(F), n ≥ 3. Continuous maps from the set of all n×n

complex positive definite, positive semi-definite and Hermitian matrices to real
numbers were studied by Molnár [7]. A characterization of the determinant on
the above sets of matrices has been obtained. In our paper the maps Mn(F) to
F that are multiplicative with respect to the Jordan triple product are studied.
We shall see that also in this case the multiplicativity with respect to the Jordan
triple product characterizes the determinant on the set of all (real or complex)
matrices rather firmly.

The identity matrix is denoted by I, and a matrix with square equal to I is
called an involution.

For a map satisfying (1) by Φ(I) = Φ(I3) = (Φ(I))3, it follows that Φ(I) is
equal 1, −1 or 0, and since Φ(0) = Φ(03) = (Φ(0))3, Φ(0) is 1, −1 or 0.

At first we consider the case Φ(I) = 1, Φ(0) = 0.

Lemma 1. If we suppose that Φ(I) = 1, then Φ(A2) = (Φ(A))2 for all

A ∈ Mn(F).

Proof.

Φ(A2) = Φ(AIA) = Φ(A)Φ(I)Φ(A) = (Φ(A))2 (2)

¤

Lemma 2. If Φ(I) = 1, and a matrix A is invertible then Φ(A) 6= 0, and

Φ(A−1) = (Φ(A))−1.

Proof.

1 = Φ(I) = Φ(AA−2A) = Φ(A)Φ(A−2)Φ(A)

Therefore Φ(A) 6= 0.
From Φ(A) = Φ(AA−1A) = Φ(A)Φ(A−1)Φ(A) we get Φ(A−1) = (Φ(A))−1.

¤

Lemma 3. If Φ(I) = 1, and matrices A and B are similar then Φ(A) = Φ(B).

Proof. If matrices A are B similar then there exists an invertible matrix
P such that A = P−1BP . We can suppose that det P = ±1. In [1] it is shown
that an n × n matrix over a field is a product of four involutions if and only if
detA = ±1. Thus P = V1V2V3V4 with V 2

1 = V 2
2 = V 2

3 = V 2
4 = I. Using this

result we obtain

Φ(A) = Φ(V4V3V2V1BV1V2V3V4) = Φ(V4)Φ(V3V2V1BV1V2V3)Φ(V4) = · · ·
= Φ(V4)Φ(V3)Φ(V2)Φ(V1)Φ(B)Φ(V1)Φ(V2)Φ(V3)Φ(V4).
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Since the field is commutative, and (Φ(Vk))2 = Φ(V 2
k ) = Φ(I) = 1, k = 1, 2, 3, 4,

we finally get Φ(A) = Φ(B). ¤

Denote by D(i, a), i = 1, 2, · · ·n the diagonal n×n matrix with a at the (i, i)
entry, elsewhere 1.

Lemma 4.
Φ(D(1, a)) = Φ(D(k, a)), k = 1, 2, . . . n. (3)

Proof. For any k = 1, 2, . . . , n the matrices D(1, a) and D(k, a) are similar.
Thus Φ(D(1, a)) = Φ(D(k, a)), k = 1, 2, . . . n by Lemma 3. ¤

Now, let us define

ϕ(a) = Φ(D(1, a)) = Φ







a 0 · · · 0
0 1 · · · 0

· · . . . ·
0 0 · · · 1







. (4)

Lemma 5. The function ϕ : F→ F is multiplicative, ϕ(1) = 1, ϕ(0) = 0.

Proof. First, let us show that ϕ(0) = 0. The zero matrix can be written as

0 = D(1, 0)D(2, 0) . . . D(n, 0)ID(n, 0)D(n− 1, 0) . . . D(1, 0).

By Lemma 4 we have Φ(D(1, 0)) = Φ(D(k, 0)) for k = 1, 2, . . . n. Therefore
0 = (ϕ(0))2n, so ϕ(0) = 0. By Lemma 1 we get ϕ(a2) = (ϕ(a))2 for all a ∈ F.

For complex case we show that ϕ is multiplicative by

ϕ(ab) = ϕ(
√

ab
√

a) = Φ







√
ab
√

a · 0
· · ·
0 · 1







= Φ







√
a · 0
· · ·
0 · 1







b · 0
· · ·
0 · 1







√
a · 0
· · ·
0 · 1







= ϕ(
√

a )ϕ(b)ϕ(
√

a ) = ϕ(a)ϕ(b).

The upper proof is valid also in the real case if at least one of the numbers a or b

is positive.
It remains to prove the multiplicativity for F = R, in the case a < 0 and

b < 0.
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In this case ab > 0, thus ϕ((ab)a) = ϕ(ab)ϕ(a). From (1) we get ϕ(aba) =
ϕ(a)ϕ(b)ϕ(a). Thus

ϕ(ab)ϕ(a) = ϕ(a)ϕ(b)ϕ(a).

Since ϕ(a) 6= 0 by invertibility of D(1, a), we get

ϕ(ab) = ϕ(a)ϕ(b).

From Φ(I) = 1 we get ϕ(1) = 1. ¤

Lemma 6. If F = C and Φ(I) = 1, then

Φ(D) = ϕ(det D) (5)

for any diagonal matrix D. In the real case the same is valid if no more than one

entry of the diagonal matrix is negative.

Proof. If F = C a diagonal matrix

D =




d1 0 · · · 0
0 d2 · · · 0

· · . . . ·
0 0 · · · dn




can be written as a product

D = D(1,
√

d1 ) . . . D(n− 1,
√

dn−1 )D(n, dn)D(n− 1,
√

dn−1 ) . . . D(1,
√

d1 ).

By Lemma 4 we obtain Φ(D(k,
√

dk)) = Φ(D(1,
√

dk)) = ϕ(
√

dk). Thus by (1)
we get

Φ(D) = ϕ(
√

d1 )ϕ(
√

d2 ) . . . ϕ(
√

dn−1 )ϕ(dn)ϕ(
√

dn−1 ) . . . ϕ(
√

d2 )ϕ(
√

d1 )

= ϕ(d1d2 . . . dn) = ϕ(det(D)).

We have to compute square roots on n − 1 entries, so in the real case one entry
can be negative. ¤

Theorem 7. Let F be C or R, and Φ : Mn(F) → F a map satisfying

Φ(ABA) = Φ(A)Φ(B)Φ(A), A, B ∈ Mn(F). (6)

Then there exists a multiplicative function ϕ : F→ F such that either

Φ(A) = ϕ(det A) for all A ∈ Mn(F)

or

Φ(A) = −ϕ(det A) for all A ∈ Mn(F).
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Proof. Since Φ(I) = Φ(I3) = (Φ(I))3 it follows that Φ(I) = 1,−1 or 0.
Also by Φ(0) = Φ(03) = (Φ(0))3 we have Φ(0) = 1,−1 or 0.

The cases Φ(I) = 0, Φ(0) 6= 0 are contradictory because we get ±1 = Φ(0) =
Φ(I0I) = Φ(I)Φ(0)Φ(I) = 0.

In the case Φ(I) = 1, Φ(0) = 1 we get Φ(A) = 1 for all A ∈ Mn(F).
In the case Φ(I) = 0, Φ(0) = 0 we get Φ(A) = 0 for all A ∈ Mn(F).
Thus in upper two cases the theorem is true.
If a map Φ satisfies (6) the same is true for the map −Φ.
Therefore only the case Φ(I) = 1 and Φ(0) = 0 remains to be proved.
From now on we will assume that Φ maps the zero matrix to 0 and the

identity matrix to 1.

Proof for C. Let A ∈ Mn. Denote by J the Jordan canonical form of the
matrix A. By Lemma 3 Φ(A) = Φ(J). If A is not invertible move a Jordan block
corresponding to eigenvalue 0 (one of them) in upper left corner of the matrix J .
Then there exists m ∈ N such that the first column and the first row of the matrix
Jm are 0. From

Φ(Jm) = Φ((I − E11)Jm(I − E11)) = Φ(I − E11)Φ(Jm)Φ(I − E11)

= ϕ(0)Φ(Jm)ϕ(0) = 0

we conclude Φ(A) = 0. From now on suppose that A is invertible.
For k > 0, λ 6= 0 and a 6= 0 denote by

Yk(λ, a) =




λ a · · · 0 0
0 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ a

0 0 · · · 0 λ




(7)

a matrix of size k × k. Note that

Y −1
k (1, a) =




1 −a a2 · · · ∗
0 1 −a · · · ∗
0 0 1 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 1




, Y 2
k (1, a) =




1 2a a2 · · · 0
0 1 2a · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




. (8)

The only eigenvalue of the matrices Yk(1, a), Y −1
k (1, a) and Y 2

k (1, a) is 1, and
since a 6= 0, each of them has only one eigenvector. Therefore they have the same
Jordan form, i.e., they are similar.
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First let us compute the value of Φ for matrices of the form

Blk(λ, a) =




Il 0 0
0 Yk(λ, a) 0
0 0 In−k−l


 (9)

where 0 ≤ l ≤ n − k. Since Blk(1, a) is similar to B−1
lk (1, a), Φ(Blk(1, a)) =

Φ(B−1
lk (1, a)) by Lemma 3. We get Φ(Blk(1, a)) = ±1. The matrix Blk(1, a) is

also similar to B2
lk(1, a), thus by Lemma 1

Φ(Blk(1, a)) = Φ(B2
lk(1, a)) = Φ(Blk(1, a))2.

We have shown that
Φ(Blk(1, a)) = 1. (10)

Using the identity

Blk(λ, 1) =




Il 0 0
0

√
λIk 0

0 0 In−k−l


 Blk(1, 1/λ)




Il 0 0
0

√
λIk 0

0 0 In−k−l


 (11)

we get

Φ(Blk(λ,1)) = Φ







Il 0 0
0

√
λIk 0

0 0 In−k−l





·1·Φ







Il 0 0
0

√
λIk 0

0 0 In−k−l





 = ϕ(λk)

by (6), (10) and Lemma 6.
Each Jordan block corresponding to nonzero eigenvalue can be written as a

square of an upper triangular matrix with
√

λ on diagonal




λ 1 · · · 0
0 λ · · · 0
...

...
. . .

0 0 · · · λ




=




√
λ 1

2λ−1/2 · · ·
( 1

2

k − 1

)
λ

3
2−k

0
√

λ · · ·
( 1

2

k − 2

)
λ

5
2−k

...
...

. . .
...

0 0 · · ·
√

λ




2

=
(√

Yk(λ, 1)
)2

,

and write

√
Blk(λ, 1) =




Il 0 0
0

√
Yk(λ, 1) 0

0 0 In−k−l


 .
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We will finish the proof by induction on the Jordan blocks. Suppose that the
dimensions of Jordan blocks in the matrix J are k1,k2, . . . ks and the corresponding
eigenvalues are λ1, λ2, . . . , λs. The values λk need not to be distinct. We already
know that

Φ(B0k1(λ1, 1)) = ϕ(λk1
1 ). (12)

Suppose that we know the value

Φ

([
C 0
0 In−l

])
,

where the matrix C is block diagonal with the first m − 1 Jordan blocks of the
matrix J on the diagonal. The dimension of the matrix C is l = k1+k2+· · ·+km−1.

Since we can write



C 0 0
0 Ykm(λm, 1) 0
0 0 In−km−l


 =

√
Blkm(λm, 1)

[
C 0
0 I

] √
Blkm(λm, 1)

we get

Φ







C 0 0
0 Ykm(λm, 1) 0
0 0 In−km−l





 = ϕ(λkm

m )Φ

([
C 0
0 I

])
.

Thus by induction we get

Φ(J) = ϕ(λk1
1 λk1

2 . . . λks
s ) = ϕ(det A).

Proof for R. We will use the real Jordan canonical form of a matrix. Proof of
the real Jordan form, and some observations can be find in [2]. Each real matrix
A ∈ Mn(R) is similar to a block diagonal matrix of the form




J(λ1)
. . .

J(λn1)
R(a1, b1)

. . .
R(an2 , bn2)




(13)
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where J(λ1), J(λ2), . . . , J(λn1) are Jordan blocks corresponding to real eigenval-
ues of the matrix A, and ak + ibk, ak, bk ∈ R, k = 1, 2, . . . n2, are nonreal eigen-
values of the matrix A. Values λk and the values ak + ibk need not be distinct.
Each real block triangular matrix R(ak, bk) is of the form

R(a, b) =




C(a, b) I · · · 0
0 C(a, b) · · · 0

· · . . . ·
0 0 · · · C(a, b)




, (14)

where

C(a, b) =

[
a b

−b a

]
, a, b ∈ R.

The similarity matrix can be chosen to be real.
Suppose that the dimension of R(a, b) is 2m× 2m, and compute

Φ







Il 0 0
0 R(a, b) 0
0 0 In−2m−l





 ,

and show that the matrix 


I 0 0
0 R(a, b) 0
0 0 In−2m−l




has a square root.
In what follows (in next lines), we work only with the blocks in the posi-

tion 2, 2.
Multiply the matrix R(a, b) by 1

4√a2+b2
I from the left and right, and denote

by

Rα =




a√
a2 + b2

b√
a2 + b2

−b√
a2 + b2

a√
a2 + b2


 .

The matrix Rα can be viewed as a clockwise rotation about the origin by an
angle α. Since

T =
1

4
√

a2 + b2
I R(a, b)

1
4
√

a2 + b2
I =




Rα
1√

a2 + b2
I · · · 0

0 Rα · · · 0
...

...
. . .

...
0 0 · · · Rα




, (15)
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and

Φ
(

1
4
√

a2 + b2
I

)
= ϕ

(
(a2 + b2)

−m
2

)
, (16)

we have

Φ(R(a, b)) = ϕ((a2 + b2)m)Φ(T ) = ϕ(det(R(a, b)))Φ(T ). (17)

The inverse of the matrix

C =




Rα I · · · 0
0 Rα · · · 0
...

...
. . .

...
0 0 · · · Rα




is

C−1 =




R−α −R−2α . . . (−1)m−1R−mα

0 R−α · · · (−1)m−2R−(m−1)α

...
...

. . .
...

0 0 · · · R−α




.

If we look matrices T , C and C−1 as an endomorphism of the space Cn they have
the same (and only one) conjugate pair of eigenvalues, λ1 = cos α + i sin α and
λ2 = cos α−i sin α. All three matrices has invertible matrices just above the blocks
on the diagonal. Therefore the geometric multiplicities of the eigenvalues are 1.
So complex Jordan forms of the matrices T , C, and C−1 are equal. Following
the construction of the real Jordan form from the complex one we can see that
also the real Jordan canonical forms of the matrices T , C, and C−1 are equal.
Therefore the matrices T , C, and C−1 are similar.

By Lemma (3), Φ(T ) = Φ(C), and Φ(C) = Φ(C−1). Therefore φ(C) = ±1.
Since the matrix C has square root

√
C =




Rα/2
1
2
R−α/2 · · ·

( 1
2

m− 1

)
R(3/2−m)α

0 Rα/2 · · ·
( 1

2

m− 2

)
R(5/2−m)α

...
...

. . .
...

0 0 · · · Rα/2




,

we have Φ(C) = 1 by Lemma 1.
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We proved that

Φ(




Il 0 0
0 R(a, b) 0
0 0 In−2m−l


) = ϕ(det(R(a, b))), (18)

and since the matrix C has a square root also the (similar) matrix T has a square
root. From (15) we see that also matrix R(a, b) has a square root.

Let

S2s =




0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0




have s 2× 2 blocks. Since S4
2s = I we have

Φ

([
S2s 0
0 I

])
= ±1

by Lemma 1.

Denote the real Jordan form of A by J and arrange the Jordan block to get
three blocks on the diagonal. The first one consisting of the Jordan blocks corre-
sponding to the negative eigenvalues of the matrix A, the second one consisting of
the Jordan blocks corresponding to the positive eigenvalues of the matrix A, and
the third one consisting of the real Jordan blocks corresponding to the conjugate
pairs of complex eigenvalues of the matrix A.

J =




J− 0 0
0 J+ 0
0 0 R


 . (19)

We will have two cases.

Case 1: If the dimension of J− is even, 2s, then multiply J from the left and
right by

P =

[
S2s 0
0 I

]
. (20)
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Since S2
2s = −I all eigenvalues of the matrix S2sJ−S2s are positive. Namely, if

µ < 0 is an eigenvalue of S2sJ−S2s, then for an eigenvector x associated with µ

we have
S2sJ−S2sx = µx, µ < 0.

Multiplying by −S2s from left, we get

J−S2sx = −µS2sx, µ < 0.

This is a contradiction, since all the eigenvalues of J− are negative.
Since Φ(P ) = ±1, we have

Φ(PJP ) = Φ(P )Φ(J)Φ(P ) = Φ(J) = Φ(A).

Also
det(PJP ) = det A.

In this case all real eigenvalues of the matrix J ′ = PJP are positive.

Case 2: If the dimension of J− is odd, 2s + 1, then multiply J from left and
right by

Q =




1 0 0
0 S2s 0
0 0 I


 . (21)

The product QJQ has exactly one negative eigenvalue and the complex eigen-
values remain the same. To see this, consider the matrix J as a block matrix
corresponding to the partition of the matrix Q. Therefore the Jordan form of the
matrix QJQ is of the form

J ′′ =




λ 0 0
0 J ′+ 0
0 0 R


 , (22)

where λ < 0 and all the eigenvalues of the matrix J ′+ are positive. As before, we
have det J ′′ = det A and Φ(J ′′) = Φ(A).

In the first case all blocks have square roots so we are able to end the proof
by induction as in the complex case.

In the second case when the sum of the dimensions of the blocks correspond-
ing to negative eigenvalues is even we start the induction with

Φ

([
λ 0
0 In−1

])
= ϕ(λ).

After that each block we add has a square root. We conclude Φ(A) = ϕ(det A).
¤
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[4] G. Lešnjak and N. S. Sze, On injective Jordan semi-triple maps on matrix algebras, Linear
Algebra Appl. 414 (2006), 383–388.

[5] F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), 311–317.

[6] L. Molnár, On isomorphisms of standard operator algebras, Stud. Math. 142 (2000),
295–302.

[7] L. Molnár, A remark on the Kochen–Specker theorem and some characterizations of the
determinant on sets on Hermitian matrices, Proc. Amer. Math. Soc. 134, no. 10 (2006),
2839–2848.
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