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Symmetric proportionally modular Diophantine inequalities

By J. C. ROSALES (Granada), J. M. URBANO-BLANCO (Granada)
and P. VASCO (Vila Real)

Abstract. We show that a proportionally modular numerical semigroup not con-

taining the integer 2 is symmetric if and only if it is the set of integer solutions of an

inequality of the form (ab− 1)x mod b2 ≤ (b− 2) x, where a and b are positive integers

such that a < b and gcd {a, b} = gcd {a− 1, b} = 1. We also obtain an easy procedure to

compute the number of symmetric proportionally modular numerical semigroups with

a given Frobenius number.

1. Introduction

Given two integers m and n with n 6= 0, we denote by m mod n the re-
mainder of the division of m by n. Following the terminology used in [11], a
proportionally modular Diophantine inequality is an expression of the form αx

mod β ≤ γx, where α, β and γ are positive integers. The set S (α, β, γ) of integer
solutions of this inequality is a numerical semigroup, that is, it is a subset of N
(here N denotes the set of nonnegative integers) that is closed under addition,
contains the zero and its complement in N is finite. We say that a numerical
semigroup is proportionally modular if it is the set of integer solutions of a pro-
portionally modular Diophantine inequality.

The greatest integer not belonging to a numerical semigroup S is its Frobe-
nius number and we denote it by g (S) (see [5]). A numerical semigroup S is
symmetric if x ∈ Z\S implies g (S)− x ∈ S (here Z denotes the set of integers).
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thank P. A. Garcıá-Sánchez and the referee for their comments and suggestions.



134 J. C. Rosales, J. M. Urbano-Blanco and P. Vasco

This type of numerical semigroups has been widely studied in the literature (see
for example [1], [2], [4], [6], [7] and [9]).

The proportionally modular Diophantine inequality αx mod β ≤ γx is sym-
metric if S (α, β, γ) is a symmetric numerical semigroup.

The contents of the present paper are organized as follows. Section 2 compiles
some results of [11] and [13] that are essential to the development of the rest of
the paper. In Section 3 we show that, if a and b are positive integers such
that a < b+1

2 and gcd {a, b} = gcd {a− 1, b} = 1, then S
(
ab− 1, b2, b− 2

)
is a

symmetric proportionally modular numerical semigroup with Frobenius number b.
Moreover, we will see that every symmetric proportionally modular numerical
semigroup not containing the integer 2 is of this form. Finally, Section 4 is devoted
to count the number of symmetric proportionally modular numerical semigroups
with a given Frobenius number.

2. Preliminaries

Given a nonempty subset A of Q+
0 (here Q+

0 denotes the set of nonnegative ra-
tional numbers), we will denote by 〈A〉 the submonoid of (Q+

0 , +) generated by A,
that is, 〈A〉 = {λ1a1+· · ·+λnan | n ∈ N\{0}, λ1, . . . , λn ∈ N and a1, . . . , an ∈ A}.
Note that 〈A〉 ∩N is a submonoid of N, denoted here by S (A). We call S (A) the
submonoid of N associated to A.

Let p < q be two positive rational numbers. We use the following notation:
[p, q] = {x ∈ Q | p ≤ x ≤ q}, [p, q[ = {x ∈ Q | p ≤ x < q}, ]p, q] = {x ∈ Q |
p < x ≤ q} and ]p, q[ = {x ∈ Q | p < x < q}. Along this paper, I will denote an
interval of one of these types.

In [11] it is proved that S ([p, q]) is a proportionally modular numerical semi-
group and that every proportionally modular numerical semigroup is of this form.
The following result is a reformulation of [11, Corollary 9].

Proposition 1. (1) Let α, β and γ be positive integers such that γ < α < β.

Then S
([

β
α , β

α−γ

])
= S(α, β, γ).

(2) Conversely, if a1, b1, a2 and b2 are positive integers such that b1
a1

< b2
a2

, then

S
([

b1
a1

, b2
a2

])
= S(a1b2, b1b2, a1b2 − a2b1).

Since the inequality αx mod β ≤ γx has the same solutions that the inequal-
ity (α mod β) x mod β ≤ γx, we can assume that α < β. Moreover, if γ ≥ α,
then S (α, β, γ) = N. Therefore, we can suppose that α, β and γ are positive
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integers such that γ < α < β. Consequently, the condition imposed in (1) of the
above proposition is not restrictive.

It is proved in [13] that proportionally modular numerical semigroups can
be defined by using any interval of Q+

0 . The following result is deduced from
Proposition 5 in [13].

Proposition 2. If I is an interval of positive rational numbers, then S(I) is

a proportionally modular numerical semigroup.

Next two results, which are part of Theorems 11 and 20 in [13], respectively,
are the key to the development of this paper.

Proposition 3. Let 2 ≤ a < b be integers. Then S
( ]

b
a , b

a−1

[ )
is a propor-

tionally modular numerical semigroup with Frobenius number b.

Proposition 4. Let S be a proportionally modular numerical semigroup.

Then S is symmetric if and only if either S = N, S = 〈2, 3〉 or S = S
( ]

b
a , b

a−1

[ )
,

where a and b are integers such that 2 ≤ a < b and gcd {a, b} = gcd {a− 1, b} = 1.

We conclude this section with a result that will be used several times along
this paper and which can be easily deduced from [13, Lemma 2].

Lemma 5. Let I be an interval of positive rational numbers and let x be

a positive integer. Then x ∈ S(I) if and only if there exists a positive integer y

such that x
y ∈ I.

3. Symmetric proportionally modular numerical semigroups

Along this section we shall suppose that a and b are integers such that 2 ≤
a < b and gcd {a, b} = gcd {a− 1, b} = 1. Hence there exist positive integers u,
v, s and t such that au− bv = 1 and bt− s (a− 1) = 1. Besides, we can assume
that both u and s are smaller than b. Note also that b has to be odd.

Lemma 6. Under the above hypothesis, we have the following inequalities:
b
a < u

v ≤ 2b
2a−1 ≤ s

t < b
a−1 . Moreover, if a 6= b+1

2 , then u
v < s

t .

Proof. Since au − bv = 1, we have b
a < u

v . Clearly, u
v ≤ 2b

2a−1 if and only
if u ≥ 2. But u ≥ 2 holds, since if u = 1, then a = bv + 1, which contradicts the
fact that a < b.

As bt − s (a− 1) = 1, we have s
t < b

a−1 . It is easy to see that 2b
2a−1 ≤ s

t if
and only if s ≥ 2. Observe that s ≥ 2, since if s = 1, then a = bt, in contradiction
with a < b.
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It is clear that gcd {u, v} = gcd {s, t} = 1. Hence, if u
v = s

t , then u = s

and v = t. Since bt− s (a− 1) = 1, we have bv − u (a− 1) = 1 and consequently
u = 2. As 1 < b

a < u
v , we have v < u, and so v = 1. Therefore, from the equality

au− bv = 1, we get that 2a− b = 1, which is equivalent to a = b+1
2 . ¤

If S is a numerical semigroup, then the smallest positive integer that belongs
to S is an important invariant of S, called the multiplicity of S and denoted here
by m(S) (see [1]).

The following result, which implicitly appears in the introduction of [8], is
straightforward to prove.

Lemma 7. Let g be an odd positive integer and let S be a numerical

semigroup. Then S has multiplicity 2 and Frobenius number g if and only if

S = 〈2, g + 2〉.
Next result determines when a semigroup of the form S

( ]
b
a , b

a−1

[ )
has mul-

tiplicity 2.

Lemma 8. S
( ]

b
a , b

a−1

[ )
= 〈2, b + 2〉 if and only if a = b+1

2 .

Proof. Suppose that 2 ∈ S
( ]

b
a , b

a−1

[ )
. In view of Lemma 5 and the fact

that 1 < b
a , we deduce that b

a < 2
1 < b

a−1 . Therefore a = b+1
2 .

Assume that a = b+1
2 . Let us see that 2 ∈ S

( ]
b
a , b

a−1

[ )
. To this end, by

Lemma 5, it suffices to show that b
b+1
2

< 2
1 < b

b+1
2 −1

, which can be easily checked.

Since from Proposition 3 we know that b is the Frobenius number of S
( ]

b
a , b

a−1

[ )
,

by applying Lemma 7 we obtain that S
( ]

b
a , b

a−1

[ )
= 〈2, b + 2〉. ¤

Given an integer x we denote by {x,→} the set of all integers greater than
or equal to x.

Lemma 9. Let α and β be integers such that 2 ≤ α < β. Then {β−1, →} ⊆
S
([

β
α , β

α−1

])
.

Proof. From Proposition 1, we know that S
([

β
α , β

α−1

])
= {x ∈ N | αx

mod β≤x}. Since αx mod β≤β−1 for every x∈N, we deduce that {β−1,→}⊆
S
([

β
α , β

α−1

])
. ¤

We know from Lemma 5 that x ∈ S(I) if and only if there exists a positive
integer y such that x

y ∈ I. Next, we prove that if x < g(S(I)), then the integer y

is unique.

Lemma 10. Let I be an interval of rational numbers greater than 1 and let

x be a positive integer. If x ∈ S(I) and x < g(S(I)), then there exists a unique

positive integer y such that x
y ∈ I.
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Proof. The existence of a positive integer y such that x
y ∈ I is guaranteed

by Lemma 5. Assume to the contrary, that this integer is not unique. Then
there exists an integer z ≥ 2 such that x

z , x
z−1 ∈ I. Thus

[
x
z , x

z−1

] ⊆ I, and in
view of Lemma 5 we deduce that S

([
x
z , x

z−1

]) ⊆ S(I). By applying Lemma 9,
we have that {x− 1,→} ⊆ S(I), which is in contradiction with the hypothesis
x < g(S(I)). ¤

There can be several intervals I ⊆ ]
b
a , b

a−1

[
such that S(I) = S

( ]
b
a , b

a−1

[ )
.

The following lemma shows that if this is the case, I must contain the interval[
u
v , s

t

]
.

Lemma 11. Let I be an interval of rational numbers such that I ⊆ ]
b
a , b

a−1

[
.

If S(I) = S
( ]

b
a , b

a−1

[ )
, then

[
u
v , s

t

] ⊆ I.

Proof. By applying Lemmas 6 and 5, we deduce that u, s ∈ S(I). By using
Lemma 5 again, we have that there exist positive integers x and y such that
u
x , s

y ∈ I. Since u < b and s < b, from Proposition 3 and Lemmas 6 and 10 we
obtain x = v and y = t. Therefore u

v , s
t ∈ I and consequently

[
u
v , s

t

] ⊆ I. ¤

Our next goal in this section is to prove Theorem 17, which shows that the
converse to Lemma 11 also holds. Prior to this we need to introduce some concepts
and results.

It is well-known (see for example [10]) that every numerical semigroup S

is finitely generated and therefore there exists a finite subset A of N such that
S = 〈A〉. We say that A is a minimal system of generators of S if no proper subset
of A generates S. It is also well-known (see for instance [10]) that S∗\ (S∗ + S∗)
is the unique minimal system of generators of S, with S∗ = S\{0}. Given a
numerical semigroup S, we denote by M(S) the minimal system of generators of
S and say that the elements of M(S) are the minimal generators of S. Note that
m(S) is the minimum of M(S).

Next we show that if S is a symmetric numerical semigroup, then every
element of M(S) is smaller than g(S), except for the semigroups S = 〈2, g (S) + 2〉
and S = N.

Lemma 12. Let S be a symmetric numerical semigroup with m(S) ≥ 3.

Then every minimal generator of S is smaller than g(S).

Proof. Suppose that M(S) = {n1 < n2 < · · · < np}. Since np−n1 /∈S, from
the definition of symmetric numerical semigroup we have that g(S)− (np − n1) =
g(S) − np + n1 ∈ S. Taking into account that m(S) = n1 we deduce that either
g(S)− np + n1 ≥ n1 or g(S)− np + n1 = 0. To conclude the proof we only have
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to see that the last case is not possible. For that we distinguish two subcases,
which are p ≥ 3 and p = 2. If p ≥ 3, then np − n2 /∈ S. Since S is symmetric we
have that g(S) − np + n2 ∈ S and, as np = g(S) + n1, we get that n2 − n1 ∈ S,
which is not possible. If p = 2, then S = 〈n1, g(S) + n1〉. Since n1 ≥ 3 and
g(S) + 1, g(S) + 2 ∈ S, we deduce that g(S) + 1, g(S) + 2 ∈ 〈n1〉, which is
impossible. ¤

From the previous lemma, we obtain the following result.

Lemma 13. If a 6= b+1
2 , then every minimal generator of S

( ]
b
a , b

a−1

[ )
is

smaller than b.

Proof. In view of Propositions 3 and 4, we know that S
( ]

b
a , b

a−1

[ )
is a

symmetric numerical semigroup with Frobenius number b. Besides, by Lemmas 8
and 7 we deduce that S

( ]
b
a , b

a−1

[ )
has multiplicity greater than or equal to 3.

Now the proof follows from Lemma 12. ¤

The following result is [12, Lemma 4].

Lemma 14. Let n1, n2, α and β be positive integers such that n2α−n1β = 1.

Then

〈n1, n2〉 = {x ∈ N | αn2x mod n1n2 ≤ x} .

As an immediate consequence of Proposition 1 and Lemma 14 we have the
following result.

Lemma 15. Let n1, n2, α and β be positive integers such that n2α−n1β = 1.

Then S
([

n1
α , n2

β

])
= 〈n1, n2〉.

Lemma 16. Let n1, n2, α and β be positive integers such that n2α−n1β = 1.

If x ∈ S
( ]

n1
α , n2

β

[ )\{0}, then x > max {n1, n2}.
Proof. If x ∈ S

( ]
n1
α , n2

β

[ )
, by Lemma 5 we obtain that x ∈ S

([
n1
α , n2

β

])

and by Lemma 15 we have x ∈ 〈n1, n2〉. Thus x = λn1 + µn2, for some λ, µ ∈ N.
Clearly the result holds if λ 6= 0 and µ 6= 0.

Suppose that x = λn1. By Lemma 5, there exists a positive integer y such
that n1

α < λn1
y < n2

β . Since n1
α = λn1

λα we deduce that y < λα and so λn1
λα−1 < n2

β .
Hence λn1β < λαn2−n2 and consequently n2 < λ. Therefore x = λn1 > n2n1 ≥
max {n1, n2}.

Now if x = µn2, by proceeding in a similar way to the previous case, we
deduce that n1

α < µn2
µβ+1 . Consequently n1 < µ, and therefore x = µn2 > n1n2 ≥

max {n1, n2}. ¤

Now we are in conditions to prove the converse to Lemma 11.
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Theorem 17. Let a 6= b+1
2 and let I be an interval of rational numbers such

that I ⊆ ]
b
a , b

a−1

[
. Then S(I) = S

( ]
b
a , b

a−1

[ )
if and only if

[
u
v , s

t

] ⊆ I.

Proof. The necessary condition was shown in Lemma 11. Let us prove the
sufficient condition. Note that it is enough to see that S

( ]
b
a , b

a−1

[ ) ⊆ S
([

u
v , s

t

])
,

to which it suffices to prove that every minimal generator of S
( ]

b
a , b

a−1

[ )
belongs

to S
([

u
v , s

t

])
.

Let x be a minimal generator of S
( ]

b
a , b

a−1

[ )
. Then, by Lemma 5, we know

that there exists a positive integer y such that b
a < x

y < b
a−1 . If b

a < x
y < u

v , then
x ∈ S

( ]
b
a , u

v

[ )
and by applying Lemma 16 we have that x > b, which contradicts

Lemma 13. If s
t < x

y < b
a−1 , then x ∈ S

( ]
s
t ,

b
a−1

[ )
and by using Lemma 16 we

obtain that x > b, contradicting again Lemma 13. Therefore u
v ≤ x

y ≤ s
t and, in

view of Lemma 5, x ∈ S
([

u
v , s

t

])
. ¤

Let x and y be positive integers. It is straightforward to prove that b
a < x

y <
b

a−1 if and only if b
b+1−a < x

x−y < b
b−a . Therefore, by Lemma 5, we obtain the

following result.

Lemma 18. S
( ]

b
a , b

a−1

[ )
= S

( ]
b

b+1−a , b
b−a

[ )
.

Now we give a characterization for the symmetric proportionally modular
numerical semigroups with multiplicity greater than or equal to 3.

Corollary 19. S is a symmetric proportionally modular numerical semi-

group with g(S) = b and m(S) ≥ 3 if and only if S = S
(
ab− 1, b2, b− 2

)
, where

a and b are integers such that 2 ≤ a < b+1
2 and gcd {a, b} = gcd {a− 1, b} = 1.

Proof. Necessity. By Propositions 3 and 4, there exists an integer a such
that 2 ≤ a < b, gcd {a, b} = gcd {a− 1, b} = 1 and S = S

( ]
b
a , b

a−1

[ )
. Moreover,

taking into account Lemmas 8 and 18 we can suppose that a < b+1
2 .

Let u, v, s and t be positive integers defined as in the beginning of this
section. In view of Lemma 6, we have that b

a < u
v < s

t < b
a−1 . It is easy to check

that b
a < b2

ab−1 < u
v < s

t < b2

b(a−1)+1 < b
a−1 . So, by applying Theorem 17, we have

S = S
([

b2

ab−1 , b2

b(a−1)+1

])
. Therefore, by Proposition 1, S = S

(
ab− 1, b2, b− 2

)
.

Sufficiency. By applying Proposition 1, we get that S=S
([

b2

ab−1 , b2

ab−1−b+2

])
=

S
([

b2

ab−1 , b2

b(a−1)+1

])
. Let u, v, s and t be positive integers defined as in the

beginning of this section. Then b
a < b2

ab−1 < u
v < s

t < b2

b(a−1)+1 < b
a−1 . By

Theorem 17 we have S = S
( ]

b
a , b

a−1

[ )
. In view of Propositions 3 and 4, S is a

symmetric proportionally modular numerical semigroup with Frobenius number b.
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Finally, from Lemmas 8 and 7, we deduce that S has multiplicity greater than or
equal to 3. ¤

For a set A, we denote by #A its cardinality. Given a numerical semigroup S,
its set of gaps is H(S) = N\S. The cardinality of H(S) is usually known as the
genus of S (see [3]) and also as the singularity degree of S (see [1]). It is well-
known (see for example [2]) that a numerical semigroup is symmetric if and only
if #H(S) = g(S)+1

2 . As an immediate consequence of Corollary 19 we obtain the
following result.

Corollary 20. Let a and b be integers such that 2 ≤ a < b+1
2 and gcd {a, b} =

gcd {a− 1, b} = 1. Then #H
(
S

(
ab− 1, b2, b− 2

))
= b+1

2 .

4. The number of symmetric proportionally modular numerical
semigroups with a given Frobenius number

Our first aim in this section is to prove Theorem 23. To this end, we need
some preliminary results.

Lemma 21. Let I be an interval of positive rational numbers and let x be a

minimal generator of S(I). If y is an integer such that x
y ∈ I, then gcd {x, y} = 1.

Proof. Suppose that gcd {x, y} = d 6= 1. Then
x
d
y
d
∈ I and, in view of

Lemma 5, we have that x
d ∈ S(I), which contradicts the fact that x is a minimal

generator of S(I). ¤

The next result is the key to prove Theorem 23.

Lemma 22. Let I be an interval of positive rational numbers and let

M(S(I)) = {n1 < n2 < · · · < np}. If {α, β} = {n1, n2}, n2 < g(S(I)) and x and y

are integers such that
[

α
x , β

y

] ⊆ I, then βx− αy = 1.

Proof. Since β
y ∈ I, by applying Lemma 21, we have that gcd {β, y} = 1.

Hence there exist positive integers β′ and y′ such that βy′−β′y = 1. Besides, we
can assume that β′ < β. Note that β′

y′ < β
y .

Analogously, as α
x ∈ I, there exist positive integers α′ and x′ such that

α′x− αx′ = 1 and α′ < α. We also have α
x < α′

x′ .
Let us see that β′

y′ < α
x < β

y < α′
x′ cannot hold. If this were not the case,

by Lemma 5 we would deduce that α ∈ S
( ]

β′

y′ ,
β
y

[ )\{0} and β ∈ S
( ]

α
x , α′

x′
[ )\{0}

and, by Lemma 16, that α > β and β > α, which is not possible.
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Therefore either α
x ≤ β′

y′ < β
y or α

x < α′
x′ ≤ β

y must hold.

If α
x ≤ β′

y′ < β
y , then in view of Lemma 5 we have that β′ ∈ S(I). Since

β′ < β and {α, β} is the set formed by the two smallest minimal generators of
S(I), we deduce that β′ = kα, for some k ∈ N\{0}. As kα = β′ < β < g(S(I)),
by Lemma 10, we obtain y′ = kx. Replacing this in the equality βy′ − β′y = 1,
we obtain that βkx− kαy = 1, and therefore k = 1 and βx− αy = 1.

The case α
x < α′

x′ ≤ β
y is treated similarly. ¤

If m and n are integers such that n ≥ 2 and gcd {m,n} = 1, then we will de-
note by m−1 mod n the smallest positive integer u such that mu ≡ 1 ( mod n).

Observe that if M(S) = {n1 < n2 < · · · < np}, then n1 = m(S). We call n2

the ratio of S and denote it by r(S).

Theorem 23. Let a, a′ and b be integers such that 2 ≤ a < b and 2 ≤
a′ < b. If S = S

( ]
b
a , b

a−1

[ )
= S

( ]
b
a′ ,

b
a′−1

[ )
and r(S) < b, then either a = a′ or

a + a′ = b + 1.

Proof. In view of Proposition 3 we have g(S) = b. From Lemma 10, there
exist unique positive integers x and y such that

{m(S)
x , r(S)

y

} ⊆ ]
b
a , b

a−1

[
. Note

that, by Lemma 21, m(S)
x 6= r(S)

y . Now, we distinguish two cases depending on
m(S)

x < r(S)
y or r(S)

y < m(S)
x .

If m(S)
x < r(S)

y , then by applying Lemma 22 we have that r(S)·x−m(S)·y = 1.

As 1 < b
a < m(S)

x , we obtain that x < m(S), and so x = r(S)−1 mod m(S).
If r(S)

y < m(S)
x , then by using Lemma 22 we obtain that m(S) ·y−r(S) ·x = 1.

Therefore x = (−r(S))−1 mod m(S) = m(S)− (
r(S)−1 mod m(S)

)
.

As a consequence of the two previous paragraphs we get that either b
a <

m(S)
r(S)−1 mod m(S) < b

a−1 or b
a < m(S)

m(S)−(r(S)−1 mod m(S)) < b
a−1 . Similarly, we also

have either b
a′ < m(S)

r(S)−1 mod m(S) < b
a′−1 or b

a′ < m(S)
m(S)−(r(S)−1 mod m(S)) < b

a′−1 .

To conclude the proof, observe that b
a < m(S)

r(S)−1 mod m(S) < b
a−1 if and only if

b
b+1−a < m(S)

m(S)−(r(S)−1 mod m(S)) < b
b−a (see the paragraph preceding Lemma 18).

¤

Following the notation in [13], a numerical semigroup S is a half-line if S =
{m(S),→}∪ {0}, and it is opened modular if either S is a half-line or there exist
integers a and b such that 2 ≤ a < b and S = S

( ]
b
a , b

a−1

[ )
.

Corollary 24. Let S and S′ be two opened modular numerical semigroups.

Then S = S′ if and only if g(S) = g(S′), m(S) = m(S′) and r(S) = r(S′).
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Proof. The necessary condition is obvious. Let us see the sufficient condi-
tion. It is clear that S is a half-line if and only if g(S) = m(S)− 1. Thus, if S is
a half-line, as g(S′) = g(S) = m(S)− 1 = m(S′)− 1, S′ is also a half-line. Hence
S = S′.

If S and S′ are not half-lines, by Proposition 3 and by definition of opened
modular, we can assume that S = S

( ] g(S)
a , g(S)

a−1

[ )
and S′ = S

( ] g(S)
a′ , g(S)

a′−1

[ )
,

for some integers a and a′ such that 2 ≤ a < g(S) and 2 ≤ a′ < g(S). If
m(S) = m(S′) = 2 then by Lemma 7 we deduce that S = S′. If m(S) ≥ 3, then
by Lemma 12 r(S) < g(S). Now, in view of the proof of Theorem 23, it follows
that either a = a′ or a+ a′ = b+1. Finally, by Lemma 18, we obtain S = S′. ¤

Hence an opened modular numerical semigroup is determined by its two
smallest minimal generators and its Frobenius number.

Corollary 25. Let b ≥ 3 be an integer. Then the number of symmetric

proportionally modular numerical semigroups with Frobenius number b is equal

to #
{
a ∈ {

2, . . . , b+1
2

} | gcd{a, b} = gcd{a− 1, b} = 1
}
.

Proof. By applying Propositions 3 and 4 and Lemma 18, we deduce that
S is a symmetric proportionally modular numerical semigroup with Frobenius
number b if and only if S = S

( ]
b
a , b

a−1

[ )
, where a is an integer such that 2 ≤ a ≤

b+1
2 and gcd {a, b} = gcd {a− 1, b} = 1. From Lemmas 7 and 8, we know that

m(S) = 2 if and only if a = b+1
2 . We conclude the proof by using Lemma 12 and

Theorem 23. ¤

We define X(b) =
{
a ∈ {1, . . . , b} | gcd{a, b} = gcd{a − 1, b} = 1

}
and

χ(b) = #X(b), for any positive integer b. Note that X(b) 6= ∅ if and only if b

is odd and in this case b+1
2 ∈ X(b). Under these settings, Corollary 25 can be

reformulated in the following way.

Corollary 26. Let b ≥ 3 be an odd integer. Then the number of symmetric

proportionally modular numerical semigroups with Frobenius number b is equal

to χ(b)+1
2 .

Proof. We have that {1, b} ∩X(b) = ∅. Note that a ∈ X(b) if and only if
b + 1 − a ∈ X(b). To conclude the proof we observe that b+1

2 ∈ X(b) and that
a = b + 1− a if and only if a = b+1

2 . ¤

Finally we show that the values of χ(b), for any odd integer b ≥ 3, can be
easily obtained by using the following results.

Proposition 27. Let p ≥ 3 be a prime number. Then χ
(
pk

)
= pk−1(p− 2),

for any positive integer k.
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Proof. Let p ≥ 3 be a prime number and let k be a positive integer. Note
that 1 /∈ X

(
pk

)
. Since p is a prime number, the only numbers from the set{

1, . . . , pk
}

that do not belong to X
(
pk

)
, apart from 1, are those of the form t · p

and also those of the form t′ · p + 1, where 1 ≤ t ≤ pk−1 and 1 ≤ t′ ≤ pk−1 − 1.
It is clear that there are pk−1 numbers of the first type and pk−1 − 1 numbers of
the second one. Therefore χ

(
pk

)
= pk − 1 − pk−1 − (

pk−1 − 1
)

= pk − 2pk−1 =
pk−1(p− 2). ¤

Proposition 28. Let b ≥ 3 and b′ ≥ 3 be two coprime odd integers. Then

χ (b · b′) = χ(b) · χ (b′).

Proof. The proof is a consequence of the Chinese Remainder Theorem and
the fact that a ∈ X (b · b′) if and only if (a mod b, a mod b′) ∈ X(b)×X (b′). ¤

In view of Corollary 26 and Propositions 27 and 28 we can easily compute
the number of symmetric proportionally modular numerical semigroups with a
given Frobenius number. We illustrate this with an example.

Example 29. The number of symmetric proportionally modular numerical
semigroups with Frobenius number 7007 is

χ (7007) + 1
2

=
χ

(
13 · 11 · 72

)
+ 1

2
=

11 · 9 · (7 · 5) + 1
2

=
3466

2
= 1733.
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Proportionally modular diophantine inequalities, J. Number Theory 103 (2003), 281–294.

[12] J. C. Rosales and J. M. Urbano-Blanco, Proportionally modular diophantine inequali-
ties and full semigroups, Semigroup Forum 72 (2006), 362–374.

[13] J. C. Rosales and J. M. Urbano-Blanco, Opened modular numerical semigroups, J.
Algebra 306 (2006), 368–377.
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