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Entire functions sharing arguments of integrality, II

By JONATHAN PILA (Bristol)

Abstract. This paper gives a slight strengthening of a special case of the six

exponentials theorem and some related results.

1. Introduction

This paper, like its predecessor [4], is devoted to a certain aspect of the fol-
lowing general question. Suppose that X ⊂ C is an infinite set with no finite
points of accumulation, and that f1, f2, . . . , fn are entire functions that take in-
teger values on all x ∈ X. What conditions on the growth of the functions (and
on X) are sufficient to conclude that they are algebraically dependent (over Z),
at least when restricted to X? The paradigm result of this type is due to Pólya

[5], [2], [6], or see [4] for a statement (in a weakened form) and a generalization.
In this paper we consider a problem of the above general type related to the

four exponentials conjecture in transcendental number theory.
The four exponentials conjecture is the following statement. Let α, β ∈ C be

linearly independent over Q; let likewise a, b ∈ C be linearly independent over Q.
Then at least one of the four exponentials exp(aα), exp(aβ), exp(bα), exp(bβ) is
transcendental. The six exponentials theorem (due to Lang and Ramachandra)
asserts that if one has α, β as above and a, b, c ∈ C are linearly independent
over Q, then at least one of the six exponentials is transcendental. (See [10] for
references and further discussion.)
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Suppose that α, β, a, b are a counterexample to the four exponentials conjec-
ture, with moreover α, β, a, b ∈ R>0 and exp(aα), exp(aβ), exp(bα), exp(bβ) ∈ Z.
(Note that this special case of the conjecture is still open.) Then the entire
functions f1(z) = exp(az) and f2(z) = exp(bz) take integer values on the set
Xα,β = {iα + jβ : i, j ∈ N}, where N = {0, 1, 2, . . . }. The six exponentials the-
orem implies in particular that another entire function g(z) of the form exp(cz)
that takes integer values on Xα,β is algebraically dependent on f1 and f2.

Indeed the same conclusion holds for general entire functions g of somewhat
faster growth. For an entire function h, denote by M(h, r) the maximum modulus
of an entire function h at radius r, and say that h is of (strict) order ≤ ρ if there
is a constant C such that

M(f, r) ≤ Crρ

.

A result of Waldschmidt [9, Theorem 2.2.1] that generalizes results of Lang

[3, II, §2, Theorem 2] and Ramachandra [7, Theorem 1] (which in turn generalize
results of Schneider) on algebraic values of meromorphic functions, implies that,
under the above hypotheses, an entire function g that takes integer values on
Xα,β and is of order ≤ ρ for some ρ < 2 must be algebraically dependent on f1

and f2. (Indeed this is true for meromorphic functions, and without our special
assumptions on the form of the counterexample to four exponentials.)

We extend this slightly, in the special case, showing that the same conclusion
holds for certain entire functions of order ≤ 2 that may not be of order ≤ ρ for
any ρ < 2.

1.1. Theorem. Let a, b, α, β be a counterexample to the four exponentials con-
jecture with moreover α, β, a, b∈R>0 and exp(aα), exp(aβ), exp(bα), exp(bβ)∈Z.
Suppose that g(z) is an entire function that takes integer values on Xα,β and that

lim
r→+∞

log M(g, r)
r2

≤ 1
832 abα2β2

.

Then the functions f1(z) = exp(az), f2(z) = exp(bz), g(z) are algebraically depen-
dent over Z.

We have not attempted to optimize the numerical value 1/832. In this paper
we will prove a generalization of Theorem 1.1 which we now proceed to formulate.

1.2. Definition. Let X = {x0, x1, . . . } be a strictly increasing sequence of non-
negative real numbers.

(1) Call X a scale if, for any integer t ≥ 2 and positive ε,

lim
n→∞

nε log
(xtn

xn

)
= ∞.
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(2) Define, for an integer t ≥ 2,

χ(X, t) = lim inf
n→∞

1
n

n−1∑

j=0

log
xtn − xj

xn − xj
.

Note that if, for some positive integer t and some positive ε,

lim sup
n→∞

nε log
(

xtn

xn

)
< ∞

then X is bounded (see 2.2); thus the scale condition may be seen as a mild
regularity assumption when X has xj →∞ as j →∞.

We will measure the growth of an entire function relative to X by considering
the quantities

ωX(f, σ) = lim sup
n→∞

log M(f, xn)
nσ

where 0 < σ < 1. There is at most one σ for which 0 < ωX(f, σ) < ∞.
For Xα,β of Theorem 1.1 considered as an increasing sequence {x0, x1, . . . }

we have
xn ∼ (2nαβ)1/2

as n →∞ (see Proposition 2.6). Thus for f1, f2 of Theorem 1.1 we have

ωX(f1, 1/2) = a
√

2αβ, ωX(f2, 1/2) = b
√

2αβ.

The following result is essentially a reformulation, in our special situation,
of the aforementioned theorem of Waldschmidt, though our functions are not
required to be of finite order.

1.3. Theorem. Let X be a scale. Let f1, f2, . . . , fk be entire functions that are
integer valued on X, and suppose that ωX(fi, σi) < ∞ for i = 1, . . . , k where∑

i(1− σi) > 1. Then f1, . . . , fk are algebraically dependent over Z on X.

By algebraic dependence of f1, f2, . . . , fk over Z on X we mean that there
is a polynomial h ∈ Z[t1, t2, . . . , tk], not identically zero, such that h(f1(x), . . . ,
fk(x)) = 0 for all x ∈ X. We give a proof of Theorem 1.3 in Section 3.

Sequences of the form Xα,β are indeed scales (see 2.6). Under the hypotheses
of Theorem 1.1 we have independent functions f1, f2, integer valued on X = Xα,β ,
with ωX(f1, σ1), ωX(f2, σ2)<∞, where σ1 = σ2 = 1/2 so that

∑
(1 − σi)= 1,

the maximum possible according to 1.3, which thus already implies the six ex-
ponentials theorem (in the special case under consideration) as any additional
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function f3 with ωX(f3, σ) < ∞ for any σ < 1 would lead to algebraic depen-
dence.

In our generalization of Theorem 1.1 we consider a scale X together with
a finite set of entire functions f1, . . . , fk that are maximal in the sense of Theo-
rem 1.3. It is convenient to measure the growth of g by reference to the scale X,
so our growth hypothesis is stated in terms of M(g, xn).

1.4. Theorem. Let X be a scale. Let f1, f2, . . . , fk be entire functions that are
integer valued on X, and that satisfy ωX(fi, σi) < ∞ where 0 < σi < 1 and∑

i(1− σi) = 1. Suppose that T < χ(X, 2), and that g is an entire function that
is integer valued on X with

lim sup
n→∞

log M(g, xn)
n

≤ T k+1

2(k + 1)!3k+1

1∏
ωX(fi, σi)

.

Then {f1, . . . , fk, g} are algebraically dependent over Z on X.

For general X it is unclear whether one can conclude further (in 1.4 and 1.3)
that f1, . . . , fk, g are algebraically dependent entire functions. But for the situa-
tion of 1.1 one can deduce this (using Jensen’s formula). There is some further
discussion of this issue in [4].

The proofs of all the theorems will be by Schneider’s method from tran-
scendental number theory, that is, by construction of an auxiliary function using
Siegel’s Lemma. This is also the method used in the results of Lang, Ramachan-
dra, Waldschmidt mentioned above.

Our main motivation for the these results is the conjectural non-example
afforded by the four exponentials conjecture, as hypothesized in Theorem 1.1.
However, we are not able to exhibit examples satisfying the hypotheses of 1.4
either.

1.5. Question. Are there any examples of a scale X and entire functions
f1, . . . , fk, algebraically independent and integer valued on X, with growth rates
as in the hypothesis of 1.4?

In Section 4 we establish a more general version of Theorem 1.4 allowing
several additional functions gi. One could give a specific formulation of this
theorem for the situation of Theorem 1.1. This raises the possibility of proving the
four exponentials conjecture by constructing some integer valued entire functions
on Xα,β of suitable growth. Of course it is not clear how to do this. Some further
results are presented in Section 4.
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2. Preliminaries

An estimate following from Cauchy’s theorem

Our proofs follow a standard method of transcendence theory. We use Siegel’s
Lemma to construct an entire function that vanishes at certain prescribed points,
and then we show it is small (and so must vanish) at further points. The following
is the result we use to effect this last step. It is a simple consequence of Cauchy’s
integral theorem.

Let X = {x0, x1, . . . } be a strictly increasing sequence of non-negative real
numbers. For n,m ∈ N,m > n, set

QX(n,m) =
(xn − x0)(xn − x1) . . . (xn − xn−1)
(xm − x0)(xm − x1) . . . (xm − xn−1)

, RX(n,m) =
xm

xm − xn
.

2.1. Proposition. Suppose g is an entire function vanishing at x0, x1, . . . , xn−1.
Let m > n. Then

|g(xn)| ≤ QX(n,m)RX(n,m)M(g, xm).

Proof. This is Corollary 2.2 of [4]. ¤

Scales

We first verify the assertion after Definition 1.2 about the scale condition.

2.2. Proposition. Suppose that X = {x0, x1, . . . } is a strictly increasing se-
quence of non-negative real numbers, and t ≥ 2 an integer. Let ε > 0. Suppose

lim sup
n→∞

nε log
(

xtn

xn

)
< ∞.

Then X is bounded.

Proof. Suppose that, for all n ≥ A,

nε log
(

xtn

xn

)
≤ B.

Then, for any positive integer m,

log
(

xtmA

xA

)
≤ B

Aε

(
1 +

1
tε

+
1

(tε)2
+ . . .

)
≤ B

A(1− t−ε)
. ¤

The next two propositions show that the quantity RX(n, tn) of 2.1 is innocu-
ous for a scale.
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2.3. Proposition. Let t > 0. Then − log (1− exp(−t)) ≤ t−1.

Proof. We have − log(1 − exp(−t)) =
∑
k≥1

exp(−tk)/k ≤ ∑
k≥1

exp(−tk) =
(exp(t)− 1)−1 ≤ 1

t . ¤

2.4. Proposition. Let X = {x0, x1, . . . } be a scale, t ≥ 2 an integer, and ε > 0.
Then

lim
n→∞

log RX(n, tn)
nε

= 0.

Proof. Applying 2.3,

log RX(n, tn)
nε

=
− log(1− exp(− log(xtn/xn)))

nε
≤ (nε log(xtn/xn))−1

and the conclusion follows from the condition that X is a scale. ¤

Estimation of χ(X, t) for certain sequences X

2.5. Proposition. Let β1, . . . , βk be positive real numbers. Let
L = L(β1, . . . , βk) be the region of Rk defined by

L =
{

(u1, . . . , uk) ∈ Rk : 0 ≤ ui, i = 1, . . . , k,

k∑

i=1

ui

βi
≤ 1

}
.

Then the number #L ∩ Zk of integral lattice points in L satisfies

vol(L) =
1
k!

k∏

i=1

βi ≤ #L ∩ Zk ≤
(

1 +
k∑

i=1

1
βj

)k

vol(L).

Proof. For a point u = (u1, . . . , uk) of Rk let Bu denote the closed k-cube
with bottom corner at u, namely Bu = {y = (y1, . . . , yk) ∈ Rk : ui ≤ yi ≤ ui + 1,
i = 1, . . . , k}. Then the union of boxes Bu over u ∈ L ∩ Zk includes all L. Hence
the lower estimate for #L ∩ Zk. On the other hand, the same union is contained
in the region {(u1, . . . , uk) : 0 ≤ ui, i = 1, . . . , k,

∑
uj/βi ≤ (1 +

∑
1/βi)}. ¤

For α1, . . . , αk ∈ R positive and linearly independent over Q let

Xα1,...,αk
=

{ k∑

j=1

ijαj : ij ∈ N, j = 1, . . . , k

}

considered as an increasing sequence.
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2.6. Proposition. Let α1, . . . , αk ∈ R be positive and linearly independent over
Q. Let X = Xα1,...,αk

= {x0, x1, . . . } as above. Then

xn ∼
(

nk!
k∏

i=1

αi

)1/k

as n →∞ so that Xα1,...,αk
is a scale. Further,

χ(Xα1,...,αk
, t) ≥ χk(t) =

∫ 1

0

log
(

t1/k − v1/k

1− v1/k

)
dv.

Proof. The range of sums and products throughout the proof is i = 1, . . . , k.
For B ≥ 0 set

LB = {(u1, . . . , uk) ∈ Rk, ui ≥ 0,
∑

αiui ≤ B}.

According to 2.5 it holds that

Bk

k!
∏

αi
≤ #LB ∩ Zk ≤

(
1 +

1
B

∑
αi

)k
Bk

k!
∏

αi
.

If B = xn then #LB ∩ Zk = n + 1. Therefore

(
k!

∏
αi

)1/k

(n + 1)1/k −
∑

αi ≤ xn ≤
(

k!
∏

αi

)1/k

(n + 1)1/k

and it follows that

xn ∼
(

nk!
k∏

i=1

αi

)1/k

as n →∞, whence xtn/xn → t1/k as n →∞ and Xα1,...,αk
is a scale.

The function χ(Xα1,...,αk
, t) may be estimated by comparison with suitable

integrals. Fixing n, set B = xn, A = xtn. The function

log
(

A−∑
αiui

B −∑
αiui

)

is increasing in each variable ui. Therefore its value at a point (u1, . . . , uk) exceeds
the integral of the function over the cube {(ξ1, . . . , ξk) : ui − 1 < ξi ≤ ui, i = 1,

. . . , k}.
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Thus if 0 < δ < 1 then, once n is sufficiently large (depending on δ),

n−1∑

j=0

log
(

xtn − xj

xn − xj

)
≥

∫

LδB

log
(

xtn −
∑

αiui

xn −
∑

αiui

)
du

and so, for any such δ,

χ(X, t) ≥ lim inf
n→∞

1
n

∫

LδB

log
(

A−∑
αiui

B −∑
αiui

)
du.

For n sufficiently large we will also have A = xtn ≥ t1/kBδ. Further, vol(LB) ∼ n

as n or B go to infinity. Therefore

χ(X, t) ≥ lim inf
B→∞

1
vol(LB)

∫

LδB

log
(

t1/kBδ −∑
αiui

B −∑
αiui

)
du.

Let C = δB. Then taking the lim inf as C → ∞, changing the variable of
integration using w =

∑
αiui and v1/k = w/B,

χ(X, t) ≥ lim inf
C→∞

1
vol(LC/δ)

∫

LC

log
(

t1/kC −∑
αiui

C/δ −∑
αiui

)
du

= lim inf
C→∞

1
vol(LC/δ)

∫ C

0

log
(

t1/kC − w

C/δ − w

)
wk−1 dw

(k − 1)!
∏

αi

= lim inf
C→∞

vol(LC)
vol(LC/δ)

∫ 1

0

log
(

t1/k − v1/k

1/δ − v1/k

)
dv = δk

∫ 1

0

log
(

t1/k − v1/k

1/δ − v1/k

)
dv.

We may now let δ → 1 by dominated convergence. ¤

One would expect χ(Xα1,...,αk
, t) = χk(t), which would seem to require some

weak control on xn, xn−1 being extremely close together, giving a large contribu-
tion to the sum defining χ(Xα1,...,αk

, t). The lower bound obtained above suffices
for our purposes.

Basic integer valued polynomials

Let φn(z), n ∈ N denote the basic integer valued polynomials:

φ0(z) = 1, φ1(z) = z, . . . , φn(z) =
z(z − 1) . . . (z − n + 1)

n!
, . . . .

2.7. Proposition. Let n ∈ N, C ≥ 1, E ≥ n. Then M(φn, CE) ≤ e2CEn.

Proof. Since CE ≥ n, M(φn, CE) ≤ (2EC)n/n! ≤ e2CEn. ¤
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A consequence of Jensen’s formula

2.8. Proposition. Let f(z) be analytic for |z| < R and suppose f(0) = 1. Let
x1, . . . xn be a subset of the zeros of f (allowing multiplicity, i.e. xi may be repeated
so long as f(z)/

∏
(z − xi) remains analytic). Let r > max{|xi|}. Then

rn

|x1| |x2| . . . |xn| ≤ M(f, r).

Proof. Let r1, r2, . . . be the moduli of the zeros of f(z), arranged in non-
decreasing order and taken with multiplicity. Let m be the largest index for which
rm < r; thus rm+1, if it exists, satisfies r ≤ rm+1. It follows from Jensen’s formula
(see for e.g. [8, §3.61]) that

rm

|r1| |r2| . . . |rm| ≤ M(f, r).

Now |x1|, |x2|, . . . , |xn| occur, with multiplicity, among r1, r2, . . . rm. Therefore

rn

|x1| |x2| . . . |xn| ≤
rm

|r1| |r2| . . . |rm| . ¤

2.9. Proposition. Let X = Xα1,...,αk
where αi are positive and linearly inde-

pendent over Q. Let f be an entire function, vanishing on X, with

lim sup
n→∞

log M(f, xn)
n

<
1
k

.

Then f vanishes identically.

Proof. In view of 2.8 it suffices to show that

lim
n→∞

1
n

log
xn

n

x1x2 . . . xn
=

1
k

,

for if f is not identically zero it may be divided by a suitable finite power of z

and a suitable constant to meet the hypotheses of 2.8 yielding a contradiction.
According to the proof of 2.6 we have, for some suitable constants a, b, c,

c(n + a)1/k − b ≤ xn ≤ c(n + a)1/k + b.

It is elementary to establish the above limit under these conditions, noting im-
mediately that replacing xn by xn/c we may assume c = 1. ¤
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Siegel’s Lemma

2.10. Lemma. ([1, Lemma 2.9.1]) Let aij ∈ Z for i = 1, . . . , M, j = 1, . . . , N ,
not all zero. Suppose |aij | ≤ B, and N > M . Then the homogeneous linear
system

ai1x1 + ai2x2 + · · ·+ aiNxN = 0, i = 1, . . . ,M

has a solution x1, x2, . . . , xN in integers, not all 0, with

max |xj | ≤ (NB)M/(N−M). ¤

2.11. Corollary. Let y1, y2, . . . , yM be distinct complex numbers. Let ψ1, ψ2, . . . ,
ψN , where N > M , be entire functions (not necessarily distinct!) with ψj(yi) ∈ Z
and |ψj(yi)| ≤ B, where B ≥ 1. There exist integers t1, . . . , tM , not all zero, with
|tj | ≤ (NB)M/(N−M) such that the function

h =
M∑

j=1

tjψj

vanishes at y1, . . . , yN .

Proof. We require a non-trivial solution in integers to the homogeneous
system of equations

M∑

j=1

tjψj(yi) = 0, i = 1, . . . , M.

If not all ψj(yi) = 0, a solution satisfying the required bound is afforded by Lemma
2.10. If all ψj(yi) = 0 we can again find non-trivial solutions since B ≥ 1. ¤

3. Proof of Theorem 1.3

3.1. Proposition. Let X = {x0, x1, . . . } be a scale, t ≥ 2 an integer and ε > 0.
Then

lim
n→∞

nε log QX(n, tn)
n

= −∞.

Proof. The conclusion follows directly from the estimate

log QX(n, tn)
n

≤ − log
(

xtn

xn

)
.

and the hypothesis that X is a scale. ¤
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Proof of Theorem 1.3. Choose C ≥ 1, wj , j = 1, . . . , k, such that, for
each j and all n,

M(fj , xn) ≤ C exp (wjn
σj ) .

Set

δ =
1

2k + 1

( k∑

j=1

(1− σj)− 1
)

.

Let n be a positive integer, and set

In = {i = (i1, . . . , ik) ∈ Nk : 0 ≤ ij ≤ n(1−σj−2δ)}
and for i ∈ In set

ψi(z) = f i1
1 (z) . . . f ik

k (z).

Then, throwing away elements of In if necessary,

n1+δ ≤ #In ≤ (2n)1+δ,

and, for i ∈ In and any m ∈ N with m ≥ n we have, putting B = log C +
∑

wi,

M(ψi, xm) ≤ exp(Bm1−2δ).

Apply Siegel’s Lemma (Lemma 2.11) to build a non-trivial integral linear com-
bination h(z) = hn(z) of the functions ψi, i ∈ In that vanishes at x0, . . . , xn−1

using integer coefficients of absolute value not exceeding
(
(2n)1+δ exp(Bn1−2δ)

)n/(n1+δ−n) ≤ exp(B′n1−δ)

for suitable B′ and all sufficiently large n. Thus, for suitable B′′ and any m ≥ n,

M(h, xm) ≤ exp(B′′m1−δ).

Suppose that h vanishes at x0, . . . , xm−1,m ≥ n. Setting r = x2m and
applying the estimate of 2.1 shows that, upon taking logs and dividing by m1−ε

where 0 < ε < δ,

log |h(xm)|
m1−ε

≤ log QX(m, 2m)
m1−ε

+
log RX(m, 2m)

m1−ε
+

log M(h, x2m)
m1−ε

.

The second (by 2.4) and third terms on the right hand side → 0, while the first
term → −∞ by 3.1, whence

log |h(xm)|
m1−δ

→ −∞

for m ≥ n → ∞. Thus log |h(xm)| < 0 for all m ≥ n once n is sufficiently large,
so that, h vanishes identically on X. ¤
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4. Proof of Theorem 1.4 and further results

We prove a generalization of 1.4 allowing several faster growing entire func-
tion gi. We also observe that we get a bound on the degree in gi of the polynomial
h giving algebraic dependence on the scale X. This is crucial in deducing the al-
gebraic dependence of the functions in 1.1, so we carry the degree bound through
our proof of 1.4, although this was not part of the statement of 1.4, and then
deduce 1.1 from 1.4. For a real number a we denote by [a] the integer part of a,
so that a− 1 < [a] ≤ a.

4.1. Theorem. Let X be a scale. Let f1, f2, . . . , fk be entire functions that are
integer valued on X, and that satisfy ωi = ωX(fi, σi) < ∞ where 0 < σi < 1 and∑

i(1 − σi) = 1. Suppose that g1, . . . , gq are entire functions, integer valued on
X, and λ1, . . . , λq are non-negative real numbers with

lim sup
n→∞

M(gi, xn)
n

≤ λi

for i = 1, . . . , q. Put λ = (λ1, . . . , λq) and, for j = (j1, . . . , jq) ∈ Nq, put j · λ =
j1λ1 + · · ·+ jqλq. Suppose that t ≥ 2 is an integer, s > 1 and A > 0 are such that

A <
χ(X, t)

t + (s− 1)−1
, and

∑

j∈J

(A− j · λ)k
> sk! ω1 . . . ωk,

where J = { j ∈ Nq : j · λ ≤ A}. Then f1, . . . , fk, g1, . . . , gq are algebraically
dependent over Z on X.

Moreover, there is a non-zero h ∈ Z[t1, . . . , tk, s1, . . . , sq] whose degree in
each si is at most [A/λi] such that h(f1, . . . , fk, g1, . . . , gq) vanishes identically
on X.

Proof. Under the hypotheses it is possible to choose positive real numbers
wi, i = 1, . . . , k, `i, i = 1, . . . , q, C, B with the following properties:

ωi ≤ wi, and M(fi, xn) ≤ C exp(win
σi)

for all i and n,
λi ≤ `i, and M(gi, xn) ≤ C exp(`in)

for all i and n,

A ≤ B <
χ(X, t)

t + (s− 1)−1
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such that
[B/`i] ≤ [A/λi]

for all i, and, finally, setting W =
∏k

i=1 wi, ` = (`1, . . . , `q),
∑

j∈K

(B − j · `)k
> Wk!

where
K = {j ∈ Nq : j · ` ≤ B}.

Let n ∈ N be so large that exp(wjn
σj ) ≥ n for each j (for applicability

of 2.7). Set

In =
{

(i, j) = (i1, . . . , ik, j1, . . . , jq) ∈ Nk+q :
k∑

a=1

iawanσa−1 + j · ` ≤ B
}

,

and for (i, j) ∈ In put

ψi,j = φi1(f1(z)) . . . φik
(fk(z)) g1(z)j1 . . . gq(z)jq .

The functions ψi,j take integer values on X.
We have

#In =
∑

j∈K

#Lj ∩ Nk

where

Lj =
{

(u1, . . . , uk) : 0 ≤ ui, i = 1, . . . , k,

k∑

i=1

ui
win

σi−1

B − j · λ ≤ 1
}

.

By Proposition 2.5

#Lj ∩ Nk ≥ (B − j · λ)k n

W k!
and so, by the assumptions, s n ≤ #In. By throwing away some elements of In

if needed it may be assumed that, for each n, sn ≤ #In ≤ sn + 1 (we cannot
insist on sn = #In as s is only assumed to be real > 1, though later in proving
1.4 and 1.1 we will take s = 2).

Apply Siegel’s Lemma (2.11) to construct a non-trivial integral linear combi-
nation h = hn of the functions ψi,j , (i, j) ∈ In vanishing at x0, . . . , xn−1. Suppose
(i, j) ∈ In and m ∈ N. Then

M(ψi,j , xm) ≤
k∏

a=1

M(φia ,M(fa, xm))
q∏

b=1

M(gb, xm)jb



228 Jonathan Pila

≤ e2kCCj1+···+jq exp

(∑
a

waiamσa +
∑

b

ubjbm

)
.

If m ≤ n we have

∑
a

waiamσa +
∑

b

ubjbm ≤
∑

a

waianσa +
∑

b

ubjbn

≤
(∑

a

waianσa−1 +
∑

b

ubjb

)
n ≤ Bn

while if m > n, as σa < 1,
( ∑

a

waiamσa−1 +
∑

b

ubjb

)
m ≤

(∑
a

waianσa−1 +
∑

b

ubjb

)
m ≤ Bm.

Since ji < B/`i, we have j1 + · · ·+ jq ≤ Q where Q = B
∑

1/`i, and thus for all
n, m we have

M(ψi,j , xm) ≤ e2kCCQ exp(B max(m,n)).

Accordingly the function h may be constructed using integers of absolute
value at most

((sn + 1)e2kCCQ exp(Bn))1/(s−1),

and for m ≥ n we have

M(h, xm) ≤ (sn + 1)((sn + 1)e2kCCQ exp(Bn))1/(s−1)e2kCCQ exp(B max(m,n)).

Now suppose that h vanishes at x0, . . . , xm−1 where m ≥ n. Then, by 2.1,

|h(xm)| ≤ (sn + 1)QX(m, tm) RX(m, tm)

× ((sn + 1)e2kCCQ exp(Bn))1/(s−1) e2kCCQ exp(Btm).

But then for n sufficiently large and m ≥ n, by definition of χ(X, t) and Propo-
sition 2.4,

lim sup
n→∞

log |h(xm)|
m

≤ B((s− 1)−1 + t)− χ(X, t) < 0.

Thus h also vanishes at xm and hence h vanishes at xm for all m.
The construction shows that the degree of h in gj is at most [B/`j ] ≤ [A/λj ].

¤
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4.2. Proof of 1.4. Apply 4.1 with q = 1, g = g1 and λ = λ1. Since the function
(A − jλ)k is positive and decreasing as a function of λ, J = {j : 0 ≤ j ≤ A/λ}
and

∑

j∈J

(A− jλ)k >

∫ A/λ

0

(A− xλ)kdx =
1
λ

∫ A

0

ykdy.

Thus f1, . . . , fk, g are algebraically dependent over Z on X provided

A <
χ(X, t)

t + (s− 1)−1
and λ ≤ Ak+1

s (k + 1)! ω1 . . . ωk
.

The statement of 1.4 follows upon taking s = t = 2 and A = T/3. We note further
that the constructed polynomial h giving algebraic dependence has degree at most
[A/λ] in g. ¤

4.3. Proof of 1.1. By Proposition 2.6 we have χ(X, 2) ≥ χ2(2) =
∫ 1

0
log((21/2−

v1/2)/(1−v1/2)dv = 1−√2+log 2− log(
√

2−1). A numerical computation gives
χ2(2) = 1.16031 . . . . Apply 1.4 with the hypotheses of 1.1 and T = 1.16, noting
that

1
2(k + 1)!

(
T

3

)3 1
ωX(f1, 1/2)ωX(f2, 1/2)

≥ 1
24abαβ

(
1.16
3

)3

≥ 1
416 abαβ

.

Thus 1.4 gives dependence of the functions on X provided

lim sup
n→∞

log M(g, xn)
n

≤ 1
416 abαβ

.

The function h constructed in 4.1 is a polynomial in f1, f2, g of degree ≤ 1.16/(3λ)
in g. Therefore

lim sup
n→∞

log
M(h, xn)

n
≤ 1.16

3
< 1/2

and Jensen’s formula (2.9) shows that h vanishes identically given that it vanishes
on Xα,β . Thus the functions are algebraically dependent over Z. Since xn ∼√

2nαβ, putting r = xn, n = r2/(2αβ) gives the statement of 1.1. ¤
Theorem 4.1 may also be applied when there are no functions gi (one still

has the zero vector in the set J), in which case it asserts that the growth rates of
the functions fi cannot be too small relative to the sequence X. This gives some
quantitative improvement in Theorem 1.3.
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4.4. Corollary of 4.1. Let X be a scale. Let f1, . . . , fk be entire functions that
are integer valued on X, and that satisfy ωi =ωX(fi, σi) < ∞ where

∑
i(1 −

σi)= 1. Suppose that t ≥ 2 is an integer and s > 1 are such that

sk!ω1 . . . ωk <

(
χ(X, t)

t + (s− 1)−1

)k

.

Then f1, . . . , fk are algebraically dependent over Z on X. ¤
Such an application yields another variant strengthening of the six exponen-

tials theorem. While Theorem 1.1 views the six exponentials theorem as a result
about three functions that are integer valued on a semigroup of points generated
by two real numbers, it may alternatively be viewed as a theorem about two func-
tions that are integer valued on a semigroup of points X = Xα,β,γ generated by
three real numbers.

Let α = log a, β = log b, γ = log c, where a, b, c are multiplicatively inde-
pendent positive integers, with the principal (real) value of the logarithm. Then
exp(z) takes integer values on X. We have xn ∼ (6nαβγ)1/3, so that

ωX(ez, 1/3) = (6αβγ)1/3.

We have χ(X, t) ≥ χ3(t) from 2.6 so we get the following instance of 4.4.

4.5. Proposition. With X = Xα,β,γ as above, if f is an entire function,
integer-valued on Xα,β,γ with

ωX(f, 2/3) = lim sup
n→∞

log M(f, xn)
n2/3

<
χ3(2)2

36 (6αβγ)1/3
,

or, equivalently,

lim sup
r→∞

log M(f, r)
r2

<
χ3(2)2

216αβγ
,

then f, ez are algebraically dependent over Z on X. ¤
More generally, suppose α1 = log a1, . . . , α` = log a` where a1, . . . , a` are

multiplicatively independent positive integers, and f is entire and integer valued
on X = Xα1,...,α`

. Then

ωX(ez, 1/`) =
(
`!

∏
αi

)1/`

,

and one finds that f, ez must be algebraically dependent over Z on X if

ωX(f, (`− 1)/`) <
χ`(2)2

36(`!
∏

αi)1/`
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or, equivalently,

lim sup
r→∞

log M(f, r)
r`−1

<
χ`(2)2

36`!α1 . . . α`
.

If f is entire and takes integer values at all points of X = {log n ∈ R, n =
1, 2, 3} then Theorem 1.3 of [4] applies, and if

lim sup
r→∞

log M(f, r)
er

< 0.005,

then f, ez are algebraically dependent over Z on X.

4.6. Remark. In defining χ(X, t) we assumed t ∈ N in 1.2. To optimize the nu-
merical constants obtained one would allow t ∈ Q by restricting the calculation of
χ(X, t) to suitable subsequences. Since the constants obtained would presumably
not be optimal, the present choice was preferred for simplicity.

Acknowledgement. I am most grateful to the referee whose careful read-
ing led to a number of corrections and clarifications improving this paper.
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