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Extension theory and the Ψ∞ operator

By IVAN IVANŠIĆ (Zagreb) and LEONARD R. RUBIN (Norman)

Abstract. We are going to define for each simplicial complex K, an operator Ψ∞

on the subcomplexes of K. If one is given a collection of spaces, closed subspaces of

them, and maps of the closed subspaces to a subpolyhedron of |K| that extend to maps

into |K|, then we are going to use the Ψ∞ operator to help determine a subcomplex of

minimal cardinality into which the maps can be extended simultaneously.

The question (raised by A. Dranishnikov and J. Dydak) of whether the extension

dimension, extdim(C,T ) X, has a countable representative when X is compact and metriz-

able, C is the class of compact metrizable spaces, and T is the class of CW-complexes

is an unsolved problem. We shall define an “anti-basis” for a CW-complex and use this

along with the Ψ∞ operator to allow one to view this problem from another perspective.

1. Introduction

Extension theory, which was first introduced by A. Dranishnikov in 1994,
is based on the following notion. If K is a CW-complex and X is a space, then
one says that K is an absolute extensor for X, K ∈ AE(X), or X is an absolute
co-extensor for K, XτK, if for each closed subset A of X and map (i.e. continuous
function) f : A → K, there exists a map F : X → K such that F is an extension
of f . For example, if X is a normal space and K = I = [0, 1], then Tietze’s
extension theorem yields that I ∈ AE(X), or XτI.
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cation, universal compactum, weight.
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Suppose that X is either a metrizable space or a compact Hausdorff space. A
classical result from the theory of covering dimension is that dim X ≤ n if and only
if XτSn. For cohomological dimension dimG over an abelian group G, a similar
fact is true: dimG X ≤ n if and only if XτK where K is an Eilenberg–Mac Lane
CW-complex in the class K(G,n). For these and other reasons, A. Dranish-

nikov [2] defined the notions of extension theory and extension dimension. Given
a class C of spaces and a class T of CW-complexes, one defines (see Section 5)
an equivalence relation ∼(C,T ) on the CW-complexes. For a given space X, not
necessarily in C, its extension dimension, extdim(C,T ) X, may exist. The latter,
when it exists, is a uniquely determined equivalence class under ∼(C,T ). He and
J. Dydak asked in [4] (Problem 5.4 below) whether with respect to the classes
C of compact Hausdorff spaces and T of CW-complexes, the extension dimension
of every metrizable compactum has a countable representative. We shall show,
Proposition 5.5, that for certain universal compacta the answer is yes.

Whenever X is a Tychonoff space, then by βX we shall mean the Stone-Čech
compactification of X. Let X =

∑{Xs | s ∈ S} be a topological sum of compact
Hausdorff spaces, K be a CW-complex, and assume that XsτK for each s ∈ S.
Suppose that one is given a collection {As | s ∈ S} of closed subsets As of Xs

along with maps fs : As → K. Under what conditions can these maps fs be
extended to maps Fs : Xs → K so that for some finite subcomplex K0 of K,
Fs(Xs) ⊂ K0 for all s ∈ S? Definitions needed to describe such a problem and
others more general than it along with some rudimentary results, e.g., Corollary
2.9, about such extensions can be found in Section 2 below. A situation like this
was encountered in [16] where the author (see Proposition 2.4 of that citation)
determined a relationship between that kind of extension problem and whether
βXτK.

To deal simultaneously with the problems outlined above, we shall introduce
in Section 3, for each simplicial complex K, the operator Ψ∞ on the subcomplexes
of K. It will be true that Ψ∞ is idempotent and that if X is a space, Xτ |K|, and L

is a subcomplex of K, then Xτ |Ψ∞(L)|. Moreover, if L is of infinite cardinality,
then the cardinality of Ψ∞(L) equals the cardinality of L. We apply the Ψ∞

operator in Section 4. Our main result in that section is Theorem 4.7 which covers
as a special case metrizable σ-compacta. One might also view Corollary 4.5 to
see one of the fundamental properties of the Ψ∞ operator.

In Section 5 we introduce the concept of an anti-basis for a polyhedron |K|.
Roughly speaking, it consists of a set of subcomplexes of K that detect when
a space Y is not an absolute co-extensor for K. Theorem 5.10 states that for
certain classes of spaces the existence of a countable anti-basis consisting of finite
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subcomplexes implies the existence of a countable representative of extension
dimension as in the question of Dranishnikov and Dydak.

We are very grateful to the referee whose careful reading of our paper helped
us significantly in preparing this final version.

2. λ-bounded collections of maps

If K is a simplicial complex, then |K| will be endowed with the weak topology
and we shall treat |K| as a CW-complex whose CW-structure is determined in
the usual way by the triangulation K. By card K we of course mean the cardinal
number of the set of simplexes of K. If K is a CW-complex, then by card K we
mean the cardinal number of the set of cells of K. If X is a space, then wt X will
designate the weight of X. The next lemma will be used implicitly below.

Lemma 2.1. Let f : K → L be a map of CW-complexes and K0 a subcom-

plex of K:

(1) if K0 is finite, then f(K0) is contained in a finite subcomplex of L;

(2) if K0 is infinite, then f(K0) is contained in a subcomplex M of L with

card M ≤ card K0. ¤

Let us recall Definition 2.1 of [16]; we use a slightly different terminology in
order to conform to the needs of this paper.

Definition 2.2. Let K be a CW-complex and X = {(Xs, As) | s ∈ S} a
collection of pairs of spaces. Suppose that for each s ∈ S, As is closed in Xs

and a map fs : As → K has been given. We shall say that {fs | s ∈ S} is X
finitely-bounded in K if there exists a finite subcomplex K0 of K such that each
map fs can be extended to a map of Xs into K0. If As = A, Xs = X, and fs = f

for all s ∈ S, then we shall refer to the map f as being (X, A) finitely-bounded
in K with the obvious meaning.

Let us first note:

Lemma 2.3. Let f : K → L be a map between CW-complexes K and L.

Suppose that {Xs | s ∈ S} is a set of spaces. Let {As | s ∈ S} and {fs | s ∈ S} be

collections such that for each s ∈ S, As is a closed subspace of Xs and fs : As → K

is a map. Put X = {(Xs, As) | s ∈ S}.
(1) If {fs | s ∈ S} is X finitely-bounded in K, then {f ◦ fs | s ∈ S} is X

finitely-bounded in L.
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(2) Suppose that g : L → K is a map, g ◦f ' 1K , and for each s ∈ S, Xs has the

homotopy extension property with respect to CW-complexes. Assume also

that there is a finite subcomplex M of K such that fs(As) ⊂ M for all s ∈ S

and that {f ◦ fs | s ∈ S} is X finitely-bounded in L. Then {fs | s ∈ S} is X
finitely-bounded in K.

Proof. (1) Let K0 be a finite subcomplex of K, and {Fs | s ∈ S} a collection
such that for each s ∈ S, Fs : Xs → K0 is a map having the property that
Fs | As = fs. There exists a finite subcomplex L0 of L (see Lemma 2.1(1)) such
that f(K0) ⊂ L0. Then {f ◦ Fs | s ∈ S} witnesses the fact that {f ◦ fs | s ∈ S}
is X finitely-bounded in L.

(2) Let L0 be a finite subcomplex of L and {Gs | s ∈ S} a collection of
maps Gs : Xs → L0 such that Gs | As = f ◦ fs for all s ∈ S. Again applying
Lemma 2.1(1), choose a finite subcomplex K∗ of K such that g(L0) ⊂ K∗. We
may assume that M ⊂ K∗. Hence, {g ◦ Gs | s ∈ S} is a collection such that
g ◦Gs : Xs → K∗ is a map for each s ∈ S.

Let F : K × [0, 1] → K be a homotopy such that F (x, 0) = x and F (x, 1) =
g ◦ f(x) for all x ∈ K. Put K ′ = F (K∗ × [0, 1]). Then K ′ is contained in a
finite subcomplex K0 of K. Moreover, F (K∗ × {0}) = K∗, so K∗ ⊂ K0. Putting
F ∗ = F | (K∗ × [0, 1]) : K∗ × [0, 1] → K0 one gets a deformation F ∗ of K∗ in K0

having the property that F ∗(x, 1) = g ◦ f(x) for all x ∈ K∗.
Notice that if s ∈ S and a ∈ As, then fs(a) ∈ M ⊂ K∗. So there is a

homotopy Qs : As × I → K0 given by Qs(a, t) = F ∗(fs(a), t). We see that
Qs(a, 0) = F ∗(fs(a), 0) = fs(a) and Qs(a, 1) = F ∗(fs(a), 1) = g ◦ f ◦ fs(a). But
g ◦ Gs | As = g ◦ f ◦ fs and g ◦ Gs : Xs → K∗ ⊂ K0. The homotopy extension
property shows that fs extends to a map of Xs into K0. Since K0 is finite and is
independent of the choice of s ∈ S, our proof of (2) is complete. ¤

We now extend Definition 2.2 to consider maps to CW-complexes whose
images must land in subcomplexes of infinite cardinalities.

Definition 2.4. Let K be a CW-complex, λ be an infinite cardinal, and X =
{(Xs, As) | s ∈ S} a collection of pairs of spaces. Suppose that for each s ∈ S,
As is closed in Xs and a map fs : As → K has been given. We shall say that
{fs | s ∈ S} is X λ-bounded in K if there exists a subcomplex K0 of K such
that card K0 ≤ λ and each map fs can be extended to a map of Xs into K0. If
As = A, Xs = X, and fs = f for all s ∈ S, then we shall refer to the map f as
being (X,A) λ-bounded in K with the obvious meaning.
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Lemma 2.5. Let Y be a space, A a closed subspace of Y , and K a CW-

complex. Let X be a space, g : X → Y a map, B a closed subspace of g
−1

(A),
and f : A → K a map.

(1) If f is (Y, A) finitely-bounded, then f ◦ (g | B) is (X, B) finitely bounded.

(2) If λ is an infinite cardinal and f is (Y, A) λ-bounded in K, then f ◦ (g | B)
is (X, B) λ-bounded in K. ¤

As pointed out in [16], nontrivial examples of CW-complexes K along with
a non-finitely-bounded collection of maps in K can be extrapolated from the
proof of Theorem 1.5 of [12]. In that proof, the author produces a countably
infinite set T and a collection, {XT | T ∈ T } of metrizable compacta. Each
XT has a specified closed subspace ST homeomorphic to S2. It is true that
dimG XT ≤ 2 for every abelian group G. In the last paragraph of the proof,
select K (designated P there) to be K(G, 2) for any nontrivial abelian group G.
Then for each T ∈ T , let fT : ST → K be a map such that fT (ST ) = fT ′(ST ′)
and (fT )∗(H2(ST )) = (fT ′)∗(H2(ST ′)) 6= 0 for each T , T ′ ∈ T . With this and an
examination of the finale of the proof of Theorem 1.5 in [12], we have,

Proposition 2.6. For every nontrivial abelian group G and K = K(G, 2),
there exist a countably infinite set S, collections X = {(Xs, As) | s ∈ S}, and

{fs | s ∈ S} where for each s ∈ S, Xs is a compact metrizable space with XsτK,

As is a closed subspace of Xs, and fs : As → K is a map whose image lies in a

fixed finite subcomplex of K, chosen in such a manner that, {fs | s ∈ S} is X
ℵ0-bounded in K but not X finitely-bounded in K. ¤

The next lemma can be proved using the same techniques found in our proof
of Lemma 2.3.

Lemma 2.7. Let f : K → L be a map between CW-complexes K and L.

Suppose that {Xs | s ∈ S} is a set of spaces. Let {As | s ∈ S} and {fs | s ∈ S} be

collections such that for each s ∈ S, As is a closed subspace of Xs and fs : As → K

is a map. Put X = {(Xs, As) | s ∈ S} and suppose that λ is an infinite cardinal.

(1) If {fs | s ∈ S} is X λ-bounded in K, then {f ◦ fs | s ∈ S} is X λ-bounded in

L.

(2) Suppose that g : L → K is a map, g ◦f ' 1K , and for each s ∈ S, Xs has the

homotopy extension property with respect to CW-complexes. Assume also

that there is a subcomplex M of K with card M ≤ λ such that fs(As) ⊂ M

for all s ∈ S and that {f ◦fs | s ∈ S} is X λ-bounded in L. Then {fs | s ∈ S}
is X λ-bounded in K.
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A proof similar to that of Lemma 3.1 of [6], which applies to polyhedra, can
be used to obtain the following stronger result applying to CW-complexes:

Lemma 2.8. Let X be a space with wt X ≤ λ for some infinite cardinal λ.

Suppose f : X → K is a map where K is a CW-complex. Then f(X) ⊂ L for

some subcomplex L of K where card L ≤ λ. ¤

Corollary 2.9. Let K be a CW-complex and λ an infinite cardinal. Suppose

that S is a set with card S ≤ λ, {Xs | s ∈ S}, {As | s ∈ S} are collections of

spaces with XsτK, wt Xs ≤ λ, and As is a closed subset of Xs for each s ∈ S. Put

X = {(Xs, As) | s ∈ S}. Then every collection {fs | s ∈ S} of maps fs : As → K

is X λ-bounded in K. ¤

This leads to a result showing that “gluing” together such a collection of
spaces does not change the “λ-bounded in K” condition.

Corollary 2.10. Let λ be an infinite cardinal, S a set, {Xs | s ∈ S},
{As | s ∈ S} collections of spaces, and As a closed subset of Xs for each s ∈ S.

Put X = {(Xs, As) | s ∈ S}. Assume that there is a space A and for each

s ∈ S, a homeomorphism hs : As → A. Let X be the quotient set formed from∑{Xs | s ∈ S} by gluing the sets Xs to A via the homeomorphisms hs and let q

be the quotient function. Let X be given a topology such that A is closed in X

and q | Xs : Xs → X is a map for each s ∈ S. Then for each CW-complex K the

following are true:

(1) If f : A → K is a map that is (X,A) λ-bounded, then {f ◦ (q|As)|s ∈ S} is

X λ-bounded in K.

(2) If card S ≤ λ and for each s ∈ S, wtXs ≤ λ and XsτK, then every map

f : A → K is (X,A) λ-bounded in K. ¤

An example of a space X as in Corollary 2.10 could be obtained as follows.
Suppose that {Xs | s ∈ S} is a collection of Hausdorff spaces each containing
a closed subspace As homeomorphic to say Sn. Then form X by gluing these
spaces together along Sn and applying the weak topology to X.

3. Ψ Operators

For each simplicial complex K, denote by FK the set of nonempty finite
subcomplexes of K. Fix a simplicial complex K. Suppose that M ∈ FK ; let
D(M,K) be the set of D ∈ FK such that M ⊂ D. Define a relation ∼(M,K) on
D(M,K) by declaring that if D, C ∈ D(M,K), then D ∼(M,K) C if there exists a



Extension theory and the Ψ∞ operator 271

simplicial isomorphism of D to C which is the identity on M . Plainly ∼(M,K) is
an equivalence relation on D(M,K), and we shall write the equivalence class of an
element D of D(M,K) as [D](M,K). The equivalence class [M ](M,K) is just {M}.

Let E(M,K) be the set of equivalence classes of D(M,K) under the relation
∼(M,K) and q(M,K) : D(M,K) → E(M,K) the quotient function. The set E(M,K)

is countable. Using the axiom of choice, fix once and for all a function θ(M,K) :
E(M,K) → D(M,K) such that θ(M,K)([D](M,K)) ∈ [D](M,K) for each D ∈ D(M,K),
i.e., θ(M,K)(E) ∈ q

−1

(M,K)(E) for each E ∈ E(M,K). We point out that M ⊂
θ(M,K)(E). Assume that the preceding construction has been applied to each
M ∈ FK .

For M ∈ FK and E ∈ E(M,K), θ(M,K)(E) is a subcomplex of K. Thus,
(i) for all M ∈ FK ,

⋃
θ(M,K)(E(M,K)) is a subcomplex of K containing the sub-

complex M .
We now define the function Ψ from the set of subcomplexes L of K to the

set of subcomplexes of K by,

Ψ(L) =
⋃ { ⋃

θ(M,K)(E(M,K))
∣∣ M ∈ FL

}
.

An application of (i) shows that for each pair L ⊂ L′ of subcomplexes of K,

(ii) Ψ(L) is a subcomplex of K, and L ⊂ Ψ(L), and

(iii) Ψ(L) ⊂ Ψ(L′).

Let us denote Ψ0(L) = L; inductively for each k ∈ N if Ψk−1(L) has been
defined, then by Ψk(L) we mean Ψ(Ψk−1(L)). Put,

Ψ∞(L) =
⋃{

Ψk(L) | k ∈ N}
.

Of course Ψ∞(L) is a subcomplex of K. We shall show that Ψ∞ is an
idempotent operator on the set of subcomplexes of a given simplicial complex K.

Lemma 3.1. Let K be a simplicial complex and L a subcomplex of K. Then

Ψ1(Ψ∞(L)) = Ψ∞(L), and hence Ψ∞(Ψ∞(L)) = Ψ∞(L).

Proof. Suppose that M is a finite subcomplex of Ψ∞(L). Then for some
k ∈ N, M ⊂ Ψk(L), so by (iii), Ψ(M) ⊂ Ψ(Ψk(L)) = Ψk+1(L) ⊂ Ψ∞(L). ¤

From the construction of Ψ, it is not difficult to see that,

(iv) in case L is infinite, then card(Ψ1(L)) = card(L).

We therefore may state the following lemma.

Lemma 3.2. Let K be a simplicial complex and L a subcomplex of K. If
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(1) L = ∅, then Ψ1(L) = ∅,
(2) L is finite, then card(Ψ1(L)) ≤ ℵ0,

(1) L is infinite and k ∈ N, then we may conclude that

card(Ψk(L)) = card(Ψ∞(L)) = card(L). ¤

We now provide an example to illustrate the operator Ψ1. Let K be an
infinite wedge of one-simplexes with vertex v and L the subcomplex consisting
of the vertex v. The finite subcomplexes of K that contain L consist of finite
wedges of 1-simplexes along with a finite set of vertices, including v, not in that
wedge. With this in mind, one may choose θ(L,K) in such a manner that Ψ1(L) is a
countable wedge of 1-simplexes. Simply fix in advance a subcomplex M of K that
is a countably infinite wedge of 1-simplexes. We may write M =

⋃{Mn | n ∈ N}
where for each n ∈ N, Mn is a wedge of n 1-simplexes and Mn ⊂ Mn+1. Make all
choices of values of θ(L,K) to be subcomplexes of M and so that for each n ∈ N,
θ(L,K)([Mn]) = Mn. Then Ψ1(L) = M .

On the other hand, we may also choose θ(L,K) in a way that Ψ1(L) con-
sists of a countable wedge of 1-simplexes along with a nonintersecting discrete,
nonempty, finite or countably infinite set of vertices. Indeed, for any choice of
θ(L,K), Ψ1(L) will always consist of a countable wedge of 1-simplexes along with
a nonintersecting countable set of vertices.

The situation with Ψ2(L) will again depend on θ(L,K). If Ψ1(L) = M as
above, then Ψ2(L) consists of M along with a countable (possibly empty) set of
vertices outside M . If Ψ1(L) contains some discrete nonempty set of vertices,
then Ψ2(L) could consist of Ψ1(L) along with some additional 1-simplexes and
perhaps an additional countable discrete set of vertices.

When a homotopy F : |M | × I → |M | is treated then we in addition define
the Ψ∞F operator, derive its properties (see Lemma 3.3), and use it to give a short
proof of Proposition 3.4.

Let M be a simplicial complex and F : |M | × I → |M | a homotopy having
the property that if x ∈ |M |, σ ∈ M , and x ∈ intσ, then F (x, 0) ∈ σ. For each
finite subcomplex Q of M , note that F (|Q| × {0}) ⊂ |Q|. Let SQ be the smallest
subcomplex of M such that F (|Q | ×I) ⊂ |SQ|. Then Q is a subcomplex of SQ

and SQ is finite. For any subcomplex L of M , put ΨF (L) =
⋃{SQ | Q ∈ FL}.

Then ΨF (L) is a subcomplex of M . Let Ψ0
F (L) = L, and for each k ∈ N,

if Ψk−1
F (L) has been defined, then we let Ψk

F (L) = ΨF (Ψk−1
F (L)). Finally, let

Ψ∞F (L) =
⋃{Ψk

F (L) | k ∈ N}. Then it is easy to check the next result.

Lemma 3.3. Let M be a simplicial complex and F : |M | × I → |M | a

homotopy having the property that if x ∈ |M |, σ ∈ M , and x ∈ intσ, then
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F (x, 0) ∈ σ. Then for each subcomplex L of M , Ψ1
F (Ψ∞F (L)) = Ψ∞F (L), and

hence Ψ∞F is an idempotent operator on the set of subcomplexes of M . Moreover,

(1) if card L is finite, then card(Ψ∞F (L)) ≤ ℵ0,

(2) if card L is infinite, then card(Ψ∞F (L)) = card(L), and

(3) F (|Ψ∞F (L)| × I) ⊂ |Ψ∞F (L)|. ¤

In Proposition 3.4, for completeness we state (1) without proof since this is
a standard fact in the theory of CW-complexes, and our current techniques are
useful only for proving (2).

Proposition 3.4. Let K be a CW-complex of cardinality α.

(1) If α is finite, then there exists a finite simplicial complex T and a homotopy

equivalence between K and |T |.
(2) If α is infinite, then there exists a simplicial complex T of cardinality ≤ α

and a homotopy equivalence between K and |T |.
Proof. As mentioned above, we only prove (2). There exists a simplicial

complex M and a homotopy equivalence h : K → |M |. Let f : |M | → K be
a homotopy inverse of h and F : |M | × I → |M | a homotopy from the identity
of |M | to the map h ◦ f . Choose a subcomplex L of M with card L ≤ α such
that h(K) ⊂ |L|. Let T = Ψ∞F (L) ⊂ M and f∗ = f | |T | : |T | → K. Apply
Lemma 3.3(3) to see that h ◦ f∗ is homotopic to the identity on |T |. It is routine
to check that f∗ ◦h is homotopic to the identity on K. Apply Lemma 3.3(1,2) to
see that card T ≤ α. ¤

4. X-connectedness and λ-boundedness

By a pair (U, V ) of spaces we mean a space U along with a subspace V of U .
Next is Definition 6.1 of [16]. As mentioned there, this should be compared with
similar ones given in [9], [10], and [11].

Definition 4.1. Let X be a space and (U, V ) a pair of spaces. We shall say
that (U, V ) is X-connected if for each closed subset A of X and map f : A → V ,
there exists a map F : X → U that extends f .

The term σ-compactum usually refers to a metrizable space that can be
written as a countable union of compact subspaces of itself. Such a space is
obviously normal and Hausdorff; moreover, every CW-complex is an absolute
neighborhood extensor for it. Let us generalize that definition.
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Definition 4.2. Let X be a space. Then we shall say that X is a Hausdorff
σ-compactum if X is a normal Hausdorff space, every CW-complex is an absolute
neighborhood extensor for X, and X can be written as a countable union of
compact Hausdorff subspaces.

Proposition 4.3. Let K be a simplicial complex and L a subcomplex of K.

Suppose that {Xs | s ∈ S} is a collection of Hausdorff σ-compacta and that for

each s ∈ S, Xsτ |K|. The following are true.

(1) The pair (|Ψ∞(L)|, |Ψ∞(L)|) is Xs-connected for each s ∈ S.

(2) If s ∈ S and Xs is compact Hausdorff, then (|Ψn+1(L)|, |Ψn(L)|) is Xs-

connected.

(3) If λ is an infinite cardinal, card L ≤ λ, for each s ∈ S, As is a closed subset

of Xs, fs : As → |L| is a map, and X = {(Xs, As) | s ∈ S}, then {fs | s ∈ S}
is X λ-bounded in |K|.
Proof. Statement (3) of this proposition will follow from Statement (1)

along with an application of Lemma 3.2(2,3). We proceed with a proof of (1).
Consider s ∈ S and a map fs : As → |Ψ∞(L)|. Write Xs =

⋃{Zi |∈ N} with
Z1 ⊂ Z2 ⊂ . . . , and for each i ∈ N, Zi is a compact Hausdorff space. We shall
proceed with an induction argument.

Since Xsτ |K|, then Z1τ |K|. Let g1 : As ∪ Z1 → |K| be a map such that g1 |
As = fs. There exists M ∈ FΨ∞(L) such that g1(Z1 ∩As) ⊂ |M |. Now g1(Z1) ⊂
|M ′| for some finite subcomplex M ′ of K, where M ⊂ M ′. By the definition of
Ψ1(Ψ∞(L)), we may as well assume that M ′ ⊂ Ψ1(Ψ∞(L)) = Ψ∞(L). Hence we
may treat g1 : As ∪ Z1 → |Ψ∞(L)|.

Using the ANE property of |Ψ∞(L)|, there exists a closed neighborhood D1

of As ∪ Z1 in Xs and a map h1 : D1 → |Ψ∞(L)| that extends g1.
Suppose that k ∈ N and we have found D1 ⊂ · · · ⊂ Dk, and h1, . . . , hk such

that for 1 ≤ i ≤ k:

(a) Di is a closed neighborhood of As ∪ Zi in Xs,

(b) hi is a map of Di to |Ψ∞(L)|,
(c) hi | As = fs, and

(d) if 1 ≤ i < j ≤ k, then Di ⊂ Dj and hj | Di = hi.

Choose a map gk+1 : Dk ∪ Zk+1 → |K| such that gk+1 | Dk = hk. Now
hk(Zk ∪ (Zk+1 ∩Dk)) = gk+1(Zk ∪ (Zk+1 ∩Dk)) ⊂ |Ψ∞(L)|. There exists N ∈
FΨ∞(L) such that gk+1(Zk ∪ (Zk+1 ∩Dk)) ⊂ |N |.

Now gk+1(Zk+1)⊂ |N ′| for some finite subcomplex N ′ of K, where N⊂N ′. By
the definition of Ψ1(Ψ∞(L))=Ψ∞(L), we may as well assume that M ′⊂Ψ∞(L).
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There exists a closed neighborhood Dk+1 of Dk ∪ Zk+1 in Xs and a map hk+1 :
Dk+1 → |Ψ∞(L)| that extends gk+1.

This completes the induction. Observe that
⋃{intXs

Dk | k ∈ N} = Xs.
Define a function Fs : Xs → |Ψ∞(L)| to be

⋃{hk | k ∈ N}. Clearly Fs is a
map, and Fs | As = fs. Hence for all s ∈ S, there exists a map of Xs into
|Ψ∞(L)| ⊂ |K| that extends fs. This completes our proof of (1).

In the special case that Xs is a compact Hausdorff space, start with a map
fs : As → |Ψn(L)|). Just apply the first step of the above inductive argument
and see that Fs(Xs) ⊂ |Ψ1(Ψn(L))| = |Ψn+1(L)|, so (2) is true. ¤

Corollary 4.4. Let K be a simplicial complex, λ an infinite cardinal, and L

a subcomplex of K with card L ≤ λ. Suppose that X is a Hausdorff σ-compactum

such that Xτ |K|; then for each closed subspace A of X every map f : A → |L| is

(X, A) λ-bounded in |K|. ¤

Corollary 4.5. Let K be a simplicial complex and X a Hausdorff σ-com-

pactum with Xτ |K|. Then for every subcomplex L of K, Xτ |Ψ∞(L)|.
We shall use Proposition 4.6 in our proof of Theorem 4.7. It appears as

Proposition 3.1 of [8] where we explain that this result differs from E. Michael’s
Proposition 3.6(a) of [14], but is an improved version based on Lemma 1 of [15].

Proposition 4.6. Let X be a paracompact space and G a collection of

subsets of X. Suppose that the following are true:

(1) G contains an open cover of X,

(2) if U ∈ G and W is open in U , then W ∈ G,

(3) if U , Q are open elements of G, then U ∪Q ∈ G, and

(4) if K ⊂ G is a discrete collection of open subsets of X, then
⋃K ∈ G.

Then the entire space X is in G. ¤

Theorem 4.7. Let K be a simplicial complex, λ an infinite cardinal, and

L a subcomplex of K with card L ≤ λ. Suppose that X is a paracompact space,

{Xs | s ∈ S} a locally finite cover of X consisting of closed subspaces that are

Hausdorff σ-compacta, and Xsτ |K| for each s ∈ S. Then (|Ψ∞(L)|, |Ψ∞(L)|) is

X-connected, and hence every map f : A → |Ψ∞(L)| of a closed subset A of X is

λ-bounded in |K|. If for each s ∈ S, Xs is compact and Hausdorff, then we may

state additionally that for all n ∈ N, (|Ψn+1(L)|, |Ψn(L)|) is X-connected.

Proof. Let G be the collection of open subsets G of X such that if A is
a closed subset of clX G, and f : A → |Ψ∞(L)| is a map, then f extends to a
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map of clX G to |Ψ∞(L)|. We will show that G satisfies conditions (1)–(4) of
Proposition 4.6. Then we will be assured that X ∈ G. The proof of the first part
will be concluded by referring to Lemma 3.2(2,3).

Let U be an open cover of X with the property that if U ∈ U , then clX(U)
intersects Xs for only finitely many s ∈ S. Fix U ∈ U , let A be a closed subset of
clX U , and f : A → |Ψ∞(L)| a map.

Let T ⊂ S be the finite subset having the property that Xs ∩ clX U 6= ∅ if
and only if s ∈ T . Define T1 to be the subset of T such that if s ∈ T and Xs is a
compact Hausdorff space, then s ∈ T1. Let T2 = T \ T1.

Put Y =
⋃{Xs | s ∈ T1}. Then Y is a compact Hausdorff space. By

Proposition 4.3, there exists a map h : Y → |Ψ1(Ψ∞(L)|) = |Ψ∞(L)| that extends
f |(A ∩ Y ) : A ∩ Y → |Ψ∞(L)|. Let h∗ : A ∪ Y → |Ψ∞(L)| be the map such that
h∗|A = f and h∗|Y = h.

Let s ∈ T2. By Proposition 4.3, there exists a map fs : Xs → |Ψ∞(Ψ∞(L))| =
|Ψ∞(L)| that extends h∗ | ((A ∪ Y ) ∩ Xs) : ((A ∪ Y ) ∩ Xs) → |Ψ∞(L)|. Put
f∗1 : A∪ Y ∪Xs → |Ψ∞(L)| such that f∗1 | (A∪ Y ) = h∗ and f∗1 | Xs = fs. Using
the fact from Lemma 3.1 that Ψ∞(Ψ∞(L)) = Ψ∞(L), one may, step by step,
add the remaining σ-compacta indexed by T2 to end up with a map of clX U to
|Ψ∞(L)| that extends f . This shows that G contains an open cover of X. Part
(2) of Proposition 4.6 is easily seen to be true.

Since for open elements U and Q of G, clX(U ∪ Q) = clX U ∪ clX Q, the
reader can see how to prove (3) of Proposition 4.6 by using the same techniques
we just employed above. That G satisfies Part (4) of Proposition 4.6 is obvious.

In case Xs is compact and Hausdorff for each s ∈ S, then one may simply
change the definition of G to require that f extends to a map of clX G to |Ψn+1(L)|.

¤

5. Extension Dimension and Anti-Bases

We shall now recall the notion of extension dimension. Let C be a class of
spaces, T a class of CW-complexes, and K, K ′ ∈ T . If it is true that for all X ∈ C,
XτK implies that XτK ′, then we write K ≤(C,T ) K ′. This defines a preorder
on T (see [4] or [7]). One specifies K ∼(C,T ) K ′ if and only if K ≤(C,T ) K ′ and
K ′ ≤(C,T ) K; then ∼(C,T ) is an equivalence relation on T . An equivalence class
[K](C,T ) under this relation is called an extension type relative to (C, T ). For any
space X, we write Xτ [K](C,T ) to mean that XτK ′ for all K ′ ∈ [K](C,T ).
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The relation ≤(C,T ) induces a partial order, also denoted ≤(C,T ), on the exten-
sion types. We write that [K](C,T ) ≤(C,T ) [K ′](C,T ) if it is true that L ≤(C,T ) L′ for
all L ∈ [K](C,T ) and L′ ∈ [K ′](C,T ). One may check that [K](C,T ) ≤(C,T ) [K ′](C,T )

if and only if L ≤(C,T ) L′ for some L ∈ [K](C,T ) and some L′ ∈ [K ′](C,T ).
For Lemma 5.1 to follow, one might take C to be any class of compact Haus-

dorff spaces or metrizable spaces.

Lemma 5.1. Let T be a class of CW-complexes and C be a class spaces X

having the homotopy extension property with respect to K for any element K

of T . Whenever K, L are homotopy equivalent elements of T , then [K](C,T ) =
[L](C,T ). ¤

Let X be a space. Consider S = {[K](C,T ) | Xτ [K](C,T )}. If S has an
initial element1 with respect to the relation ≤(C,T ), then that element is called
the extension dimension of X relative to (C, T ), written extdim(C,T ) X.

In the sequel we shall use,

TCW = the class of CW-complexes,

TPOL = the class of polyhedra,

K = the class of compact Hausdorff spaces,

Km = the class of compact metrizable spaces.

Theorem 11 of [3] along with Lemma 1.1 of [6] can be used to obtain the
next information.

Theorem 5.2. For each L, K ∈ TCW, it is true that L ≤(K,TCW) K if and

only if L≤(Km,TCW)K. Hence, [K](K,TCW) = [K](Km,TCW). Similarly, if K ∈TPOL,

then [K](K,TPOL) = [K](Km,TPOL). ¤

It is remarked in Theorem 5.5 of [6] (see also [5]) that for any compact Haus-
dorff space X, extdim(K,TCW) X exists. This extension dimension has a special
type of representative. Let us cite Theorem 13 of [3].

Theorem 5.3. For each X ∈ K, there exists L =
∨{La | a ∈ A} where

card A ≤ 2ℵ0 , for each a ∈ A, La ∈ TCW, La is countable, and,

extdim(K,TCW) X = [L](K,TCW). ¤

Now we state Problem 2.19.2 of [4], noting that it has also been posed as
Problem 2 of [3] and Problem 2.1 of [1].

1By an initial element of S, we mean s0 ∈ S having the property that s0 ≤(C,T ) s for all s ∈ S.

If such s0 exists, it is unique.
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Problem 5.4. Determine whether for each compact metrizable space X, there
is a countable CW-complex M such that extdim(K,TCW) X = [M ](K,TCW).

The next fact is immediate from Corollary 1.3 of [7]

Proposition 5.5. Let K be a countable CW-complex and α an infinite

ordinal. Suppose that X is a compact Hausdorff space with wtX ≤ α having

the property that XτK and each compact Hausdorff space Y with Y τK and

wt Y ≤ α embeds in X. Then extdim(K,TCW) X = [K](K,TCW).

This provides many examples of compact Hausdorff spaces with “countable”
extension dimension, since by Corollary 1.9 of [13], every finite CW-complex
admits a universal Hausdorff compactum of a given weight.

Lemma 5.6. Let K be a CW-complex and X a Hausdorff σ-compactum.

Suppose that K is not an absolute extensor for X. Then there exists a compact

subset A of X and a map f : A → K that does not extend to a map of X to K.

Proof. There exists a closed subspace B of X and a map g : B → K that
does not extend to a map of X to K. Write X =

⋃{Xi | i ∈ N} where for each
i ∈ N, Xi is a compact Hausdorff space.

If g | (B ∩ X1) : B ∩ X1 → K does not extend to a map of X1 → K,
then define A = B ∩ X1 and f = g | A : A → K. Otherwise, choose a map
h1 : B ∪X1 → K that extends g. We may as well assume that the domain of h1

is a closed neighborhood N1 of B ∪X1. Suppose that k ∈ N and we have found
closed subsets N1 ⊂ · · · ⊂ Nk, of X, and maps hi : Ni → K, 1 ≤ i ≤ k, such that
for 1 ≤ i ≤ j ≤ k,

(i) hj | Ni = hi,

(ii) Xi ⊂ intX Ni, and

(iii) hi | B = g.

If hk | (Nk ∩ Xk+1) does not extend to a map of Xk+1 to K, then choose
A = Nk ∩ Xk+1 and f = hk | A : A → K. If it does extend, there exists a
closed neighborhood Nk+1 of Nk ∪Xk+1 and a map hk+1 : Nk+1 → K such that
hk+1 | Nk = hk : Nk → K.

If this recursive process ends after finitely many steps, then our proof is
complete. If it does not end, then put G =

⋃{hi | i ∈ N} : X → K. Then G is a
map that extends g, and we have reached a contradiction. ¤

We have the following statement in case K is a CW-complex, Y a space, and
K /∈ AE(Y ).
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Lemma 5.7. Let K be a CW-complex, Y a space, A a closed subspace

of Y , L a subcomplex of K, and f : A→L a map that does not extend to a map

of Y to K. Then for any subcomplex M of K with L⊂M , the map f : A→M

does not extend to a map of Y to M . ¤

This motivates us to define the notion of an “anti-basis” and show how this
is related to Problem 5.4.

Definition 5.8. Let K∗ be a class of spaces, K be a simplicial complex, and F
a collection of subcomplexes of K having the property that whenever Y ∈ K∗ and
|K| is not an absolute extensor for Y , then there exist a closed subspace A of Y ,
F ∈ F , and map f : A → |F | that does not extend to a map of Y into |K|. Then
we shall call F an anti-basis for K relative to K∗.

An application of Lemma 5.6 shows the following.

Example 5.9. Let K∗ be a class of Hausdorff σ-compacta and K a simplicial
complex. Then FK is an anti-basis for K relative to K∗.

Now we have the following theorem.

Theorem 5.10. Let K∗ be a class of Hausdorff σ-compacta, X ∈ K∗,
and K a simplicial complex. Suppose that extdim(K∗,TCW) X exists and equals

[|K|](K∗,TCW). If K has a countable anti-basis F relative to K∗ such that F
consists of finite subcomplexes of K, then there is a countable representative of

extdim(K∗,TCW) X. Indeed, M = Ψ∞(
⋃F) is a countable subcomplex of K and

|M | represents extdim(K∗,TCW) X.

Proof. Put L =
⋃F . Then L is a countable subcomplex of K. Let M =

Ψ∞(L). By Lemma 3.2(3), M is a countable subcomplex of K. Moreover since
Xτ |K|, by Corollary 4.5, Xτ |M |. We know that |K| ≤(K∗,TCW) |M |. It remains
to prove the opposite inequality.

Suppose that Y ∈ K∗, Y τ |M |, and Y τ |K| is false. By Definition 5.8, there
is an element L of F , a closed subspace A of Y , and a map f : A → |L| that does
not extend to a map of Y to K. But |L| ⊂ |M | and Y τ |M |, so f extends to a
map of Y to |M |. This contradicts Lemma 5.7. ¤
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