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Ordered separation axioms and the Wallman ordered

compactification

By HANS-PETER A. KÜNZI (Rondebosch), AISLING E. MCCLUSKEY (Galway)
and THOMAS A. RICHMOND (Bowling Green)

Abstract. Two constructions have been given previously of the Wallman ordered

compactification w0X of a T1-ordered, convex ordered topological space (X, τ,≤). Both

of those papers note that w0X is T1, but need not be T1-ordered. Using this as one

motivation, we propose a new version of T1-ordered, called T K
1 -ordered, which has the

property that the Wallman ordered compactification of a T K
1 -ordered topological space

is T K
1 -ordered. We also discuss the R0-ordered (RK

0 -ordered) property, defined so that

an ordered topological space is T1-ordered (T K
1 -ordered) if and only if it is T0-ordered

and R0-ordered (RK
0 -ordered).

1. Introduction

Given a set X with a topology τ and a partial order ≤, we recall the topology

τ ♯ on X as the collection of all τ -open ≤-increasing subsets of X and the topology

τ ♭ on X as the corresponding collection of all τ -open ≤-decreasing subsets of X .

Thus, we may consider the topological space (X, τ), the ordered topological space

(X, τ,≤), or the bitopological space (X, τ ♯, τ ♭).

As the study of ordered topological spaces and bitopological spaces devel-

oped, important topological properties, including separation axioms, were defined
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for these new categories. As a general unifying principle, it seems natural that

the chain of implications (1) ⇒ (2) ⇒ (3) should hold for the statements

(1) (X, τ ♯, τ ♭) satisfies the bitopological (or pairwise) property P ,

(2) (X, τ,≤) satisfies the ordered property P , and

(3) (X, τ) satisfies the (topological) property P .

This scheme is borne out in particular by the complete regularity properties

when certain other reasonable necessary conditions are assumed. However, as

the ordered theory and bitopological theory were often developed independently,

there are exceptions and anomalies, which we address here. In particular, the

standard definition of the T1-ordered property is seen to fall short of expectations

in this regard, as well as in regard to its relation to the Wallman ordered com-

pactification. In Section 2, we review the T0-ordered and T1-ordered properties

and introduce the R0-ordered property, noting their relation to the corresponding

pairwise properties of (X, τ ♯, τ ♭). In Section 3, we introduce the T K
1 -ordered and

RK
0 -ordered properties, and show that the T K

1 -ordered property does not have

the shortcomings of the standard T1-ordered property. Continuing in this theme,

Section 4 shows that the Wallman ordered compactification behaves more nicely

for T K
1 -ordered spaces than for T1-ordered spaces.

Our notation is that of Nachbin [15]. If (X, τ,≤) is a partially ordered topo-

logical space and A ⊆ X , then the increasing hull of A is i(A) = {x ∈ X : ∃ a ∈ A

with a ≤ x}. If A = i(A), we say A is an increasing set. The closed increasing

hull of A, denoted I(A), is the smallest closed increasing set containing A. The

decreasing hull d(A), closed decreasing hull D(A), and decreasing sets are defined

dually. If A = {a}, we write i(a) for i({a}). Another useful hull operator, used in

the construction of the Wallman ordered compactification, is C(A) = I(A)∩D(A).

Following [5] and [6], C(A) is the c-set hull of A, and if A = C(A) we say A is a

c-set. We say (X, τ,≤) is convex if τ has a subbase of monotone (i.e., increasing

or decreasing) open sets. In other terminology, note that D(A) = clτ♯(A) and

I(A) = clτ♭(A) where τ ♯ = {U ∈ τ : U = i(U)} and τ ♭ = {U ∈ τ : U = d(U)}.

The T0(-ordered) reflection of a (partially ordered) topological space X is the

T0(-ordered) quotient space Y of X such that for any continuous (and increasing)

function f from X into any arbitrary T0(-ordered) space Z, there exists a unique

continuous (and increasing) function h : Y → Z with f = h ◦ q, where q : X → Y

is the quotient map. The construction of the T0-ordered reflection, considered

in Section 2, utilizes the equivalence relation defined by x ≈ y if and only if

I(x) = I(y) and D(x) = D(y), or equivalently, if and only if C(x) = C(y)

(see [8]). Let [x] denote the ≈-equivalence class of x. The closure operator C(·)



Ordered separation axioms and the Wallman ordered compactification 363

defines a reflexive, transitive relation C =
⋃

x∈X{x}×C(x). The inverse relation

C−1 is given by C−1(x) =
⋂
{U ∈ τ ♯ : x ∈ U} ∩

⋂
{V ∈ τ ♭ : x ∈ V }. (Some

authors would call this the intersection of the τ ♯-kernel of {x} and the τ ♭-kernel

of {x}.) If Cs = C ∩ C−1 is the symmetrization of C, then Cs(x) = [x]. Note

that if X is convex, we have x ≈ y if and only if cl{x} = cl{y}. Also if X is

convex, [x] = cl{x} ∩
⋂
{U ∈ τ : x ∈ U} ⊆ cl{x} = C(x).

2. T0, T1, and R0 separation properties

T0 Properties

We recall the following definitions (see [17]).

Definition 1. Suppose X is a set, τ is a topology on X , and ≤ is a partial

order on X .

(a) (X, τ) is T0 if cl(x) = cl(y) implies x = y.

(b) (X, τ,≤) is T0-ordered if for any two distinct points, there exists a monotone

open neighborhood of one of the points which does not contain the other, or

equivalently, if Cs(x) = {x} for all x ∈ X .

(c) (X, τ1, τ2) is weak pairwise T0 if for distinct points x and y, one of the points

is not in one of the closures (τ1 or τ2) of the other.

(d) (X, τ1, τ2) is pairwise T0 if for distinct points x and y, either x /∈ clτ1
(y) or

y /∈ clτ2
(x).

Note that pairwise T0 is defined by x 6= y ⇒ ([x /∈ clτ1
(y) ∨ y /∈ clτ2

(x)]∧

[y /∈ clτ1
(x) ∨ x /∈ clτ2

(y)]), while weak pairwise T0 replaces the ∧ between the

bracketed items by ∨. Clearly pairwise T0 implies weak pairwise T0 and, from the

open set characterization, it is easily seen that (X, τ,≤) being T0-ordered implies

(X, τ) is T0. Now (X, τ ♯, τ ♭) is weak pairwise T0 if and only if x 6= y implies

[x /∈ D(y) or x /∈ I(y) or y /∈ D(x) or y /∈ I(x)]. Since the bracketed condition

is equivalent to C(x) 6= C(y), we see that (X, τ ♯, τ ♭) is weakly pairwise T0 if

and only if (X, τ,≤) is T0-ordered. Furthermore, if (X, τ,≤) is convex, these two

properties are also equivalent to (X, τ) being T0.

T1 Properties

The standard definition of a T1-ordered space, given by Nachbin [15], does not

meet many of the expectations one would have for T1-ordered spaces. For exam-

ple, if (X, τ ♯, τ ♭) is pairwise T1, it does not follow that (X, τ,≤) is T1-ordered.

Also, the Wallman ordered compactification of a T1-ordered topological space is
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T1, but need not be T1-ordered. These deficiencies in the standard definition of

T1-ordered led us to define a new version in the next section. Here we present the

standard definitions.

Definition 2. Suppose X is a set, τ is a topology on X , and ≤ is a partial

order on X .

(a) (X, τ) is T1 if cl(x) = {x} for all x ∈ X .

(b) (X, τ,≤) is T1-ordered if d(x) and i(x) are closed for all x ∈ X .

(c) (X, τ1, τ2) is pairwise T1 (see [14]) if for any two distinct points x and y in

X , each has either a τ1-open or a τ2-open neighborhood which excludes the

other.

Our definition of pairwise T1, given by Murdeshwar and Naimpally [14] is

called MN-pairwise-T1 by Reilly [17] and Mršević [12]. Several other versions

of pairwise T1 have been studied.

(1) (Reilly [17]) (X, τ1, τ2) is Reilly pairwise T1 if for distinct points x and y

in X , there exists a τ1-open neighborhood of x excluding y and a τ2-open

neighborhood of y excluding x.

(2) (Mršević [12]) (X, τ1, τ2) is middle pairwise T1 if for distinct points x and

y in X , clτ1
(x) ∩ clτ2

(y) = ∅ or clτ1
(y) ∩ clτ2

(x) = ∅.

(3) (Swart [19]) (X, τ1, τ2) is weak pairwise T1 if for distinct points x and y

in X , there exists a τ1-open neighborhood of x excluding y and a τ2-open

neighborhood of y excluding x, or there exists a τ1-open neighborhood of y

excluding x and a τ2-open neighborhood of x excluding y.

We note that, given an ordered topological space (X, τ,≤), the corresponding

bitopological space (X, τ ♯, τ ♭) is Reilly pairwise T1 only if the order ≤ is discrete

(that is, equality), rendering this version not useful in the study of ordered topo-

logical spaces. The version due to Mršević is called “middle” since it is implied

by Reilly pairwise T1 and implies Swart’s weak pairwise T1. All of these versions

of pairwise T1 are stronger than our definition of (MN) pairwise T1. Some ele-

mentary facts regarding these definitions are found in [4] and [18]. The fact that

many versions of the pairwise T1 property have been considered suggests that

there may be more than one useful version of the T1-ordered property.

The new version of T1-ordered introduced below, called T K
1 -ordered, is im-

plied by (X, τ ♯, τ ♭) being (MN) pairwise T1, the weakest of these pairwise T1

properties.
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It is easily seen that (X, τ,≤) being T1-ordered implies (X, τ) is T1, and

(X, τ ♯, τ ♭) being pairwise T1 implies (X, τ) is T1. However, (X, τ ♯, τ ♭) being

pairwise T1 does not imply (X, τ,≤) is T1-ordered. Indeed, the example after

Theorem 15 shows that (X, τ ♯, τ ♭) being middle pairwise T1 (the strongest of

these pairwise T1 properties which can possibly be satisfied by ordered spaces

other than antichains) does not imply (X, τ,≤) is T1-ordered. That example also

shows that (X, τ ♯, τ ♭) being middle pairwise T1 does not imply that (X, τ ♯, τ ♭) is

pairwise R0 (for the definition of this concept, see below).

The following characterization of the T1-ordered property will be used often.

Lemma 3. (X, τ,≤) is T1-ordered if and only if i(x) =
⋂
{U ∈ τ ♯ : x ∈ U}

and dually for all x ∈ X .

Proof. If X is T1-ordered, then y /∈ i(x) implies x /∈ d(y) = D(y), so

i(x) ⊆ X \ D(y) ≡ Hy, and thus i(x) =
⋂
{Hy : y /∈ i(x)} ⊇

⋂
{U ∈ τ ♯ : x ∈ U}.

The reverse inclusion is immediate. Conversely, if y /∈ i(x), then x /∈ d(y) =
⋂
{U ∈ τ ♭ : y ∈ U}, so there exists an open decreasing neighborhood of y disjoint

from x and therefore from i(x), so y /∈ cl(i(x)), and thus i(x) is closed. �

R0 Properties

One motivation for R0 spaces, introduced by Davis [3], is that a space is T1 if and

only if it is T0 and R0. The analogous equivalences in the categories of ordered

topological spaces and bitopological spaces are used to motivate definitions of

the appropriate concepts of R0 in those categories. Note however, as seen in the

example mentioned before Lemma 3, that the weak concept of pairwise T1 used

in this article does not imply pairwise R0 as defined below. It appears that R0-

ordered spaces have not been studied previously, so our discussion here will be

more thorough. We start with some theorems providing equivalent definitions of

the R0 properties in the three categories in question.

Theorem 4. The following are equivalent:

(a) (X, τ) is an R0-space.

(b) F closed, x /∈ F ⇒ ∃ open U with F ⊆ U , x /∈ U .

(c) U open, x ∈ U ⇒ cl{x} ⊆ U .

(d) {cl{x} : x ∈ X} is a partition of X .

(e) τ is lattice isomorphic to the topology of a T1-space.

(f) cl{x} 6= cl{y} ⇒ ∃ neighborhood of x not containing y.

(g) F closed, cl{x} ∩ F 6= ∅ ⇒ x ∈ F .

(h)
⋂
{U ∈ τ : x ∈ U} = cl{x} for all x ∈ X .



366 Hans-Peter A. Künzi, Aisling E. McCluskey and Thomas A. Richmond

(i) The T0-reflection of X is T1.

(j)
⋂
{U ∈ τ : A ⊆ U} ⊆ cl A for all A ⊆ X .

These equivalences may be found in [3] or [1], except for (j), which is easily

shown. (In [1], a T(α,β) space is one whose Tα reflection is already Tβ, so there,

R0 spaces are called T(0,1) spaces.) Note that the containment in (j) cannot be

strengthened to equality: Let X = [0, 1] with the discrete topology on (0, 1] and

the usual neighborhoods of 0. Now (b) holds, but A=(0, 1] =
⋂
{U ∈τ :A ⊆ U} 6=

cl A = [0, 1].

It will be interesting to note that many of the characterizations of R0 given

above have direct analogs in either the ordered topological setting or the bitopo-

logical setting, but not both.

The definition given below for an R0-ordered space arises from the necessary

and sufficient conditions in [8] for the T0-ordered reflection of an ordered topolog-

ical space to be T1-ordered. For an ordered topological space (X, τ,≤), we obtain

the T0-ordered reflection (X/ ≈, τ0,≤0) as an ordered quotient of X , modulo the

equivalence relation x ≈ y if and only if C(x) = C(y). The order ≤0 on X/ ≈ is

the “finite step order” given by

[z0] ≤
0 [zn] ⇐⇒ ∃[z1], [z2], . . . , [zn−1] and ∃z′i, z

∗

i ∈ [zi] (i = 0, 1, . . . , n)

with z′i ≤ z∗i+1 ∀i = 0, 1, . . . , n − 1.

Note that any closed or open monotone set S in X is ≈-saturated (that is,

x ∈ S implies [x] ⊆ S).

We note that Mršević [13] introduced a bitopological “quotient space”

which, in the case of (X, τ ♯, τ ♭), is equivalent to the T0-ordered reflection of

(X, τ,≤).

Lemma 5. Suppose x, y ∈ X , F ⊆ X , and f : X → X/ ≈ is the quotient

map from an ordered topological space X to its T0-ordered reflection X/ ≈.

(a) If A is closed and increasing in X then f(A) is closed and increasing in X/ ≈,

and dually. If A is ≈-saturated, the converse holds.

(b) B is closed and increasing in X/ ≈ if and only if f−1(B) is closed and

increasing in X , and dually.

(c) f(I(x)) = IX/≈([x]) and f(D(x)) = DX/≈([x]).

(d) f−1(IX/≈(f(x)) = f−1(IX/≈([x])) = I(x) and dually.

(e) If [y] ∈ f(D(F )), and [x] ≤ [y] in X/ ≈, then x ∈ D(F ), and dually.
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Proof. (a), (b), and (c) were stated and justified in the paragraph before

Theorem 3.1 of [8]. See also Corollary 2 and Proposition 5 of [13].

(d) I(x) ⊆ f−1(IX/≈([x])) since the latter set is a closed increasing set con-

taining x and the former is the smallest such set. For the reverse inclusion, if

z ∈ f−1(IX/≈([x])) but z /∈ I(x), then since I(x) is saturated, applying f (and

part (c)) gives f(z) /∈ f(I(x)) = IX/≈([x]), contrary to z ∈ f−1(IX/≈([x])).

(e) Suppose [y] ∈ f(D(F )) with [x] ≤ [y] in X/ ≈. Now D(F ) is closed and

decreasing, and thus saturated, and contains y. Since X/ ≈ carries the finite step

order, it follows that x ∈ D(F ). �

Any of the equivalent statements below may be taken as the definition of an

R0-ordered space.

Theorem 6. For an ordered topological space (X, τ,≤) with T0-ordered

reflection X/ ≈, the following are equivalent:

(a) (X, τ,≤) is R0-ordered.

(b)
⋂
{U ∈ τ ♯ : x ∈ U} = i([x]) and dually for all x ∈ X .

(c) The T0-ordered reflection of X is T1-ordered.

(d) [x] � [y] in X/ ≈ implies x /∈ D(y) and y /∈ I(x).

(e) I(x) = f−1(iX/≈([x])) and D(x) = f−1(dX/≈([x])) for all x ∈ X , where

f : X → X/ ≈ is the natural ordered quotient map.

Proof. The equivalence of (b) and (c) is Theorem 3.2 of [8], and was the

impetus for taking these conditions to be the definition of R0-ordered.

(c) ⇒ (d). The proof of this implication is modeled on the proof of the

corresponding non-ordered case (Theorem 3.5 (i) ⇒ (ii) in [1]). Suppose (c) holds

and [x] � [y] in X/ ≈. Then [y] /∈ iX/≈([x]) = IX/≈([x]). Applying f−1, where

f : X → X/ ≈ is the (ordered) quotient map, we have y /∈ f−1(IX/≈([x])) =

f−1(f(I(x)) ⊇ I(x), so y /∈ I(x). Similarly, [x] /∈ dX/≈([y]) implies x /∈ D(y).

(d) ⇒ (c). Suppose (d) holds and [y] /∈ iX/≈([x]). Then x /∈ D(y) implies

that X\D(y) is an open increasing (and thus, saturated) neighborhood of x which

does not include y, so [y] /∈ IX/≈([x]). Similarly, y /∈ I(x) shows X \ I(x) is an

open decreasing saturated neighborhood of y not containing x.

(c) ⇒ (e). Suppose (c) holds. Then iX/≈([x]) is closed and increasing, so

f−1(iX/≈([x])) is closed, increasing, and contains x, so I(x) ⊆ f−1(iX/≈([x])).

For the reverse inclusion, if z ∈ f−1(iX/≈([x])), then [z] = f(z) ∈ iX/≈([x]) =

IX/≈([x]) = f(I(x)), and thus z ∈ I(x) by Lemma 5 (e). Thus, we have I(x) =

f−1(iX/≈([x])). The dual argument completes this implication.



368 Hans-Peter A. Künzi, Aisling E. McCluskey and Thomas A. Richmond

(e) ⇒ (c). Suppose (e). Then by Lemma 5 (d), we have f−1(IX/≈([x])) =

f−1(iX/≈([x])) and f−1(D(X/≈[x])) = f−1(dX/≈([x])) for all x ∈ X , and applying

f , which is onto, shows IX/≈([x]) = iX/≈([x]) and DX/≈([x]) = dX/≈([x]) for all

[x] ∈ X/ ≈, so X/ ≈ is T1-ordered. �

We note that items (b), (c), and (d) of Theorem 6 are direct analogs of

items (h), (i), and (f), respectively, of Theorem 4.

Theorem 7. An ordered topological space (X, τ,≤) is T1-ordered if and only

if it is T0-ordered and R0-ordered.

Proof. Suppose (X, τ,≤) is T0-ordered and R0-ordered. The former condi-

tion implies [x] = {x} and the latter condition then implies i(x) =
⋂
{U ∈ τ ♯ :

x ∈ U} and dually, so (X, τ,≤) is T1-ordered by Lemma 3.

Conversely, suppose (X, τ,≤) is T1-ordered. Then [x] = Cs(x) = D(x) ∩

I(x)∩D−1(x)∩ I−1(x) = d(x)∩ i(x)∩d−1(x)∩ i−1(x) = {x}, so X is T0-ordered.

Thus, i([x]) = i(Cs(x)) = i(x) =
⋂
{U ∈ τ ♯ : x ∈ U}, by Lemma 3. With the

dual argument, Theorem 6 (b) shows that X is R0-ordered. �

Misra and Dube [11] give several characterizations of the pairwise R0 prop-

erty, including the following. The equivalence of (a) and (b) is taken to be the

definition of the pairwise R0 property.

Theorem 8 ([11]). For a bitopological space (X, τ1, τ2), the following are

equivalent:

(a) (X, τ1, τ2) is pairwise R0.

(b) For every x ∈ X , if U is a τi-open neighborhood of x, then clτj (x) ⊆ U ,

where {i, j} = {1, 2}.

(c) y ∈ clτi(x) ⇐⇒ x ∈ clτj (y) for {i, j} = {1, 2}.

(d) If F is τi-closed and x /∈ F , then there exists a τj-open set U with F ⊆ U

and x /∈ U , for {i, j} = {1, 2}.

(e)
⋂
{U ∈ τi : F ⊆ U} = F for any τj -closed F ⊆ X , for {i, j} = {1, 2}.

(f) clτi(x) ∩ clτj(F ) 6= ∅ ⇒ x ∈ clτj (F ) for all x ∈ X , F ⊆ X , and for

{i, j} = {1, 2}.

We observe that items (b), (d), and (f) of Theorem 8 are pairwise versions of

items (c), (b), and (g), respectively, of Theorem 4. Of the standard R0 defining

items from Theorem 4, we found none which had direct analogs to both the

ordered setting and the bitopological setting. This fact has also prompted our
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reconsideration of the standard definition of T1-ordered, and subsequently, of R0-

ordered. We note that (X, τ1, τ2) being pairwise R0 implies (X, τ1 ∨ τ2) is R0

(Proposition 9 of [13]).

3. T
K

1
-ordered and R

K

0
-ordered spaces

Since the usual definitions of T1-ordered, and hence R0-ordered have some

deficiencies as noted above, we propose the following new versions, denoted T K
1 -

ordered and RK
0 -ordered.

Definition 9. An ordered topological space (X, τ,≤) is T K
1 -ordered if C(x) =

{x} for all x ∈ X .

We make the following observations.

Theorem 10. Suppose (X, τ,≤) is an ordered topological space.

(a) (X, τ,≤) is T K
1 -ordered if and only if {x} =

⋂
{U ∈ τ ♯∪τ ♭ : x ∈ U} for every

x ∈ X .

(b) (X, τ ♯, τ ♭) is pairwise T1 ⇐⇒ (X, τ,≤) is T K
1 -ordered ⇒ (X, τ) is T1, and

(X, τ,≤) is T1-ordered ⇒ (X, τ,≤) is T K
1 -ordered. (X, τ,≤) is T K

1 -ordered

and convex ⇐⇒ (X, τ) is T1 and (X, τ,≤) is convex.

(c) For a linearly ordered space (X, τ,≤), T1-ordered and T K
1 -ordered are equiv-

alent.

Proof. (a) is proved analogously to the corresponding characterization of

T1-ordered given in Lemma 3. The proof of (b) follows immediately from (a),

Definitions 2 and 9, and the last sentence of Section 1. For (c), if X is linearly

ordered and T K
1 -ordered and y /∈ i(x), then y ∈ d(x) ⊆ D(x), but y /∈ {x} =

C(x) = I(x)∩D(x), so y /∈ I(x). Thus, i(x) = I(x), and with the dual argument,

X is T1-ordered. �

The example below shows that T K
1 -ordered is not equivalent to the middle-

or weak- pairwise T1 properties applied to (X, τ ♯, τ ♭).

Example 11. Let X = N ∪ {e, π}, where N is the set of natural numbers.

Take all points in N to be topologically isolated and take the neighborhoods of

x ∈ {e, π} to be cofinite sets in X containing x. Now X is a T1 space. Let

≤= ∆ ∪ {(2n, e) : n ∈ N} ∪ {(2n − 1, π) : n ∈ N}. This is a partial order. Note

that e and π are the only nonisolated points in X and for each x ∈ X , d(x) and

i(x) are finite and thus closed, except for d(π) and d(e). Observe that π ∈ D(e)
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and e ∈ D(π). It immediately follows that C(x) = {x} for every x ∈ X . Thus,

X is a T K
1 -ordered space.

Consider e and π. There exists no increasing (open) neighborhood of e that

does not contain π and no increasing (open) neighborhood of π that does not

contain e. Thus, the associated bispace (X, τ ♯, τ ♭) is not a weak pairwise T1

space, and hence is not middle pairwise T1. Noting that π ∈
⋂
{U ∈ τ ♯ : e∈U} 6=

i(e) = {e}, Lemma 3 shows that X is not T1-ordered. This is also easily seen

since d(π) is not closed.

Now we define RK
0 -ordered spaces and subsequently list some of their prop-

erties.

Definition 12. An ordered topological space (X, τ,≤) is RK
0 -ordered if, for

all x, y ∈ X , we have y ∈ C(x) implies x ∈ C(y) .

Theorem 13. Suppose (X, τ,≤) is an ordered topological space.

(a) The following are equivalent:

(i) (X, τ,≤) is RK
0 -ordered.

(ii) C = C−1.

(iii) C is an equivalence relation.

(iv) x ∈ C(y) if and only if C(x) = C(y) for all x, y ∈ X .

(v) x ∈ C(y) if and only if [x] = [y] for all x, y ∈ X .

(vi) {C(x) : x ∈ X} is a partition of X .

(b) (X, τ ♯, τ ♭) is pairwise R0 ⇒ (X, τ,≤) is RK
0 -ordered. (X, τ,≤) is R0-ordered

⇒ (X, τ,≤) is RK
0 -ordered. (X, τ,≤) is RK

0 -ordered and convex ⇐⇒ (X, τ)

is R0 and (X, τ,≤) is convex.

(c) If (X, τ,≤) is a linearly ordered space, then R0-ordered and RK
0 -ordered are

equivalent properties.

Proof. (a) is immediate.

(b) The first implication follows from a comparison of part (iv) of (a) above

and Theorem 8 (c). X is R0-ordered if and only if X/ ≈ is T1-ordered, which

implies X/ ≈ is T K
1 -ordered, and hence (by Theorem 15 below) X is RK

0 -ordered.

Suppose X is RK
0 -ordered and convex. We will show that {cl(x) : x ∈ X}

partitions X . Suppose z ∈ cl(x)∩cl(y). Now z ∈ cl(x) ⊆ C(x) implies, by part (v)

of (a), that [x] = [z], and similarly [y] = [z] = [x]. Recalling that convexity implies

[w] ⊆ cl(w) for any w ∈ X , we have x ∈ [x] = [y] ⊆ cl(y) and y ∈ [y] = [x] ⊆ cl(x).

Applying the closure operator now shows cl(x) ⊆ cl(y) ⊆ cl(x), so cl(x) = cl(y),

and thus (X, τ) is R0 by Theorem 4 (d). Conversely, suppose (X, τ,≤) is convex
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and (X, τ) is R0. We will show that z ∈ C(x) implies C(z) = C(x), from which it

easily follows that {C(x) : x ∈ X} partitions X and thus X is RK
0 -ordered. If z ∈

C(x) and x ∈ C(z), applying the closure operator C shows C(x) = C(z). Thus,

suppose z ∈ C(x) and x /∈ C(z). Then x /∈ cl(z), so cl(x) 6= cl(z). Theorem 4 (f)

implies the existence of a neighborhood N of z which does not contain x, and by

convexity, we may assume N is monotone open. If N is increasing, then X \N is

a closed decreasing set containing x and excluding z. This shows z /∈ D(x), giving

the contradiction that z /∈ C(x). The dual argument applies if N is decreasing.

(c) If X is a linearly ordered RK
0 -ordered space, by Theorem 15 below, X/ ≈

is T K
1 -ordered. It is easy to see that the finite step order on X/ ≈ is also linear,

in which case X/ ≈ is T1-ordered, and therefore X is R0-ordered. The converse

follows from part (b). �

Observing the appearance of convexity in (b) above, we note that RK
0 -ordered

need not imply R0 if the topology is not convex. For example, consider X =

{⊥, a, b,⊤} where a and b are noncomparable and ⊥ ≤ x ≤ ⊤ for all x ∈ X .

Give X the topology having {{⊤,⊥}, {a, b}, {a}} as base of closed sets. It is easy

to check that C(x) = X for each x ∈ X , so X is RK
0 -ordered. In fact, X is

R0-ordered since i([x]) = i(X) = X =
⋂
{U ∈ τ ♯ : x ∈ U} and dually for each

x ∈ X . However, {cl(x) : x ∈ X} does not partition X , so X is not R0.

The next theorems show that the RK
0 -ordered and T K

0 -ordered properties

interact as one would hope.

Theorem 14. (X, τ,≤) is T K
1 -ordered if and only if it is T0-ordered and

RK
0 -ordered.

Proof. If X is T0-ordered and RK
0 -ordered, then for all x ∈ X we have

{x} = C−1(x)∩C(x) = C(x)∩C(x) = C(x), where the first equality follows from

the T0-ordered property and the second equality from the RK
0 -ordered property.

Thus, X is T K
1 -ordered. Conversely, if X is T K

1 -ordered, then C(x) = {x} implies

C(x) ∩ C−1(x) = {x}, so that X is T0-ordered. Also, y ∈ C(x) = {x} implies

x ∈ C(y), so X is RK
0 -ordered. �

Theorem 15. The T0-ordered reflection X/ ≈ of an ordered topological

space X is T K
1 -ordered if and only if X is RK

0 -ordered.

Proof. If X/ ≈ is T K
1 -ordered, then IX/≈([x]) ∩ DX/≈([x]) = {[x]} for all

[x] ∈ X/ ≈. Applying f−1 as in Lemma 5 (d) gives C(x) = I(x) ∩ D(x) = [x].

Now y ∈ C(x) = [x] ⇐⇒ C(x) = C(y), so X is RK
0 -ordered by Theorem 13 (a).

Conversely, suppose X is RK
0 -ordered and [y] ∈ CX/≈([x]) = IX/≈([x]) ∩

DX/≈([x]). Applying f−1 as in Lemma 5 (d) gives [y] ⊆ I(x) ∩ D(x) = C(x),
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and now y ∈ C(x) implies [y] = [x]. It follows that CX/≈([x]) = {[x]} for any

[x] ∈ X/ ≈, so X/ ≈ is T K
1 -ordered. This direction of the proof also follows from

the bitopological quotient construction of Theorem 3.1 of [20], which also appears

as Corollary 6 of [13]. �

(X, τ ♯, τ ♭) (X, τ,≤) (X, τ )

pairwise T0 ⇒ T0-ordered ⇒ T0

weak pairwise T0 ⇐⇒ T0-ordered ⇒ T0

T0-ordered + convex ⇐⇒

(
T0 +

(X, τ,≤) convex

pairwise R0 6⇒ R0-ordered 6⇒ R0

⇓

pairwise R0 ⇒ RK
0 -ordered 6⇒ R0

RK
0 -ordered + convex ⇐⇒

(
R0 +

(X, τ,≤) convex

pairwise T1 6⇒ T1-ordered ⇒ T1

⇓

pairwise T1 ⇐⇒ T K
1 -ordered ⇒ T1

T K
1 -ordered + convex ⇐⇒

(
T1 +

(X, τ,≤) convex

pairwise
completely regular

+ (X, τ,≤) convex

+ (X, τ,≤) T1-ordered

9>>>=>>>; ⇒
completely regularly

ordered
⇒

completely
regular

We note that T1-ordered is a strictly stronger property than T K
1 -ordered. For

example, consider the interval [0, 1] ⊆ R with the usual topology. Impose the usual

order on (0, 1], with 0 noncomparable to all other points. This ordered topological

space is easily seen to be (τ ♯, τ ♭)-pairwise T1, and hence T K
1 -ordered, but since,

for example, d(1) = (0, 1] is not closed, it is not T1-ordered. Furthermore, since

T K
1 -ordered implies T0-ordered, this space is its own T0-ordered reflection. Now

the characterizations in Theorem 6 and Theorem 15 show that this space is RK
0 -

ordered but not R0-ordered. Thus, R0-ordered is a strictly stronger property than

RK
0 -ordered.

The table above summarizes the implications (1) ⇒ (2) ⇒ (3) suggested in

the introduction. A bitopological space is pairwise completely regular (see [9]) if

and only if it admits a compatible quasi-uniformity U in the sense that τ(U) is the

first topology and τ(U−1) is the second topology. An ordered topological space is
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completely regularly ordered (see [7], [16]) if and only if there is a quasi-uniformity

U with
⋂
U =≤ and τ(U) ∨ τ(U−1) = τ . Such spaces are always convex and T1-

ordered. Completely regular topological spaces are the uniformizable spaces.

The following result is analogous to Theorem 4 (e).

Theorem 16. An ordered topological space (X, τ,≤) is RK
0 -ordered if and

only if there is a lattice isomorphism ϕ between τ and the topology τ1 of some

T K
1 -ordered topological space (X1, τ1,≤1) such that the restrictions ϕ|τ♯ and ϕ|τ♭

are lattice isomorphisms from τ ♯ onto τ ♯
1 and from τ ♭ onto τ ♭

1 , respectively.

Proof. Suppose (X, τ,≤) is an ordered topological space, (X1, τ1,≤1) is a

T K
1 -ordered topological space, and there exists a lattice isomorphism from τ to

τ1 which induces lattice isomorphisms from τ ♯ to τ ♯
1 and from τ ♭ to τ ♭

1 . Now

{x} = C(x) = I(x) ∩D(x) for every x ∈ X1, so every τ1-closed set F is a disjoint

union of minimal nonempty closed sets, each of which is the intersection of a closed

increasing set and a closed decreasing set. Correspondingly, in X , each closed set,

and in particular, X , is partitioned into minimal nonempty closed sets, each of

which is the intersection of a closed increasing set and a closed decreasing set.

For x ∈ X , let x̂ be the member of this partition of X which contains x. Then

x̂ = C(x), so {C(x) : x ∈ X} partitions X , and thus X is RK
0 -ordered.

For the converse, take (X1, τ1,≤1) to be the T0-ordered reflection of X . The

result follows from Lemma 5 (a) and (b), noting that closed or open monotone

sets in X are ≈-saturated. �

As additional evidence that the standard definition of T1-ordered and the

corresponding definition of R0-ordered are not optimal, we show that Theorem 16

does not remain valid if RK
0 -ordered and T K

1 -ordered are replaced by R0-ordered

and T1-ordered. Let N = {a, b, c, d} with the order ∆N ∪ {(a, b), (c, d), (c, b)},

and the topology τ = τ ♯ ∪ τ ♭ where τ ♯ = {∅, {a, b}, N} and τ ♭ = {∅, {c, d}, N}.

Now i([c]) = i({c, d}) 6= N =
⋂
{U ∈ τ ♯ : c ∈ U}. Thus N is not R0-ordered.

However, if (Y, τ1,≤1) is the subspace {a, d} of N , then Y is T1-ordered and

there is a natural lattice isomorphism between τ and τ1 which induces a lattice

isomorphism between τ ♯ (τ ♭) and τ ♯
1 (τ ♭

1). Further note that both N and Y are

convex. One direction of Theorem 16, however, does remain valid if the K is

dropped from RK
0 -ordered and T K

1 -ordered. The argument of the last paragraph

of the proof still holds. (See also Proposition 6 of [13].)

We also note that for (X, τ,≤) to be RK
0 -ordered, it is not sufficient to have

τ ♯ and τ ♭ individually lattice isomorphic to the upper and lower topologies τ ♯
1 and

τ ♭
1 of a T K

1 -ordered topological space, even if both spaces are convex. Consider
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X = {a, b, c, d} with the order ∆X ∪ {(a, b), (c, d)} and with subbase of open

sets {{b}, {c}, X}. Note that τ ♯ = {∅, {b}, X} is a 3-element nested chain, as is

τ ♭ = {∅, {c}, X}, and (X, τ,≤) is convex. Now if X1 = {1, 2} with the discrete

topology τ1 and usual order ≤1, then it is easy to see that (X1, τ1,≤1) is T1-

ordered and thus T K
1 -ordered, τ ♯

1 and τ ♭
1 are individually lattice isomorphic to τ ♯

and τ ♭, yet (X, τ,≤) is not RK
0 -ordered since, for example, a ∈ C(b) but b /∈ C(a).

4. The Wallman ordered compactification

The Wallman ordered compactification of a T1-ordered convex ordered topo-

logical space (X, τ,≤) was first constructed by Choe and Park [2] using maximal

bifilters, and later by Kent [5] using maximal c-filters. A c-filter is a filter having

a base of c-sets. Let w0X be the set of maximal c-filters on (X, τ,≤). For A ⊆ X ,

let A∗ = {F ∈ w0X : A ∈ F}. Then {A∗ : A is a c-set in X} is a closed subbase

for a topology on w0X . A partial order on w0X is defined by F ≤ G if and only

if I(F) ⊆ G and D(G) ⊆ F , where I(F) is the filter generated by {I(F ) : F ∈ F}

and D(G) is defined similarly. Now w0X with this topology and order is the Wall-

man ordered compactification. If H is a monotone open or closed set in X , then

H∗ has the same properties in w0X . Choe and Park’s earlier construction uses

maximal bifilters (F ,G) where a bifilter is defined to be a pair of filters (F ,G)

such that F ∨G exists, F has a base of closed decreasing sets, and G has a base of

closed increasing sets. The set of maximal bifilters is given the topology having a

subbase of closed sets of form {(F ,G) ∈ w0X : D(A) ∈ F and I(A) ∈ G} where A

is any subset of X , and they order the set of maximal bifilters by (F ,G) ≤ (F ′,G′)

if and only if F ⊆ F ′ and G ⊆ G′. The equivalence of the bifilter construction

and the c-set construction of w0X is seen by the bijection (F ,G) → F ∨ G from

the set of maximal bifilters on X to the set of maximal c-filters on X .

Both constructions of the Wallman ordered compactification use the hypoth-

esis that (X, τ,≤) be T1-ordered only to insure that X is embedded in w0X , that

is, only to insure that {S(x)} is a maximal c-filter or (S(d(x)),S(i(x))) is a max-

imal bifilter, where S(A) represents the collection of supersets of A. Thus, the

c-filter construction of w0X only uses T1-ordered to imply the T K
1 -ordered prop-

erty, that {x} = C(x) so that S(x) is a maximal c-filter. It follows that Kent’s

c-filter construction of w0X remains valid for any T K
1 -ordered space.

If X is T1-ordered, Choe and Park consider the points of X ⊆ w0X to be the

maximal bifilters (S(d(x)),S(i(x))) = (S(D(x)),S(I(x))). This equality need not

hold if X is only assumed to be T K
1 -ordered, so to ensure that the bifilters have
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bases of closed sets, we must use (S(D(x)),S(I(x))) for the construction of the

Wallman ordered compactification of a T K
1 -ordered space. With this modification,

the proof in [2] that (S(d(x)),S(i(x))) is a maximal bifilter for all x ∈ X does

not show that the bifilter (S(D(x)),S(I(x))) is maximal if X is T K
1 -ordered. We

remedy this situation with the following Lemma.

Lemma 17. If X is a convex T K
1 -ordered topological space and x ∈ X , then

(S(D(x)),S(I(x))) is a maximal bifilter.

Proof. It is easy to see that (S(D(x)),S(I(x))) is a bifilter. If it is not

maximal, then there exists a bifilter (F ,G) ⊇ (S(D(x)),S(I(x))) with either

S(D(x)) 6= F or S(I(x)) 6= G. The cases are dual, so we will only consider the

case S(D(x)) 6= F . Since F has a base of closed decreasing sets, there exists a

closed decreasing set F ∈ F such that F /∈ S(D(x)), or equivalently, D(x) 6⊆ F .

Since D(x) ∈ F , we have A = D(x) ∩ F ∈ F . Now A ⊆ F implies D(x) * A,

so x /∈ A. We also have I(x) ⊆ X \ A, for if y ∈ I(x) ∩ A ⊆ I(x) ∩ D(x), then

we have the contradiction that y = x /∈ A since, by the T K
1 -ordered property,

I(x)∩D(x) = {x}. Thus, we have X \A ∈ S(I(x)) ⊆ G and A ∈ F , contradicting

that F ∨G exists. This shows that the bifilter (S(D(x)),S(I(x))) is maximal. �

The Wallman ordered compactification of a T1-ordered space need not be T1-

ordered, but the theorem below shows the advantage of the T K
1 -ordered property.

Theorem 18. If X is any convex T K
1 -ordered topological space, the Wallman

ordered compactification w0X is T K
1 -ordered.

Proof. We will show that w0X satisfies the characterization of T K
1 -ordered

given in Theorem 10 (a). Suppose F and G are distinct maximal c-filters on X ,

that is, F and G are distinct points in w0X . Now either I(G) 6⊆ F or I(G) ⊆ F .

In case I(G) 6⊆ F , there exists I(G) ∈ I(G) ⊆ G with I(G) /∈ F . Since G is

a filter and F is maximal, it follows that X \ I(G) /∈ G and X \ I(G) ∈ F ,

so that G /∈ (X \ I(G))∗ and F ∈ (X \ I(G))∗. Now (X \ I(G))∗ is an open

decreasing neighborhood of F in w0X which excludes G. In case I(G) ⊆ F , we

have D(G) 6⊆ F , for otherwise I(G) ∨ D(G) = C(G) = G ⊆ F , contradicting the

maximality of G. Now there exists D(G) ∈ G with D(G) /∈ F , and the dual

argument of the previous case shows that (X \ D(G))∗ is an open increasing

neighborhood of F in w0X which excludes G. In either case, we have found that

G 6= F implies G /∈
⋂
{ open monotone neighborhoods of F}, and it follows that

w0X is T K
1 -ordered. �
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We mention that the expected properties of the Wallman ordered compacti-

fication remain valid even when the construction is applied to T K
1 -ordered topo-

logical spaces. For example, if X is convex and T K
1 -ordered, ϕ : X → w0X is the

natural embedding, and f : X → Y is a continuous increasing function from X

into an arbitrary compact T2-ordered space Y (i.e., Y is compact and the graph

of its order is closed in Y × Y ), then there exist a unique continuous increasing

function f : w0X → Y such that f ◦ ϕ = f .

References

[1] K. Belaid, O. Echi, and S. Lazaar, T(α,β)-spaces and the Wallman compactification,

Internat. J. Math. & Math. Sci. 68 (2004), 3717–3735.

[2] T. H. Choe and Y. S. Park, Wallman’s Type Order Compactification, Pacific J. Math.
82 (2) (1979), 339–347.

[3] A. S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, The Amer.
Math. Monthly 68 (9) (1961), 886–893.

[4] B. P. Dvalishvili, Bitopological Spaces: Theory, Relations With Generalized Algebraic
Structures, and Applications, Vol. 199, North-Holland Mathematics Studies, Elsevier Sci-
ence B. V., Amsterdam, 2005.

[5] D. C. Kent, On the Wallman Order Compactification, Pacific J. Math. 118 (1985),
159–163.

[6] D. C. Kent and T. A. Richmond, Separation properties of the Wallman ordered compact-
ification, Internat. J. Math. & Math. Sci.. 13 (2) (1990), 209–222.

[7] H.-P. A. Künzi and T. A. Richmond, Completely regularly ordered spaces versus
T2-ordered spaces which are completely regular, Topology Appl. 135 (1–3) (2004), 185–196.

[8] H.-P. A. Künzi and T. A. Richmond, Ti-ordered reflections, Applied General Topology 6

(2) (2005), 207–216.

[9] E. P. Lane, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. (3)
17 (1967), 241–256.

[10] S. D. McCartan, Separation axioms for topological ordered spaces, Proc. Cambridge Phi-
los. Soc. 64 (1968), 965–973.

[11] D. N. Misra and K. K. Dube, Pairwise R0-space, Annales de la Société Scientifique de
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(1974), 293–296.



Ordered separation axioms and the Wallman ordered compactification 377

[18] M. J. Saegrove, Pairwise completely regularity and compactification in bitopological
spaces, J. London Math. Soc. (2) 7 (1973), 286–290.

[19] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces,
Nederl. Akad. Wetensh. Proc. Ser. A 74 Indag. Math. 33 (1971), 135–145.
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