Publ. Math. Debrecen 73/3-4 (2008), 497–500

On the volume of the convex hull of d + 1 segments in \mathbb{R}^d

By GENNADIY AVERKOV (Magdeburg) and HORST MARTINI (Chemnitz)

Abstract. Let $d \geq 2$, $m \geq d$, and u_1, \ldots, u_m be non-zero vectors linearly spanning \mathbb{R}^d . The note is devoted to the problem of minimizing the volume of the polytopes $P := \operatorname{conv}(I_1 \cup \cdots \cup I_m)$, where, for $j = 1, \ldots, m$, I_j is a translate of $\operatorname{conv}\{o, u_j\}$. The solution of this problem for the case m = d was previously known. For the case m = d+1 the minimal volume is evaluated and the class of minimizing polytopes P is studied.

1. Introduction

Let $d \geq 2$. The origin in \mathbb{R}^d is denoted by o. The abbreviations conv and vol stand for convex hull and volume, respectively. Let $d \geq 2$, $m \geq d$, and u_1, \ldots, u_m be non-zero vectors linearly spanning \mathbb{R}^d . We consider the class $\mathcal{P}(u_1, \ldots, u_m)$ of convex polytopes P in \mathbb{R}^d such that $P = \operatorname{conv}(I_1 \cup \cdots \cup I_m)$, where, for $j = 1, \ldots, m$, the set I_j is a translate of the segment $\operatorname{conv}\{o, u_j\}$. By $v(u_1, \ldots, u_m)$ we denote the minimum among the volumes of all polytopes from $\mathcal{P}(u_1, \ldots, u_d)$, and by $\mathcal{P}_0(u_1, \ldots, u_k)$ the subclass of $\mathcal{P}(u_1, \ldots, u_m)$ minimizing the volume. It is known that $v(u_1, \ldots, u_d) = \frac{1}{d!} \det(u_1, \ldots, u_d)$. In this note we evaluate $v(u_1, \ldots, u_{d+1})$ and study the properties of $\mathcal{P}_0(u_1, \ldots, u_{d+1})$. For the case m = d the class $\mathcal{P}_0(u_1, \ldots, u_m)$ and the corresponding quantity $v(u_1, \ldots, u_m)$ were studied in [7] and [5]. In particular, in the above paper it was shown that

$$v(u_1, \dots, u_d) = \frac{1}{d!} |\det(u_1, \dots, u_d)|,$$
 (1)

where $det(u_1, \ldots, u_d)$ denotes the determinant of the matrix with columns u_1, \ldots, u_d . We perform an analogous study for the case m = d + 1.

Mathematics Subject Classification: Primary: 52B11; Secondary: 52A40.

Key words and phrases: geometric inequality, minimum width, Minkowski space, polytope, reduced body, simplex, volume.

Gennadiy Averkov and Horst Martini

Theorem. Let $d \ge 2$, and u_1, \ldots, u_{d+1} be non-zero vectors linearly spanning \mathbb{R}^d . Then the following statements hold true.

- I. The quantity $v(u_1, \ldots, u_{d+1})$ is equal to the maximum of $v(u'_1, \ldots, u'_d)$ over all possible subsets $\{u'_1, \ldots, u'_d\}$ of $\{u_1, \ldots, u_{d+1}\}$.
- II. The class $\mathcal{P}_0(u_1, \ldots, u_{d+1})$ necessarily contains simplices.
- III. Every polytope from $\mathcal{P}_0(u_1, \ldots, u_{d+1})$ has at most 2d vertices.

The statement of Theorem can be reformulated in terms of *Minkowski geom*etry (that is, the geometry of finite dimensional normed spaces); see [8] and [6]. In fact, if $\{\pm u_1, \ldots, \pm u_m\}$ is a set of vertices of some *o*-symmetric *d*-dimensional convex polytope *B* and \mathcal{M}^d is the normed space whose unit ball is *B*, then the class $\mathcal{P}_0(u_1, \ldots, u_m)$ is precisely the class of convex bodies whose *minimum width*, measured with respect to \mathcal{M}^d , is equal to one and whose volume is minimal. It should also be mentioned that the elements of $\mathcal{P}(u_1, \ldots, u_m)$ contain all \mathcal{M}^d reduced bodies, which were introduced in [4]. For more information on minimum width and reduced bodies in Minkowski spaces see [4], [3], and [2].

We ask about possible extensions of Theorem for the case of a larger number of segments. More precisely, we consider $d \ge 2$, $m \ge d$, and vectors u_1, \ldots, u_m linearly spanning \mathbb{R}^d , and we pose the following problems.

- 1. Describe *m* and *d* such that for all u_1, \ldots, u_m the quantity $v(u_1, \ldots, u_m)$ is the maximum of $v(u'_1, \ldots, u'_d)$ over all $\{u'_1, \ldots, u'_d\} \subseteq \{u_1, \ldots, u_m\}$.
- 2. Describe *m* and *d* such that for all $u_1, \ldots, u_m \in \mathbb{R}^d$ the class $\mathcal{P}_0(u_1, \ldots, u_m)$ necessarily contains simplices.
- 3. Describe m and d such that for all u_1, \ldots, u_m the class $\mathcal{P}_0(u_1, \ldots, u_m)$ consists of polytopes with at most 2d vertices.

The solutions for the case $m \leq d+1$ are provided by Theorem and the results from [7] and [5]. Problems 2 and 3 can be solved for d = 2. Indeed, from the main result of [1] it follows that for d = 2 the class $\mathcal{P}_0(u_1, \ldots, u_m)$ necessarily contains triangles and, furthermore, the polygons from $\mathcal{P}_0(u_1, \ldots, u_m)$ distinct from triangles are necessarily quadrilaterals. To the best of our knowledge, all the remaining cases of Problems 1–3 are open.

498

On the volume of the convex hull of d+1 segments in \mathbb{R}^d

2. The proof

PROOF OF THEOREM. For every subset $\{u'_1, \ldots, u'_d\}$ of $\{u_1, \ldots, u_{d+1}\}$ the inequality $v(u'_1, \ldots, u'_d) \leq v(u_1, \ldots, u_{d+1})$ is obvious. Let us show that for some u'_1, \ldots, u'_d as above the reverse inequality is fulfilled. Without loss of generality we assume that the maximum of $v(u'_1, \ldots, u'_d)$ over $\{u'_1, \ldots, u'_d\} \subseteq \{u_1, \ldots, u_{d+1}\}$ is attained when $u'_i = u_i$ for $i = 1, \ldots, d$.

For $i = 1, \ldots, d$ we replace u_i by $-u_i$ (or equivalently, translate the original segment conv $\{o, u_i\}$ by $-u_i$) arriving at the representation $u_{d+1} = \sum_{i=1}^d \beta_i u_i$ with each $\beta_i \ge 0$. Moreover, we assume that u_1, \ldots, u_d are ordered so that $\beta_1 \le \cdots \le \beta_d$. We have $\beta_d \le 1$, since otherwise $v(u_1, \ldots, u_{d-1}, u_{d+1})$ would be larger than $v(u_1, \ldots, u_d)$. We define the points p_1, p_2, \ldots, p_d by

$$p_i := \sum_{j=i}^d u_j.$$

Let us show that the simplex $T := \operatorname{conv}\{o, p_1, \ldots, p_d\}$ belongs to $\mathcal{P}_0(u_1, \ldots, u_{d+1})$. We introduce the values $\alpha_1, \ldots, \alpha_d$ by the formulas

$$\alpha_1 := \beta_1, \qquad \alpha_i := \beta_i - \beta_{i-1} \qquad (2 \le i \le d).$$

It is easy to verify that for every $j = 1, \ldots, d$ we have $0 \le \alpha_j \le 1$ and $\sum_{i=1}^{j} \alpha_i = \beta_j \le 1$. Now let us show that $u_{d+1} \in T$. We have

$$\left(1 - \sum_{i=1}^{d} \alpha_i\right) o + \sum_{i=1}^{d} \alpha_i p_i = \sum_{i=1}^{d} \alpha_i p_i = \sum_{i=1}^{d} \alpha_i \sum_{j=i}^{d} u_j$$
$$= \sum_{1 \le i \le j \le d} \alpha_i u_j = \sum_{j=1}^{d} \left(\sum_{i=1}^{j} \alpha_i\right) u_j = \sum_{j=1}^{d} \beta_j u_j = u_{d+1}.$$

Thus, u_{d+1} is a convex combination of points o, p_1, \ldots, p_d , and hence $u_{d+1} \in T$. Obviously, T can be represented by

$$T = \operatorname{conv}\left(\bigcup_{i=1}^{d-1} \operatorname{conv}\{p_i, p_{i+1}\} \cup \operatorname{conv}\{o, p_d\}\right).$$

But $\operatorname{conv}\{o, p_d\} = \operatorname{conv}\{o, u_d\}$, while, for every $i = 1, \ldots, d-1$, the segment $\operatorname{conv}\{p_i, p_{i+1}\}$ is a translate of $\operatorname{conv}\{o, u_i\}$. Since $\operatorname{conv}\{o, u_{d+1}\} \subseteq T$, we see that $T \in \mathcal{P}(u_1, \ldots, u_d)$. By construction,

$$\operatorname{vol}(T) = \frac{1}{d!} |\det(p_1, \dots, p_d)| = \frac{1}{d!} |\det(u_1, \dots, u_d)| = v(u_1, \dots, u_d).$$

499

500 G. Averkov and H. Martini : On the volume of the convex hull of $d + 1 \dots$

Hence $v(u_1, \ldots, u_d) \geq v(u_1, \ldots, u_{d+1})$. This shows Part I and (since T is a simplex) also Part II of the theorem.

We prove Part III by contradiction. Assume that P is a polytope from $\mathcal{P}_0(u_1, \ldots, u_{d+1})$ with at least 2d+1 vertices. Let J_1, \ldots, J_{d+1} be segments in \mathbb{R}^d such that, for $i = 1, \ldots, d+1$, the segment J_i is a translate of conv $\{o, u_i\}$ and $P = \operatorname{conv}(J_1 \cup \cdots \cup J_{d+1})$. Since P has at least 2d+1 vertices, at least one of the endpoints of J_{d+1} is also a vertex of P. Hence, taking into account (1),

$$\operatorname{vol}(P) > \operatorname{vol}(\operatorname{conv}(J_1 \cup \dots \cup J_d)) \ge \frac{1}{d!} |\det(u_1, \dots, u_d)| = \operatorname{vol}(T),$$

and we arrive at the contradiction. This finishes the proof of Part III.

References

- G. AVERKOV, On planar convex bodies of given Minkowskian thickness and least possible area, Arch. Math. 84, no. 2 (2005), 183–192.
- [2] G. AVERKOV and H. MARTINI, On reduced polytopes and antipodality, Adv. Geom. 8 (2008), 617–628.
- M. LASSAK, Characterizations of reduced polytopes in finite-dimensional normed spaces, Beiträge Algebra Geom. 47, no. 2 (2006), 559–566.
- M. LASSAK and H. MARTINI, Reduced bodies in Minkowski space, Acta Math. Hungar. 106, no. 1–2 (2005), 17–26.
- [5] H. MARTINI, Das Volumen spezieller konvexer Polytope, *Elem. Math.* 44, no. 5 (1989), 113–115.
- [6] H. MARTINI, K. J. SWANEPOEL and G. WEISS, The geometry of Minkowski spaces a survey, Part I, Expo. Math. 19, no. 2 (2001), 97–142.
- [7] P. MCMULLEN, The volume of certain convex sets, Math. Proc. Cambridge Philos. Soc. 91, no. 1 (1982), 91–97.
- [8] A. C. THOMPSON, Minkowski Geometry, Encyclopedia of Mathematics and its Applications, Vol. 63, Cambridge University Press, Cambridge, 1996.

GENNADIY AVERKOV FACULTY OF MATHEMATICS UNIVERSITY OF MAGDEBURG 39106 MAGDEBURG GERMANY

E-mail: gennadiy.averkov@googlemail.com

HORST MARTINI FACULTY OF MATHEMATICS UNIVERSITY OF TECHNOLOGY 09107 CHEMNITZ GERMANY

 ${\it E-mail:}\ horst.martini@mathematik.tu-chemnitz.de$

(Received March 27, 2008; revised June 26, 2008)