On the volume of the convex hull of $d+1$ segments in \mathbb{R}^{d}

By GENNADIY AVERKOV (Magdeburg) and HORST MARTINI (Chemnitz)

Abstract

Let $d \geq 2, m \geq d$, and u_{1}, \ldots, u_{m} be non-zero vectors linearly spanning \mathbb{R}^{d}. The note is devoted to the problem of minimizing the volume of the polytopes $P:=\operatorname{conv}\left(I_{1} \cup \cdots \cup I_{m}\right)$, where, for $j=1, \ldots, m, I_{j}$ is a translate of $\operatorname{conv}\left\{o, u_{j}\right\}$. The solution of this problem for the case $m=d$ was previously known. For the case $m=d+1$ the minimal volume is evaluated and the class of minimizing polytopes P is studied.

1. Introduction

Let $d \geq 2$. The origin in \mathbb{R}^{d} is denoted by o. The abbreviations conv and vol stand for convex hull and volume, respectively. Let $d \geq 2, m \geq d$, and u_{1}, \ldots, u_{m} be non-zero vectors linearly spanning \mathbb{R}^{d}. We consider the class $\mathcal{P}\left(u_{1}, \ldots, u_{m}\right)$ of convex polytopes P in \mathbb{R}^{d} such that $P=\operatorname{conv}\left(I_{1} \cup \cdots \cup I_{m}\right)$, where, for $j=1, \ldots, m$, the set I_{j} is a translate of the segment $\operatorname{conv}\left\{o, u_{j}\right\}$. By $v\left(u_{1}, \ldots, u_{m}\right)$ we denote the minimum among the volumes of all polytopes from $\mathcal{P}\left(u_{1}, \ldots, u_{d}\right)$, and by $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{k}\right)$ the subclass of $\mathcal{P}\left(u_{1}, \ldots, u_{m}\right)$ minimizing the volume. It is known that $v\left(u_{1}, \ldots, u_{d}\right)=\frac{1}{d!} \operatorname{det}\left(u_{1}, \ldots, u_{d}\right)$. In this note we evaluate $v\left(u_{1}, \ldots, u_{d+1}\right)$ and study the properties of $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{d+1}\right)$. For the case $m=d$ the class $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{m}\right)$ and the corresponding quantity $v\left(u_{1}, \ldots, u_{m}\right)$ were studied in [7] and [5]. In particular, in the above paper it was shown that

$$
\begin{equation*}
v\left(u_{1}, \ldots, u_{d}\right)=\frac{1}{d!}\left|\operatorname{det}\left(u_{1}, \ldots, u_{d}\right)\right| \tag{1}
\end{equation*}
$$

where $\operatorname{det}\left(u_{1}, \ldots, u_{d}\right)$ denotes the determinant of the matrix with columns u_{1}, \ldots, u_{d}. We perform an analogous study for the case $m=d+1$.

Mathematics Subject Classification: Primary: 52B11; Secondary: 52A40.
Key words and phrases: geometric inequality, minimum width, Minkowski space, polytope, reduced body, simplex, volume.

Theorem. Let $d \geq 2$, and u_{1}, \ldots, u_{d+1} be non-zero vectors linearly spanning \mathbb{R}^{d}. Then the following statements hold true.
I. The quantity $v\left(u_{1}, \ldots, u_{d+1}\right)$ is equal to the maximum of $v\left(u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right)$ over all possible subsets $\left\{u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right\}$ of $\left\{u_{1}, \ldots, u_{d+1}\right\}$.
II. The class $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{d+1}\right)$ necessarily contains simplices.
III. Every polytope from $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{d+1}\right)$ has at most $2 d$ vertices.

The statement of Theorem can be reformulated in terms of Minkowski geometry (that is, the geometry of finite dimensional normed spaces); see [8] and [6]. In fact, if $\left\{ \pm u_{1}, \ldots, \pm u_{m}\right\}$ is a set of vertices of some o-symmetric d-dimensional convex polytope B and \mathcal{M}^{d} is the normed space whose unit ball is B, then the class $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{m}\right)$ is precisely the class of convex bodies whose minimum width, measured with respect to \mathcal{M}^{d}, is equal to one and whose volume is minimal. It should also be mentioned that the elements of $\mathcal{P}\left(u_{1}, \ldots, u_{m}\right)$ contain all \mathcal{M}^{d} reduced bodies, which were introduced in [4]. For more information on minimum width and reduced bodies in Minkowski spaces see [4], [3], and [2].

We ask about possible extensions of Theorem for the case of a larger number of segments. More precisely, we consider $d \geq 2, m \geq d$, and vectors u_{1}, \ldots, u_{m} linearly spanning \mathbb{R}^{d}, and we pose the following problems.

1. Describe m and d such that for all u_{1}, \ldots, u_{m} the quantity $v\left(u_{1}, \ldots, u_{m}\right)$ is the maximum of $v\left(u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right)$ over all $\left\{u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right\} \subseteq\left\{u_{1}, \ldots, u_{m}\right\}$.
2. Describe m and d such that for all $u_{1}, \ldots, u_{m} \in \mathbb{R}^{d}$ the class $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{m}\right)$ necessarily contains simplices.
3. Describe m and d such that for all u_{1}, \ldots, u_{m} the class $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{m}\right)$ consists of polytopes with at most $2 d$ vertices.
The solutions for the case $m \leq d+1$ are provided by Theorem and the results from [7] and [5]. Problems 2 and 3 can be solved for $d=2$. Indeed, from the main result of [1] it follows that for $d=2$ the class $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{m}\right)$ necessarily contains triangles and, furthermore, the polygons from $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{m}\right)$ distinct from triangles are necessarily quadrilaterals. To the best of our knowledge, all the remaining cases of Problems 1-3 are open.

2. The proof

Proof of Theorem. For every subset $\left\{u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right\}$ of $\left\{u_{1}, \ldots, u_{d+1}\right\}$ the inequality $v\left(u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right) \leq v\left(u_{1}, \ldots, u_{d+1}\right\}$ is obvious. Let us show that for some $u_{1}^{\prime}, \ldots, u_{d}^{\prime}$ as above the reverse inequality is fulfilled. Without loss of generality we assume that the maximum of $v\left(u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right)$ over $\left\{u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right\} \subseteq\left\{u_{1}, \ldots, u_{d+1}\right\}$ is attained when $u_{i}^{\prime}=u_{i}$ for $i=1, \ldots, d$.

For $i=1, \ldots, d$ we replace u_{i} by $-u_{i}$ (or equivalently, translate the original segment $\operatorname{conv}\left\{o, u_{i}\right\}$ by $\left.-u_{i}\right)$ arriving at the representation $u_{d+1}=\sum_{i=1}^{d} \beta_{i} u_{i}$ with each $\beta_{i} \geq 0$. Moreover, we assume that u_{1}, \ldots, u_{d} are ordered so that $\beta_{1} \leq \cdots \leq \beta_{d}$. We have $\beta_{d} \leq 1$, since otherwise $v\left(u_{1}, \ldots, u_{d-1}, u_{d+1}\right)$ would be larger than $v\left(u_{1}, \ldots, u_{d}\right)$. We define the points $p_{1}, p_{2}, \ldots, p_{d}$ by

$$
p_{i}:=\sum_{j=i}^{d} u_{j} .
$$

Let us show that the simplex $T:=\operatorname{conv}\left\{o, p_{1}, \ldots, p_{d}\right\}$ belongs to $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{d+1}\right)$. We introduce the values $\alpha_{1}, \ldots, \alpha_{d}$ by the formulas

$$
\alpha_{1}:=\beta_{1}, \quad \alpha_{i}:=\beta_{i}-\beta_{i-1} \quad(2 \leq i \leq d)
$$

It is easy to verify that for every $j=1, \ldots, d$ we have $0 \leq \alpha_{j} \leq 1$ and $\sum_{i=1}^{j} \alpha_{i}=\beta_{j} \leq 1$. Now let us show that $u_{d+1} \in T$. We have

$$
\begin{aligned}
\left(1-\sum_{i=1}^{d} \alpha_{i}\right) o+\sum_{i=1}^{d} \alpha_{i} p_{i} & =\sum_{i=1}^{d} \alpha_{i} p_{i}
\end{aligned}=\sum_{i=1}^{d} \alpha_{i} \sum_{j=i}^{d} u_{j} .
$$

Thus, u_{d+1} is a convex combination of points o, p_{1}, \ldots, p_{d}, and hence $u_{d+1} \in T$. Obviously, T can be represented by

$$
T=\operatorname{conv}\left(\bigcup_{i=1}^{d-1} \operatorname{conv}\left\{p_{i}, p_{i+1}\right\} \cup \operatorname{conv}\left\{o, p_{d}\right\}\right)
$$

But $\operatorname{conv}\left\{o, p_{d}\right\}=\operatorname{conv}\left\{o, u_{d}\right\}$, while, for every $i=1, \ldots, d-1$, the segment $\operatorname{conv}\left\{p_{i}, p_{i+1}\right\}$ is a translate of $\operatorname{conv}\left\{o, u_{i}\right\}$. Since $\operatorname{conv}\left\{o, u_{d+1}\right\} \subseteq T$, we see that $T \in \mathcal{P}\left(u_{1}, \ldots, u_{d}\right)$. By construction,

$$
\operatorname{vol}(T)=\frac{1}{d!}\left|\operatorname{det}\left(p_{1}, \ldots, p_{d}\right)\right|=\frac{1}{d!}\left|\operatorname{det}\left(u_{1}, \ldots, u_{d}\right)\right|=v\left(u_{1}, \ldots, u_{d}\right)
$$

Hence $v\left(u_{1}, \ldots, u_{d}\right) \geq v\left(u_{1}, \ldots, u_{d+1}\right)$. This shows Part I and (since T is a simplex) also Part II of the theorem.

We prove Part III by contradiction. Assume that P is a polytope from $\mathcal{P}_{0}\left(u_{1}, \ldots, u_{d+1}\right)$ with at least $2 d+1$ vertices. Let J_{1}, \ldots, J_{d+1} be segments in \mathbb{R}^{d} such that, for $i=1, \ldots, d+1$, the segment J_{i} is a translate of $\operatorname{conv}\left\{o, u_{i}\right\}$ and $P=\operatorname{conv}\left(J_{1} \cup \cdots \cup J_{d+1}\right)$. Since P has at least $2 d+1$ vertices, at least one of the endpoints of J_{d+1} is also a vertex of P. Hence, taking into account (1),

$$
\operatorname{vol}(P)>\operatorname{vol}\left(\operatorname{conv}\left(J_{1} \cup \cdots \cup J_{d}\right)\right) \geq \frac{1}{d!}\left|\operatorname{det}\left(u_{1}, \ldots, u_{d}\right)\right|=\operatorname{vol}(T)
$$

and we arrive at the contradiction. This finishes the proof of Part III.

References

[1] G. Averkov, On planar convex bodies of given Minkowskian thickness and least possible area, Arch. Math. 84, no. 2 (2005), 183-192.
[2] G. Averkov and H. Martini, On reduced polytopes and antipodality, Adv. Geom. 8 (2008), 617-628.
[3] M. LASSAK, Characterizations of reduced polytopes in finite-dimensional normed spaces, Beiträge Algebra Geom. 47, no. 2 (2006), 559-566.
[4] M. Lassak and H. Martini, Reduced bodies in Minkowski space, Acta Math. Hungar. 106, no. 1-2 (2005), 17-26.
[5] H. Martini, Das Volumen spezieller konvexer Polytope, Elem. Math. 44, no. 5 (1989), 113-115.
[6] H. Martini, K. J. Swanepoel and G. Weiss, The geometry of Minkowski spaces - a survey, Part I, Expo. Math. 19, no. 2 (2001), 97-142.
[7] P. McMullen, The volume of certain convex sets, Math. Proc. Cambridge Philos. Soc. 91, no. 1 (1982), 91-97.
[8] A. C. Thompson, Minkowski Geometry, Encyclopedia of Mathematics and its Applications, Vol. 63, Cambridge University Press, Cambridge, 1996.

GENNADIY AVERKOV
FACULTY OF MATHEMATICS
UNIVERSITY OF MAGDEBURG
39106 MAGDEBURG
GERMANY
E-mail: gennadiy.averkov@googlemail.com
HORST MARTINI
FACULTY OF MATHEMATICS
UNIVERSITY OF TECHNOLOGY
09107 CHEMNITZ
GERMANY
E-mail: horst.martini@mathematik.tu-chemnitz.de

