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Banach–Stone theorems for vector-valued
little Lipschitz functions

By ANTONIO JIMÉNEZ-VARGAS (Almeŕıa),

MOISÉS VILLEGAS-VALLECILLOS (Almeŕıa) and YA-SHU WANG (Kaohsinug)

Abstract. We give a complete description of linear biseparating maps between

spaces of vector-valued little Lipschitz functions. We apply these results to study some

automatic continuity properties of such maps and the onto linear isometries between

such spaces.

1. Introduction

A linear map between spaces of Banach-valued functions is said to be dis-
jointness preserving if it maps any pair of functions with disjoint cozero sets
to functions with disjoint cozero sets. Given a nonempty set X and a Banach
space E, let us recall that the cozero set of a function f : X → E is the set of
all x ∈ X for which f(x) 6= 0. Disjointness preserving maps have been investi-
gated for many years under different names as d-homomorphisms [1], Lamperti
operators [8] or separating maps [9]. We direct the reader to the memoir [2] of
Abramovich and Kitover and the survey [17] of Narici and Beckenstein

for a complete information on the matter in different contexts.
There exists an extensive literature about linear separating maps in spaces of

vector-valued continuous functions. Hernández, Beckenstein and Narici [14]
were the first to study the Banach–Stone type representation and the automatic
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82 Antonio Jiménez-Vargas, Moisés Villegas-Vallecillos and Ya-Shu Wang

continuity of linear separating maps between spaces C(X,E) of continuous func-
tions from a Tihonov space X into a Banach space E, equipped with the compact-
open topology. Furthermore, they applied the results obtained about separating
maps to the study of surjective linear isometries between spaces C(X,E) for X

compact with the supremum norm. Their method of proof is based essentially in
the concept of support point of a separating map. It is worthwhile noting that
Gau, Jeang and Wong [13] introduced a new point of view in the treatment of
this subject.

The same problems were tackled later in several spaces of vector-valued con-
tinuous functions. For example, Araujo investigated into separating maps be-
tween some types of spaces C(X, E) ([3], [4], [5] and, with Jarosz, [7]), spaces of
vector-valued uniformly continuous functions on complete metric spaces [3], and
spaces of vector-valued differentiable functions on open subsets of Rn [6]. On the
other hand, Dubarbie researched into linear separating maps between spaces
of vector-valued absolutely continuous functions on compact subsets of the real
line [11].

The aim of this paper is to study the Banach–Stone type representation and
the automatic continuity of linear bijective maps that preserve disjointness in
both directions (also called biseparating) between spaces of vector-valued little
Lipschitz functions, as well as its application to research into surjective linear
isometries on such spaces.

Given a metric space (X, d), a real number α in (0, 1] and a nonzero Banach
space E over the field K of real or complex numbers, we denote by Lipα(X,E)
the Banach space of all functions f : X → E such that

pα(f) = sup{‖f(x)− f(y)‖/d(x, y)α : x, y ∈ X, x 6= y} < +∞
and

‖f‖∞ = sup{‖f(x)‖ : x ∈ X} < +∞,

endowed with any of the natural norms:

‖f‖ = max{pα(f), ‖f‖∞} or ‖f‖ = pα(f) + ‖f‖∞.

The little Lipschitz space lipα(X, E) is then defined to be the closed subspace of
Lipα(X, E) formed by all those functions f satisfying the property:

∀ε > 0, ∃δ > 0 : x, y ∈ X, 0 < d(x, y) < δ ⇒ ‖f(x)− f(y)‖/d(x, y)α < ε.

As far as we know, Johnson [16] was the first to consider the spaces Lipα(X,E)
and lipα(X,E) for E 6= K. Since then, these spaces have been the subject of
considerable study (see, for example, [15] and its references).
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We proceed to describe briefly the content of the paper. In Section 2, we
introduce some notation and gather some basic material on Lipschitz functions
and separating maps. Section 3 is devoted to the support map h : Y → X of a
linear biseparating map T : lipα(X, E) → lipα(Y, F ) when X and Y are compact
and 0 < α < 1. These assumptions are made to assure that lipα(X, E) separates
closed sets of X. In general, this is no true for α = 1. For example, if X = [0, 1]
with the usual distance, lip(X,K) contains only constant functions. We keep
these assumptions and this notation in all what follows. This support map plays
a key role in our reasonings which follow closely those of [4, 14].

Section 4 contains our main results. In Theorem 4.1, we prove that every
linear biseparating map T : lipα(X, E) → lipα(Y, F ) is a weighted composition
operator in the form

Tf(y) = T̂ y(f(h(y))) (f ∈ lipα(X, E), y ∈ Y ),

where h is a homeomorphism from Y onto X and T̂ y is a linear bijection from E

onto F for each y ∈ Y . In Theorem 4.3, this representation is improved if T is
in addition continuous. In this case, h becomes a Lipschitz homeomorphism and
T̂ a continuous map from Y onto the set of all continuous linear bijections from
E onto F with the strong operator topology. See Section 2 for terminology not
explained. Previously, in Theorem 4.2, we characterize the continuity of T by
means of the continuity of the functions T̂ y.

Section 5 focuses on the automatic continuity of T . We state that a linear
biseparating map T : lipα(X, E) → lipα(Y, F ) is continuous whenever E is finite-
dimensional (Corollary 5.1) or X has no isolated points (Theorem 5.5).

In Section 6, we give an application to surjective linear isometries between
spaces lipα(X, E). In the spirit of [14, Theorem 4.1], we prove that a surjective
linear isometry T : lipα(X, E) → lipα(Y, F ) is biseparating if and only if there
exist a Lipschitz homeomorphism h : Y → X and a continuous map T̂ from Y

onto the set of all surjective linear isometries from E onto F with the strong
operator topology such that Tf(y) = T̂ y(f(h(y))) for every f ∈ lipα(X,E) and
all y ∈ Y .

The authors thank the referees for valuable comments to clarify and improve
this manuscript.

2. Preliminaries and notation

We shall use d to denote the distance in any metric space, but this causes no
confusion in the present paper. The following concepts are well-known.
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Definition 2.1. Let X and Y be metric spaces. A map f : X → Y is said to
be Lipschitz if there exists a constant a ≥ 0 such that d(f(x), f(y)) ≤ a d(x, y)
for all x, y ∈ X. If f is bijective and both f and f−1 are Lipschitz, then it is said
that f is a Lipschitz homeomorphism.

The next lines are devoted to the Lipschitz function spaces which will be the
subject of our study.

Let (X, d) be a metric space. For each α ∈ (0, 1], the map dα : X ×X → R+
0

defined by dα(x, y) = d(x, y)α is also a metric on X. As usual, K denotes the
field of real or complex numbers. Let E be a nonzero Banach space over K. We
denote by Lipα(X, E) the Banach space of all functions f : X → E which are
bounded and Lipschitz from (X, dα) into (E, ‖ · ‖), equipped with the supremum
norm ‖f‖ = max{pα(f), ‖f‖∞} or the sum norm ‖f‖ = pα(f) + ‖f‖∞, where

pα(f) = sup{‖f(x)− f(y)‖/dα(x, y) : x, y ∈ X, x 6= y}

and
‖f‖∞ = sup{‖f(x)‖ : x ∈ X}.

The space lipα(X, E) is defined as the closed subspace of Lipα(X,E) consisting
of those functions f with the property that for every ε > 0, there exists a δ > 0
such that 0 < d(x, y) < δ implies ‖f(x) − f(y)‖/d(x, y)α < ε. To simplify the
notation, we shall write Lipα(X) and lipα(X) when E = K, and Lip(X, E) and
lip(X,E) in the case α = 1.

We next introduce the definition of separating map in the context of vector-
valued little Lipschitz functions.

Definition 2.2. Given f ∈ lipα(X,E), we define the cozero set of f as

coz(f) = {x ∈ X : f(x) 6= 0}.

Moreover, supp(f) denotes the closure of coz(f) in X.

Definition 2.3. A map T : lipα(X, E) → lipα(Y, F ) is said to be separating
if coz(Tf) ∩ coz(Tg) = ∅ whenever f, g ∈ lipα(X, E) satisfy coz(f) ∩ coz(g) = ∅.
Moreover, T is said to be biseparating if it is bijective and both T and T−1 are
separating.

Equivalently, T : lipα(X, E)→ lipα(Y, F ) is separating if ‖Tf(y)‖ ‖Tg(y)‖=0
for all y ∈ Y whenever f, g ∈ lipα(X, E) satisfy ‖f(x)‖‖g(x)‖ = 0 for all x ∈ X.

Throughout this paper, for any x ∈ X and δ > 0, B(x, δ) will stand for the
open ball {z ∈ X : d(z, x) < δ} and Bc(x, δ) for the corresponding closed ball.
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Moreover, 1X and IX will denote the function constantly 1 on X and the identity
function on X, respectively. As usual, diam(X) will stand for the diameter of X.
For each x ∈ X, we shall denote by δx the evaluation map from lipα(X, E) to E

defined by δx(f) = f(x).
We now present two families of functions in Lip(X), defined by means of the

metric d, which will be very useful along the paper.

Proposition 2.1. For each x ∈ X and δ > 0, gx,δ : X → [0, 1] given by

gx,δ(z) = max{1− (1/δ)d(z, B(x, δ)), 0}
belongs to Lip(X) with gx,δ(z) = 1 for all z ∈ B(x, δ) and coz(gx,δ) ⊂ B(x, 2δ).

Proposition 2.2. For any x ∈ X and δ > 0, hx,δ : X → [0, 1] defined by

hx,δ(z) = max{1− (1/δ)d(z, x), 0},
is in Lip(X) with hx,δ(x) = 1 and coz(hx,δ) = B(x, δ).

In order to prove our results, we shall need the following basic facts about
vector-valued Lipschitz functions.

Remark 2.1. Let X be a compact metric space, E a nonzero Banach space
and α ∈ (0, 1).

(1) Lip(X, E) is contained in lipα(X, E), and both spaces are Lip(X)-modules,
that is, if f ∈ Lip(X) and g ∈ Lip(X, E) (g ∈ lipα(X,E)), then fg ∈
Lip(X, E) (respectively, fg ∈ lipα(X, E)).

(2) For any f ∈ lipα(X) and e ∈ E\{0}, the map f ⊗ e : X → E given by
(f ⊗ e)(x) = f(x)e for all x ∈ X, belongs to lipα(X, E), ‖f ⊗ e‖ = ‖f‖‖e‖
and coz(f ⊗ e) = coz(f). In particular, for any x ∈ X, δ > 0 and e ∈ E\{0},
hx,δ ⊗ e ∈ lipα(X,E), (hx,δ ⊗ e)(x) = e and coz(hx,δ ⊗ e) = B(x, δ).

Given nonzero Banach spaces E and F , we shall denote by L(E, F ), B(E, F ),
L−1(E,F ), B−1(E,F ) and I(E, F ) the set of all linear maps (respectively, contin-
uous linear maps, linear bijections, continuous linear bijections, surjective linear
isometries) from E to F . We shall consider that B(E, F ), B−1(E, F ) and I(E,F )
are endowed with the strong operator topology.

Definition 2.4. Let E and F be Banach spaces. The strong operator topology
in B(E,F ) is the coarsest topology such that the mappings T ↪→ Te from B(E,F )
to F are continuous for every e ∈ E.

For comprehensive accounts on the strong operator topology and on Lipschitz
functions, the reader is referred, for instance, to [12] and [18], respectively.
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3. The support map of a linear biseparating map

From now on, unless otherwise stated, we shall suppose that T : lipα(X, E) →
lipα(Y, F ) is a linear biseparating map, where X and Y are compact metric spaces,
E and F are nonzero Banach spaces and α ∈ (0, 1).

Our main purpose in this section is to show that each linear biseparating
map T : lipα(X,E) → lipα(Y, F ) gives rise to a homeomorphism h : Y → X (the
support map of T ) in such a way that Tf(y) = 0 provided that f(h(y)) = 0.
From this fact we shall deduce easily a representation of Banach–Stone type for
T in the following section.

The next concept has been a standard tool in the study of linear separating
maps.

Definition 3.1. Let y ∈ Y . A point x ∈ X is said to be a T -support point
of y if for every δ > 0, there exists f ∈ lipα(X,E) such that coz(f) ⊂ B(x, δ) and
y ∈ coz(Tf).

We begin by proving the uniqueness of the T -support point of each point
y ∈ Y . To this end, we need the next lemma.

Lemma 3.1. If f, g ∈ lipα(X,E) and coz(f) ⊂ coz(g), then coz(Tf) ⊂
supp(Tg).

Proof. Let y ∈ coz(Tf) and suppose y /∈ supp(Tg). Then there exists
δ > 0 such that coz(Tg) ⊂ Y \B(y, δ). By Remark 2.1, we can take a function
f0 ∈ lipα(Y, F ) such that coz(f0) = B(y, δ). Since coz(f0)∩ coz(Tg) = ∅ and T−1

is separating, we have coz(T−1f0) ∩ coz(g) = ∅. This implies that coz(T−1f0) ∩
coz(f) = ∅ and, since T is separating, it follows that coz(f0) ∩ coz(Tf) = ∅, but
y ∈ coz(f0) ∩ coz(Tf), a contradiction. ¤

Lemma 3.2. For each y ∈ Y , there exists a unique T -support point of y

in X.

Proof. Fix y ∈ Y and define Fy = {f ∈ lipα(Y, F ) : y ∈ coz(f)}. Clearly,
Fy 6= ∅. Put Ky =

⋂
f∈Fy

supp(T−1f). It is easy to see that every T -support
point of y is in Ky.

We claim that Ky is nonempty. To show this, it is enough to see that the
family {supp(T−1f) : f ∈ Fy} has the finite intersection property, since all of its
members are closed subsets of the compact space X. Pick f1, . . . , fn ∈ Fy. Since⋂n

i=1 coz(fi) is an open neighborhood of y in Y , we have B(y, δ) ⊂ ⋂n
i=1 coz(fi) for

some δ > 0. By Remark 2.1, there exists f ∈ lipα(Y, F ) such that coz(f) = B(y, δ)
and thus coz(f) ⊂ ⋂n

i=1 coz(fi). Using Lemma 3.1 applied to T−1, it follows that
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coz(T−1f) ⊂ ⋂n
i=1 supp(T−1fi). Notice that coz(T−1f) 6= ∅ since f 6= 0 and T−1

is an injective linear map. Hence
⋂n

i=1 supp(T−1fi) is nonempty and this proves
our claim.

We show that Ky is a singleton. Suppose that x and w are distinct points
of Ky and let δ = d(x,w) > 0. Take f = hy,δ ⊗ u ∈ lipα(Y, F ) for some vector
u ∈ F\{0}. By Remark 2.1, coz(f) = B(y, δ). Since f ∈ Fy, we see that x,w ∈
supp(T−1f). Consider gx,δ/4 ∈ Lip(X) (see Proposition 2.1). A trivial verifica-
tion shows that coz(gx,δ/4) ⊂ X\B(w, δ/4) and coz(1X − gx,δ/4) ⊂ X\B(x, δ/4).
Since y ∈ coz(f) and f = T (gx,δ/4T

−1f) + T ((1X − gx,δ/4)T−1f), we deduce
that y ∈ coz(T (gx,δ/4T

−1f)) or y ∈ coz(T ((1X − gx,δ/4)T−1f)). Observe that
1XT−1f, gx,δ/4T

−1f ∈ lipα(X, E) by Remark 2.1.
If y ∈ coz(T (gx,δ/4T

−1f)), then T (gx,δ/4T
−1f) ∈ Fy, and since w ∈ Ky, we

deduce that w ∈ supp(gx,δ/4T
−1f), but coz(gx,δ/4) ⊂ X\B(w, δ/4), which gives

a contradiction.
Reasoning similarly, if y ∈ coz(T ((1X − gx,δ/4)T−1f)), then x ∈ supp((1X −

gx,δ/4)T−1f) since T ((1X − gx,δ/4)T−1f) ∈ Fy and x ∈ Ky, but this contradicts
coz(1X − gx,δ/4) ⊂ X\B(x, δ/4). This proves that Ky has a unique point x.

Finally, we check that x is a T -support point of y. Let δ > 0. We must find
a function f ∈ lipα(X, E) such that coz(f) ⊂ B(x, δ) and y ∈ coz(Tf). Take
g = hy,δ ⊗ u ∈ Lip(Y, F ) for some u ∈ F\{0}, and gx,δ/2 ∈ Lip(X). Recall
that coz(1X − gx,δ/2) ⊂ X\B(x, δ/2) and coz(gx,δ/2) ⊂ B(x, δ). It is clear that
T−1g = gx,δ/2T

−1g + (1X − gx,δ/2)T−1g and therefore g = T (gx,δ/2T
−1g) +

T ((1X − gx,δ/2)T−1g). Since y ∈ coz(g), we deduce that y ∈ coz(T (gx,δ/2T
−1g))

or y ∈ coz(T ((1X − gx,δ/2)T−1g)). If y ∈ coz(T ((1X − gx,δ/2)T−1g)), as x ∈ Ky

we have x ∈ supp((1X − gx,δ/2)T−1g), but coz(1X − gx,δ/2) ⊂ X\B(x, δ/2). This
contradiction forces that y ∈ coz(T (gx,δ/2T

−1g)). The function f = gx,δ/2T
−1g

satisfies then the required conditions. ¤

The preceding lemma allows us to consider the following map.

Definition 3.2. For each y ∈ Y , h(y) is the unique T -support point of y in X.
Following the literature, we shall say that h : Y → X is the support map of T .

We now prove that if f vanishes in a neighborhood of h(y), then Tf(y) = 0.

Lemma 3.3. If y ∈ Y , f ∈ lipα(X,E) and h(y) /∈ supp(f), then y /∈
supp(Tf) and, in particular, Tf(y) = 0.

Proof. Take δ > 0 such that coz(f) ⊂ X\B(h(y), δ). Since h(y) is the
T -support point of y, we can take a function g ∈ lipα(X, E) such that coz(g) ⊂
B(h(y), δ) and y ∈ coz(Tg). It follows that coz(f) ∩ coz(g) = ∅, hence coz(Tf) ∩
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coz(Tg) = ∅ since T is separating. Moreover, coz(Tg) is an open neighborhood
of y and therefore B(y, ε) ⊂ coz(Tg) for some ε > 0. Hence coz(Tf)∩B(y, ε) = ∅
and so y /∈ supp(Tf). ¤

Among the properties of h, we point out the following:

Lemma 3.4. The support map h : Y → X of T is a homeomorphism, and

its inverse h−1 is the support map of T−1.

Proof. If we prove that h : Y → X is a continuous bijection, then the
first assertion follows since Y is compact and X is Hausdorff. To prove the
continuity of h, let y ∈ Y and let {yn} be a sequence in Y converging to y. By
the compactness of X, we can suppose, taking a subsequence if necessary, that
{h(yn)} converges to a point x ∈ X. Assume x 6= h(y). Put δ = d(x, h(y)) > 0
and since h(y) is the T -support of y, we can take a function f ∈ lipα(X,E)
such that coz(f) ⊂ B(h(y), δ/3) and y ∈ coz(Tf). On the other hand, since
{h(yn)} converges to x, there exists m ∈ N such that h(yn) ∈ B(x, δ/3) for all
n ≥ m. Fix n ≥ m. It is easy to see that B(h(yn), δ/3) ⊂ X\Bc(h(y), δ/3).
Then coz(f) ⊂ X\B(h(yn), δ/3), which yields h(yn) /∈ supp(f), and therefore
Tf(yn) = 0 by Lemma 3.3. Hence Tf(yn) = 0 for all n ≥ m. By the continuity
of Tf , it follows that Tf(y) = 0 which is a contradiction. Hence h is continuous.

Next, we see that h : Y → X is surjective. Suppose there exists a point
x ∈ X\h(Y ). Then d(x, h(Y )) > 0 since h(Y ) is closed in X. Put δ = d(x, h(Y ))
and consider f = hx,δ/2 ⊗ e in Lip(X, E) for some e ∈ E\{0}. Since coz(f) =
B(x, δ/2), it is clear that supp(f) ⊂ Bc(x, δ/2) and therefore h(y) /∈ supp(f) for
all y ∈ Y . By Lemma 3.3, it follows that Tf is the zero map on Y . Hence f is
the zero map on X, but as f(x) = e, we arrive at a contradiction.

Finally, we show that h : Y → X is injective. Since T−1 : lipα(Y, F ) →
lipα(X, E) is a linear biseparating map, we can consider the support map k :
X → Y of T−1. We claim that k ◦ h = IY . Suppose, contrary to our claim, that
there exists some y0 ∈ Y such that (k ◦h)(y0) = y1 6= y0. Let δ = d(y1, y0)/2 > 0.
Since y1 is the T−1-support point of h(y0), there exists g in lipα(Y, F ) such
that coz(g) ⊂ B(y1, δ) and h(y0) ∈ coz(T−1g). Consider f0 = hy0,δ ⊗ u in
Lip(Y, F ) for some u ∈ F\{0}. Since coz(f0) = B(y0, δ), it is easily seen that
coz(f0)∩coz(g) = ∅ and then coz(T−1f0)∩coz(T−1g) = ∅ since T−1 is separating.
Moreover, coz(T−1g) is an open neighborhood of h(y0), and taking into account
that h(y0) is the T -support point of y0, there exists f ∈ lipα(X, E) such that
coz(f) ⊂ coz(T−1g) and y0 ∈ coz(Tf). By Lemma 3.1, coz(Tf) ⊂ supp(g). Since
coz(f0) ∩ coz(g) = ∅, we have coz(f0) ∩ coz(Tf) = ∅, but y0 ∈ coz(f0) ∩ coz(Tf),
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a contradiction. This proves our claim and therefore h is injective. Since h is also
surjective, we conclude that h is bijective and h−1 = k. ¤

We have seen in Lemma 3.3 that if f vanishes in a neighborhood of h(y),
then Tf(y) = 0. Our principal objective in this section is to show that it holds
also if f(h(y)) = 0. We shall use the next result in the proof of this fact.

Lemma 3.5. Let x ∈ X and let {xn} be a sequence of distinct points in

X\{x} converging to x. Then, for each f ∈ lipα(X, E) with f(x) = 0, there

exist a subsequence {xnk
}, a sequence {sk} in (0, 1) with sk+1 < (1/2)sk for

all k ∈ N, and a sequence {hk} in lipα(X, E) such that hk = f on B(xnk
, sk),

coz(hk) ⊂ B(xnk
, 2sk) and ‖hk‖ ≤ 10/k2 for all k ∈ N. Moreover, {B(xnk

, 2sk)}
is a sequence of pairwise disjoint open balls of X.

Proof. Fix f ∈ lipα(X,E) with f(x) = 0. Then there exists δ1 ∈ (0, 1)
such that d(z, w) ≤ δ1 implies ‖f(z) − f(w)‖ ≤ d(z, w)α. Since {xn} converges
to x, there exists n1 ∈ N such that d(x, xn1) < (3/4)δ1. Let s1 = (1/6)d(x, xn1),
consider g1 = gxn1 ,s1 and h1 = fg1. Notice that g1 belongs to Lip(X), 0 ≤ g1 ≤ 1,
coz(g1) ⊂ B(xn1 , 2s1) and p1(g1) ≤ 1/s1. We have h1 ∈ lipα(X, E), h1 = f on
B(xn1 , s1) and coz(h1) ⊂ B(xn1 , 2s1).

Next, we prove that ‖h1(w)‖ < (8s1)α for all w ∈ X, and since 8s1 <

δ1 < 1, we have ‖h1‖∞ ≤ 1. Observe that h1 = 0 on X\B(xn1 , 2s1), and if
w ∈ B(xn1 , 2s1), then d(x,w) ≤ d(x, xn1) + d(xn1 , w) < 8s1 < δ1, hence

‖f(w)‖ = ‖f(x)− f(w)‖ ≤ d(x,w)α < (8s1)α,

and thus ‖h1(w)‖ < (8s1)α.
We use the estimation of f above to obtain pα(h1) ≤ 1+4 ·2α. Let z, w ∈ X.

An easy calculation yields

‖h1(z)− h1(w)‖ ≤ g1(z)‖f(z)− f(w)‖+ ‖f(w)‖|g1(z)− g1(w)|.

For any z, w ∈ B(xn1 , 2s1), we have d(z, w) < 4s1 < δ1, hence

‖h1(z)− h1(w)‖ ≤ d(z, w)α + (8s1)α(1/s1)d(z, w)

≤ d(z, w)α + (8s1)α(1/s1)(4s1)1−αd(z, w)α = (1 + 4 · 2α)d(z, w)α.

On the other hand, for z ∈ X\B(xn1 , 2s1) and w ∈ B(xn1 , 2s1), we have

‖h1(z)− h1(w)‖ ≤ ‖f(w)‖|g1(z)− g1(w)|.
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If d(z, w) ≤ 4s1, it follows that

‖h1(z)− h1(w)‖ ≤ (8s1)α(1/s1)d(z, w) ≤ 4 · 2αd(z, w)α,

and if d(z, w) > 4s1,

‖h1(z)− h1(w)‖ ≤ ‖f(w)‖ ≤ (8s1)α ≤ 2αd(z, w)α.

Finally, h1(z) = 0 = h1(w) if z, w ∈ X\B(xn1 , 2s1). We have so proved that

‖h1(z)− h1(w)‖ ≤ (1 + 4 · 2α)d(z, w)α, ∀z, w ∈ X.

From the above we deduce that

‖h1‖ ≤ ‖h1‖∞ + pα(h1) ≤ 1 + (1 + 4 · 2α) ≤ 10.

Similarly, choose δ2 ∈ (0, 4s1) such that d(z, w) ≤ δ2 implies ‖f(z)−f(w)‖ ≤
(1/22)d(z, w)α. Then take n2 ∈ N with n2 > n1 such that d(x, xn2) < (3/4)δ2.
Let s2 = (1/6)d(x, xn2), put g2 = gxn2 ,s2 and h2 = fg2. Clearly, h2 ∈ lipα(X,E)
with h2 = f on B(xn2 , s2) and coz(h2) ⊂ B(xn2 , 2s2).

We next estimate ‖h2‖∞ and pα(h2). For any w ∈ B(xn2 , 2s2), it is clear
that d(x,w) < 8s2 < δ2, hence

‖f(w)‖ = ‖f(x)− f(w)‖ ≤ (1/22)d(x,w)α < (1/22)(8s2)α < 1/22,

and thus ‖h2(w)‖ < 1/22. Since h2 = 0 on X\B(xn2 , 2s2), we deduce that
‖h2‖∞ ≤ 1/22. We now claim that

‖h2(z)− h2(w)‖ ≤ ((1 + 4 · 2α)/22)d(z, w)α, ∀z, w ∈ X.

Indeed, we have

‖h2(z)− h2(w)‖ ≤ g2(z)‖f(z)− f(w)‖+ ‖f(w)‖|g2(z)− g2(w)|.

Given z, w ∈ B(xn2 , 2s2), we have d(z, w) < 4s2 < δ2. It follows that

‖h2(z)− h2(w)‖ ≤ (1/22)d(z, w)α + (1/22)(8s2)α(1/s2)d(z, w)

≤(1/22)d(z, w)α+ (1/22)(8s2)α(1/s2)(4s2)1−αd(z, w)α= ((1+ 4 · 2α)/22)d(z, w)α.

For z ∈ X\B(xn2 , 2s2) and w ∈ B(xn2 , 2s2), we have g2(z) = 0, hence

‖h2(z)− h2(w)‖ ≤ ‖f(w)‖|g2(z)− g2(w)|.
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If d(z, w) ≤ 4s2, we obtain that

‖h2(z)− h2(w)‖ ≤ (1/22)(8s2)α(1/s2)d(z, w) ≤ 2αd(z, w)α,

and if d(z, w) > 4s2,

‖h2(z)− h2(w)‖ ≤ ‖f(w)‖ ≤ (1/22)(8s2)α ≤ (1/22)2αd(z, w)α.

Moreover, h2(z) = 0 = h2(w) for any z, w ∈ X\B(xn2 , 2s2). We have thus

‖h2(z)− h2(w)‖ ≤ ((1 + 4 · 2α)/22)d(z, w)α, ∀z, w ∈ X.

From what has been proved, we see that

‖h2‖ ≤ (1/22) + (1 + 4 · 2α)/22 ≤ 10/22.

Following the process, we can inductively construct a subsequence {xnk
}, a

sequence {sk} in (0, 1) defined by sk = (1/6)d(x, xnk
) for all k ∈ N, a sequence

{B(xnk
, 2sk)} of open balls of X, and a sequence {hk} in lipα(X, E), defined by

hk = fgk with gk = gxnk
,sk

, satisfying that hk = f on B(xnk
, sk), coz(hk) ⊂

B(xnk
, 2sk), and ‖hk‖ ≤ 10/k2 since ‖hk‖∞ ≤ 1/k2 and pα(hk) ≤ (1 + 4 · 2α)/k2

for all k ∈ N.
Finally, we prove that B(xnk

, 2sk) ∩ B(xnl
, 2sl) = ∅ if k 6= l. Take k < l

and assume there is z ∈ X such that d(z, xnk
) < (1/3)d(x, xnk

) and d(z, xnl
) <

(1/3)d(x, xnl
). Observe that, for any i ∈ N, we have

d(x, xni+1) < (3/4)δi+1 < 3si = (1/2)d(x, xni)

(hence si+1 < (1/2)si). It follows that d(x, xnl
) < (1/2l−k)d(x, xnk

). Then

d(xnk
, xnl

) ≥ d(x, xnk
)− d(x, xnl

)

> d(x, xnk
)− (1/2l−k)d(x, xnk

) = (1− 1/2l−k)d(x, xnk
),

but, on the other hand,

d(xnk
, xnl

) ≤ d(xnk
, z) + d(z, xnl

)

< (1/3)d(x, xnk
) + (1/3)(1/2l−k)d(x, xnk

) ≤ (1− 1/2l−k)d(x, xnk
).

Thus, we arrive at a contradiction. ¤

We have now gathered all the ingredients for the proof of the following result.
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Lemma 3.6. If y ∈ Y , f ∈ lipα(X, E) and f(h(y)) = 0, then Tf(y) = 0.

Proof. Let us suppose that f(h(y)) = 0, but Tf(y) 6= 0. If h(y) is an
isolated point of X, since f(h(y)) = 0, then h(y) /∈ supp(f), hence Tf(y) = 0
by Lemma 3.3, which is a contradiction. Assume now that h(y) is not isolated
in X. Put h(y) = x and let {xn} be a sequence of distinct points in X\{x}
converging to x. Since h is surjective, for each n ∈ N there exists yn ∈ Y such
that h(yn) = xn. By the continuity of h−1, {yn} converges to y, and we may
suppose, taking a subsequence if necessary, that ‖Tf(yn)‖ > ‖Tf(y)‖/2 for all
n ∈ N.

By Lemma 3.5, there exist a subsequence {xnk
}, a sequence {sk} in (0, 1/23),

a sequence {B(xnk
, 2sk)} of pairwise disjoint open balls in X, and a sequence

{hk} in lipα(X, E) such that hk = f on B(xnk
, sk), coz(hk) ⊂ B(xnk

, 2sk) and
‖hk‖ ≤ 10/k2 for all k ∈ N. As ‖k1/2hk‖ ≤ 10/k3/2 for all k ∈ N, we can define
a function g in lipα(X,E) by g =

∑+∞
k=1 k1/2hk. For each k ∈ N, it is immediate

that g = k1/2f on B(xnk
, sk) since the sets coz(hk) are pairwise disjoint. Hence

Tg(ynk
) = k1/2Tf(ynk

) by Lemma 3.3, and thus ‖Tg(ynk
)‖ = k1/2‖Tf(ynk

)‖ >

k1/2‖Tf(y)‖/2. As a consequence, Tg is unbounded. Since this is not possible,
we conclude that lemma holds. ¤

4. Banach–Stone type representation

We are now in position to establish a first representation of Banach–Stone
type for linear biseparating maps between spaces lipα(X,E). First of all, we
introduce the notion of associate map to a linear map.

Definition 4.1. Let T : lipα(X, E) → lipα(Y, F ) be a linear map. We call
associate map of T to the map T̂ : Y → L(E, F ) defined by T̂ y(e) = T (1X⊗e)(y)
for all y ∈ Y and e ∈ E.

Theorem 4.1. Let T : lipα(X, E) → lipα(Y, F ) be a linear biseparating map.

Then there exist a map T̂ : Y → L−1(E, F ) and a homeomorphism h : Y → X

such that Tf(y) = T̂ y(f(h(y))) for all f ∈ lipα(X,E) and y ∈ Y .

Proof. Let T̂ and h be the associate map of T and the support map of T ,
respectively. The map h is a homeomorphism from Y onto X by Lemma 3.4.
To obtain the representation of T , take f ∈ lipα(X,E) and y ∈ Y . Define
g = f − (1X ⊗ f(h(y))). It is clear that g ∈ lipα(X, E) and g(h(y)) = 0. From
Lemma 3.6 it follows that Tg(y) = 0, and so

Tf(y) = T (1X ⊗ f(h(y)))(y) = T̂ y(f(h(y))).
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The preceding representation can be applied to T−1, since T−1 is also linear
biseparating. Then we can write:

T−1g(x) = T̂−1x(g(k(x)), ∀g ∈ lipα(Y, F ), ∀x ∈ X,

where the associate map T̂−1 : X → L(F, E) of T−1 comes given by

T̂−1x(u) = T−1(1Y ⊗ u)(x), ∀x ∈ X, ∀u ∈ F,

and the support map k : X → Y of T−1 is a homeomorphism.
Next, we prove that T̂ y is a bijection from E onto F for each y ∈ Y . Fix

y ∈ Y . To show that T̂ y ∈ L(E, F ) is injective, let e ∈ E and suppose T̂ y(e) = 0,
that is T (1X ⊗ e)(y) = 0. By the surjectivity of k, we have y = k(x) for some
x ∈ X. Then

e = (1X ⊗ e)(x) = T−1(T (1X ⊗ e))(x) = T̂−1x(T (1X ⊗ e)(y)) = T̂−1x(0) = 0,

and, consequently, T̂ y is injective. To prove the surjectivity of T̂ y, take u ∈ F .
Since T is surjective, there exists f ∈ lipα(X,E) such that Tf = 1Y ⊗ u. Let
e = f(h(y)) ∈ E. We get T̂ y(e) = T̂ y(f(h(y))) = Tf(y) = u, which is the desired
conclusion. ¤

We next characterize the continuity of linear biseparating maps.

Theorem 4.2. Let T : lipα(X, E) → lipα(Y, F ) be a linear biseparating

map. The following statements are equivalent:

(1) T is continuous.

(2) T̂ y is continuous for all y ∈ Y .

(3) δy ◦ T is continuous for all y ∈ Y .

Proof. (1) =⇒ (2): Fix y ∈ Y . Since T̂ y is linear and

‖T̂ y(e)‖ ≤ ‖T (1X ⊗ e)‖∞ ≤ ‖T (1X ⊗ e)‖ ≤ ‖T‖‖1X ⊗ e‖ = ‖T‖‖e‖

for all e ∈ E, we see that T̂ y is continuous.
(2) =⇒ (3): Let y ∈ Y . Clearly, δy ◦ T is linear and

‖(δy ◦ T )(f)‖ = ‖Tf(y)‖ = ‖T̂ y(f(h(y)))‖ ≤ ‖T̂ y‖‖f‖∞ ≤ ‖T̂ y‖‖f‖

for all f ∈ lipα(X, E) by using Theorem 4.1. Then δy ◦ T is continuous.
(3) =⇒ (1): We claim that T has closed graph. Indeed, let us suppose that
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the sequences {fn} in lipα(X,E) and {Tfn} converge to f ∈ lipα(X, E) and
g ∈ lipα(Y, F ), respectively. Fix y ∈ Y . We have

‖Tf(y)− Tfn(y)‖ = ‖(δy ◦ T )(f)− (δy ◦ T )(fn)‖ → 0

by the continuity of δy ◦ T , and

‖Tfn(y)− g(y)‖ ≤ ‖Tfn − g‖∞ ≤ ‖Tfn − g‖ → 0.

It follows that Tf(y) = g(y). Hence Tf = g, and this proves our claim. Since T

is a linear map between Banach spaces, the Closed Graph Theorem shows that T

is continuous. ¤

We can improve the representation of T if it is in addition continuous.

Theorem 4.3. Let T : lipα(X, E) → lipα(Y, F ) be a continuous linear bisep-

arating map. Then there exist a continuous map T̂ : Y → B−1(E, F ) and a

Lipschitz homeomorphism h : Y → X such that Tf(y) = T̂ y(f(h(y))) for all

f ∈ lipα(X, E) and y ∈ Y .

Proof. Let T̂ and h be as in Theorem 4.1. For each y ∈ Y , T̂ y ∈ L−1(E,F )
by Theorem 4.1, and since T is continuous, that T̂ y ∈ B−1(E, F ) follows from
Theorem 4.2.

Taking into account that B−1(E,F ) is endowed with the strong operator
topology, to prove that T̂ is continuous it is enough to show that for every e ∈ E,
the map y 7→ T̂ y(e) from Y into F is continuous. Let {yn} be a sequence in Y

which converges to y ∈ Y . Then the sequence {T̂ yn(e)} converges to T̂ y(e). This
is deduced immediately from the inequality:

‖T̂ y(e)− T̂ z(e)‖ ≤ pα(T (1X ⊗ e))d(y, z)α ≤ ‖T‖‖e‖d(y, z)α, ∀z ∈ Y.

Clearly, it follows that the map y 7→ ‖T̂ y(e)‖ from Y into R is continuous. More-
over, if e ∈ E\{0}, we have T̂ y(e) 6= 0 for all y ∈ Y since T̂ y ∈ L−1(E, F ), and,
in consequence, min{‖T̂ y(e)‖ : y ∈ Y } > 0.

We next prove that h is Lipschitz. For any y1, y2 ∈ Y with y1 6= y2, define
fy1,y2 : X → R by

fy1,y2(z) = max{2d(h(y1), z)α − d(h(y1), h(y2))α, 0}.
It is clear that fy1,y2 ∈ Lipα(X) and ‖fy1,y2‖ ≤ 2(1 + diam(X)α). We claim that
fy1,y2 ∈ Lip(X). To prove this, define gy1 ∈ Lip(X) by gy1(z) = d(h(y1), z) and
hy1,y2 : [0, diam(X)] → R by

hy1,y2(t) = max{2tα − d(h(y1), h(y2))α, 0}.
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It is easily seen that hy1,y2 is differentiable at [0,diam(X)]\{t0} with bounded
derivative by 2αtα−1

0 , where t0 = (1/2)1/αd(h(y1), h(y2)). Let t, s ∈ [0, diam(X)],
t 6= s. If t, s ∈ [0, t0], we have hy1,y2(t) = hy1,y2(s) = 0. If t, s ∈ (t0,diam(X)],

|hy1,y2(t)− hy1,y2(s)| = |h′y1,y2
(s0)| |t− s| ≤ 2αtα−1

0 |t− s|

where s0 is between t and s by using the Mean Value Theorem. If t ≤ t0 < s (or
s ≤ t0 < t), it is easy to check that

|hy1,y2(t)− hy1,y2(s)| = |hy1,y2(t0)− hy1,y2(s)| ≤ 2αtα−1
0 |t0 − s| ≤ 2αtα−1

0 |t− s|.

It follows that hy1,y2 ∈ Lip([0,diam(X)]). Since fy1,y2 = hy1,y2 ◦ gy1 , our claim is
proved.

Now, fix e ∈ E, ‖e‖ = 1. Clearly, fy1,y2 ⊗ e ∈ lipα(X, E) and ‖fy1,y2 ⊗ e‖ ≤
2(1 + diam(X)α) for distinct y1, y2 ∈ Y . Since T is linear and continuous, it
follows that there exists a constant c > 0 such that

pα(T (fy1,y2 ⊗ e)) ≤ ‖T (fy1,y2 ⊗ e)‖ ≤ c, ∀ y1, y2 ∈ Y, y1 6= y2.

As a consequence, for any y1, y2 ∈ Y with y1 6= y2, we have

‖T (fy1,y2 ⊗ e)(y1)− T (fy1,y2 ⊗ e)(y2)‖ ≤ c d(y1, y2)α.

Using Theorem 4.1 yields

T (fy1,y2 ⊗ e)(y1) = T̂ y1((fy1,y2 ⊗ e)(h(y1))) = T̂ y1(0) = 0,

T (fy1,y2 ⊗ e)(y2) = T̂ y2((fy1,y2 ⊗ e)(h(y2))) = d(h(y1), h(y2))αT̂ y2(e).

Then we deduce that

d(h(y1), h(y2))α‖T̂ y2(e)‖ ≤ c d(y1, y2)α.

Putting b = min{‖T̂ y(e)‖ : y ∈ Y } > 0 gives d(h(y1), h(y2)) ≤ (c/b)1/α d(y1, y2),
and so h is Lipschitz. Furthermore, by Lemma 3.4, h−1 is the support map of the
linear biseparating map T−1 and so h−1 is also Lipschitz by proved above. Hence
h is a Lipschitz homeomorphism. ¤

5. Automatic continuity

In this section we shall study some automatic continuity properties of linear
biseparating maps between spaces lipα(X,E). From Theorems 4.1 and 4.2 we
deduce immediately the following result in this line.
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Corollary 5.1. Let T : lipα(X,E) → lipα(Y, F ) be a linear biseparating

map and suppose that E is finite-dimensional. Then F is finite-dimensional with

dim(E) = dim(F ) and T (and T−1) is continuous.

Next, we infer some results for scalar-valued little Lipschitz functions. Note
that every linear biseparating map between spaces lipα(X) is continuous. We first
derive from Theorem 4.3 the following:

Corollary 5.2. A map T : lipα(X) → lipα(Y ) is linear biseparating if and

only if there exist a nonvanishing function a ∈ lipα(Y ) and a Lipschitz homeo-

morphism h : Y → X such that Tf = a · (f ◦ h) for every f ∈ lipα(X).

Linear biseparating maps between spaces lipα(X) turn out to natural gener-
alizations for algebra isomorphisms. We give the general form of such maps:

Corollary 5.3. A map T : lipα(X) → lipα(Y ) is an algebra isomorphism

if and only if there exists a Lipschitz homeomorphism h : Y → X such that

Tf = f ◦ h for every f ∈ lipα(X).

We finish the applications in the scalar-valued case with the next result of
Banach–Stone type.

Corollary 5.4. Let X, Y be compact metric spaces and α ∈ (0, 1). The

following statements are equivalent:

(1) X and Y are Lipschitz homeomorphic.

(2) lipα(X) and lipα(Y ) are algebra isomorphic.

(3) There is a linear biseparating map from lipα(X) onto lipα(Y ).

The proof of our next theorem requires a little more work.

Theorem 5.5. Let T : lipα(X, E) → lipα(Y, F ) be a linear biseparating map

and suppose that X has no isolated points. Then T is continuous.

Proof. We use the Closed Graph Theorem. Let {fn} be a sequence in
lipα(X, E) such that ‖fn‖ → 0, and ‖Tfn − k‖ → 0 for some k ∈ lipα(Y, F ).
We claim that k = 0. Assume, contrary to what we claim, that k(y) 6= 0 for
some y ∈ Y . Then there exists ε > 0 such that ‖k(z)‖ > (1/2)‖k(y)‖ for all
z ∈ B(y, ε). Moreover, since ‖Tfn−k‖ → 0, we can suppose, taking a subsequence
if necessary, that ‖Tfn(z) − k(z)‖ < (1/4)‖k(y)‖ for all z ∈ B(y, ε) and n ∈ N.
Hence ‖Tfn(z)‖ > (1/4)‖k(y)‖ for all z ∈ B(y, ε) and n ∈ N.

Let h : Y → X be the support map of T . By the continuity of h−1, there
exists δ > 0 such that h−1(x) ∈ B(y, ε) for all x ∈ B(h(y), δ). Since X has no
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isolated points, we can inductively construct a sequence {xn} of distinct points
of B(h(y), δ) such that 0 < d(h(y), xn+1) < (1/3)d(h(y), xn) for all n ∈ N. For
each n, take rn = (1/4)d(xn, h(y)) and gn = gxn,rn

∈ Lip(X).
Notice that ‖gnfm‖ 6= 0 for all n, m ∈ N. In contrary case, we would have

fm(x) = 0 for all x ∈ B(xn, rn), hence Tfm(h−1(xn)) = 0 by Lemma 3.3, but
this is impossible since ‖Tfm(h−1(xn))‖ > (1/4)‖k(y)‖ > 0.

Since ‖fn‖ → 0, we can construct a subsequence {fσ(n)} such that

pα(fσ(n+1)) + (1 + pα(gn+1))‖fσ(n+1)‖∞ ≤ (1/(n + 1)3)‖gnfσ(n)‖

for all n ∈ N, by induction. Indeed, let σ(1) = 1. There exists σ(2) ∈ N with
σ(2) > 1 such that

pα(fσ(2)) + (1 + pα(g2))‖fσ(2)‖∞ ≤ (1/8)‖g1f1‖,

since limm→+∞(pα(fm) + (1 + pα(g2))‖fm‖∞) = 0. Suppose that for n, there are
σ(1), . . . , σ(n + 1) ∈ N with σ(1) < σ(2) < · · · < σ(n + 1), such that

pα(fσ(j+1)) + (1 + pα(gj+1))‖fσ(j+1)‖∞ ≤ (1/(j + 1)3)‖gjfσ(j)‖

for j = 1, . . . , n. As limm→+∞(pα(fm) + (1 + pα(gn+2))‖fm‖∞) = 0, there exists
σ(n + 2) ∈ N with σ(n + 2) > σ(n + 1) such that

pα(fσ(n+2)) + (1 + pα(gn+2))‖fσ(n+2)‖∞ ≤ (1/(n + 2)3)‖gn+1fσ(n+1)‖.

On the other hand, we have B(xn+m, 2rn+m) ⊂ B(h(y), 2rn) for all n,m ∈ N,
and from this it is deduced that the balls B(xn, 2rn) with n varying on N are
pairwise disjoint.

For each n, consider ngnfσ(n). It is clear that ngnfσ(n) ∈ lipα(X, E) with
coz(ngnfσ(n) − nfσ(n)) ⊂ X\B(xn, rn). Therefore xn /∈ supp(ngnfσ(n) − nfσ(n)),
and according to Lemma 3.3, we have T (ngnfσ(n) − nfσ(n))(h−1(xn)) = 0. Then
T (ngnfσ(n))(h−1(xn)) = nTfσ(n)(h−1(xn)), and thus

‖T (ngnfσ(n))(h−1(xn))‖ > (n/4)‖k(y)‖.

Since the balls B(xn, 2rn) with n ∈ N are pairwise disjoint and coz(ngnfσ(n)) ⊂
coz(gn) ⊂ B(xn, 2rn), the sets coz(ngnfσ(n)) are pairwise disjoint. Hence we can
consider the function g : X → E defined by

g =
+∞∑
n=1

ngnfσ(n).

We next prove that g ∈ lipα(X, E). First, an easy proof by induction shows
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that ‖gnfσ(n)‖ ≤ ‖g1f1‖ for all n ∈ N. Then, for any n ≥ 2, we have

npα(gnfσ(n)) ≤ n[‖gn‖∞p(fσ(n)) + pα(gn)‖fσ(n)‖∞]

≤ n[pα(fσ(n)) + (1 + pα(gn))‖fσ(n)‖∞]

≤ n(1/n3)‖gn−1fσ(n−1)‖ ≤ (1/n2)‖g1f1‖
and

n‖gnfσ(n)‖∞ ≤ n‖fσ(n)‖∞ ≤ n[pα(fσ(n)) + (1 + pα(gn))‖fσ(n)‖∞]

≤ n(1/n3)‖gn−1fσ(n−1)‖ ≤ (1/n2)‖g1f1‖.
It follows that, for all n ∈ N,

n‖gnfσ(n)‖ ≤ npα(gnfσ(n)) + n‖gnfσ(n)‖∞ ≤ (2/n2)‖g1f1‖,
and since lipα(X, E) is complete, we conclude that g ∈ lipα(X,E).

On the other hand, given m ∈ N, we have ngn(x)fσ(n)(x) = 0 for all x ∈
B(xm, 2rm) and n 6= m, hence g(x)−mgm(x)fσ(m)(x) = 0 for all x ∈ B(xm, 2rm),
and thus xm /∈ supp(g −mgmfσ(m)). Hence T (g −mgmfσ(m))(h−1(xm)) = 0 by
Lemma 3.3. Then ‖Tg(h−1(xm))‖ = ‖T (mgmfσ(m))(h−1(xm))‖ > (m/4)‖k(y)‖.
Hence Tg is not bounded, but this is not possible. This finishes the proof. ¤

6. An application to the study of isometries

We shall now apply the previous results to characterize biseparating linear
isometries between spaces lipα(X, E). We adapt [10, Definition 8.2 (ii)] as follows.

Definition 6.1. A surjective linear isometry T : lipα(X, E) → lipα(Y, F ) is
said to be a strong Banach-Stone map if there exist a continuous map T̂ : Y →
I(E,F ) and a homeomorphism h : Y → X such that for every f ∈ lipα(X,E)
and y ∈ Y , Tf(y) = T̂ y(f(h(y))). A strong Banach-Stone map T : lipα(X, E) →
lipα(Y, F ) is said to be Lipschitz if h is a Lipschitz homeomorphism.

Theorem 6.1. Let T : lipα(X, E) → lipα(Y, F ) be a surjective linear isom-

etry. Then T is a Lipschitz strong Banach-Stone map if and only if T is bisepa-

rating.

Proof. Suppose that Tf(y) = T̂ y(f(h(y))) for all f ∈ lipα(X, E) and
y ∈ Y , where T̂ : Y → I(E, F ) is continuous and h : Y → X is a Lipschitz
homeomorphism.

Let f, g ∈ lipα(X, E) with coz(f)∩coz(g) = ∅ and suppose that y ∈ coz(Tf)∩
coz(Tg). Then T̂ y(f(h(y))) 6= 0 6= T̂ y(g(h(y))). Since T̂ y is linear, we have
f(h(y)) 6= 0 6= g(h(y)), a contradiction. Hence T is separating.
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Assume that T−1 is not separating. Then there exist f, g ∈ lipα(Y, F ) with
coz(f)∩ coz(g) = ∅ such that coz(T−1f)∩ coz(T−1g) 6= ∅. Take x in coz(T−1f)∩
coz(T−1g) and let y be in Y such that h(y) = x. We see at once that

f(y) = T (T−1f)(y) = T̂ y(T−1f(h(y))) = T̂ y(T−1f(x)) 6= 0,

since T̂ y is linear injective. A similar argument yields g(y) 6= 0. Hence y belongs
to coz(f) ∩ coz(g), a contradiction.

Conversely, assume that T is biseparating. Theorem 4.3 will then give us
that T is a Lipschitz strong Banach–Stone map if we show that T̂ y : E → F is
an isometry for all y ∈ Y . To prove this, we first see that T sends nonvanishing
functions of lipα(X,E) into nonvanishing functions of lipα(Y, F ). Suppose there
exists f ∈ lipα(X,E) such that f(x) 6= 0 for all x ∈ X, but Tf(y) = 0 for some
y ∈ Y . Let k : X → Y be the support map of T−1. By the surjectivity of k, we
have k(x) = y for some x ∈ X. Since Tf(y) = 0, applying Lemma 3.6 to k and
T−1 we deduce that f(x) = T−1(Tf)(x) = 0, which is impossible. Hence T maps
nonvanishing functions into nonvanishing functions.

Let us suppose now that T̂ y is not an isometry for some y ∈ Y . Then there
exists e ∈ E with ‖e‖ = 1 for which ‖T̂ y(e)‖ < 1. By the surjectivity of T , there
is a function f ∈ lipα(X,E) such that Tf = 1Y ⊗ T (1X ⊗ e)(y). Thus

‖f‖∞ ≤ ‖f‖ = ‖Tf‖ = ‖T (1X ⊗ e)(y)‖ = ‖T̂ y(e)‖ < 1

and therefore (1X ⊗ e) − f never vanishes on X. However, T (1X ⊗ e)(y) =
Tf(y), and thus T ((1X ⊗e)−f) vanishes on Y . This contradiction completes the
proof. ¤
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