On a generalized Hosszú functional equation

By KÁROLY LAJKÓ (Nyíregyháza), GYULA MAKSA (Debrecen) and FRUZSINA MÉSZÁROS (Debrecen)

Dedicated to the 70th birthday of Professor Zoltán Daróczy

Abstract

In this note we discuss a general pexiderized version of the Hosszú functional equation.

1. Introduction

The functional equation

$$
\begin{equation*}
f(x+y-x y)+f(x y)=f(x)+f(y) \tag{1}
\end{equation*}
$$

was first considered by M. Hosszú in 1967. In the real case the general solution was given by Blanuša [2] and Daróczy [3]. In [4] FENYŐ studied the following generalization of (1)

$$
\begin{equation*}
f\left[r_{0}+\left(r_{1} x+r_{2}\right)\left(r_{3} y+r_{4}\right)\right]+g\left[s_{0}+\left(s_{1} x+s_{2}\right)\left(s_{3} y+s_{4}\right)\right]=h(x)+k(y) \tag{2}
\end{equation*}
$$

where r_{i} and $s_{i}(i=0,1,2,3,4)$ are fixed real numbers such that $r_{1} r_{3} s_{1} s_{3} \neq 0$. If this condition is not satisfied then (2) reduces to a much simpler equation, namely to the logarithmic Pexider equation $p(x y)=q(x)+r(y)$.

Fenyő supposed (2) to hold for all $x, y \in \mathbb{R}$ (the set of real numbers) and he discussed also the case when (2) holds only for the pairs $(x, y) \in D$ where

$$
D=\left\{(x, y) \in \mathbb{R}^{2}:\left(r_{1} x+r_{2}\right)\left(r_{3} y+r_{4}\right)\left(s_{1} x+s_{2}\right)\left(s_{3} y+s_{4}\right) \neq 0\right\} .
$$

Mathematics Subject Classification: 39B22.
This research has been supported by the Hungarian Scientific Research Fund (OTKA), Grants NK 68040 and K 62316.

In both cases he determined the locally integrable solutions. Introducing the notations:

$$
\frac{s_{1}}{r_{1}}=\alpha, \quad \frac{r_{2} s_{1}-r_{1} s_{2}}{r_{1}}=\beta, \quad \frac{s_{3}}{r_{3}}=\gamma, \quad \frac{r_{4} s_{3}-r_{3} s_{4}}{r_{3}}=\delta,
$$

we find that $\alpha \gamma \neq 0$, furthermore we have the following possible cases
(a) $\beta=\delta=0$,
(b) $\beta \delta \neq 0$,
(c) $\beta \neq 0, \delta=0$,
(d) $\beta=0, \delta \neq 0$.

In case (a) equation (2) can easily be reduced to the logarithmic Pexider equation again. In case (b) we are not able to give the general solution, however the measurable solutions can be obtained by using the ideas of LaJKó [6].

In this note we deal with the cases (c) and (d) and give the general solution supposing (2) to hold for all $(x, y) \in D$ or $(x, y) \in \mathbb{R}^{2}$ with unknown functions f, g, h, k having suitable domains.

2. Preliminary results

Our basic tool is the following theorem which is an easy consequence of the main results of BAKER [1] and LAJKÓ [5].

Theorem 1. The functions $F G, K Q:] 0,+\infty[\rightarrow \mathbb{R}$ satisfy the functional equation

$$
\begin{equation*}
F(x)+G(y)=K(x+y)+Q\left(\frac{x}{y}\right) \tag{3}
\end{equation*}
$$

for all $x, y \in] 0,+\infty\left[\right.$ if, and only if, there exist $\left.a: \mathbb{R} \rightarrow \mathbb{R}, l_{1}, l_{2}:\right] 0,+\infty[\rightarrow \mathbb{R}$ and $a_{0}, b_{0}, c_{0}, d_{0} \in \mathbb{R}$ such that a is additive, i.e.,

$$
a(x+y)=a(x)+a(y), \quad(x, y \in \mathbb{R})
$$

l_{i} is logarithmic, i.e.,

$$
l_{i}(x y)=l_{i}(x)+l_{i}(y), \quad(x, y \in] 0,+\infty[, i=1,2)
$$

$a_{0}+b_{0}=c_{0}+d_{0}$ and, for all $\left.x \in\right] 0,+\infty[$,

$$
\begin{gathered}
F(x)=a(x)+l_{1}(x)+a_{0}, \quad G(x)=a(x)+l_{2}(x)+b_{0} \\
K(x)=a(x)+l_{1}(x)+l_{2}(x)+c_{0}, \quad Q(x)=l_{1}\left(\frac{x}{1+x}\right)+l_{2}\left(\frac{1}{1+x}\right)+d_{0}
\end{gathered}
$$

In what follows we need the solutions F, G, K and Q of (3) defined not only on the set of positive reals but the sets $\mathbb{R}_{0}:=\mathbb{R} \backslash\{0\}$ and $\mathbb{R}_{0} \backslash\{-1\}$, respectively. Therefore first we prove the following extension result.

Lemma 1. The functions $\alpha, \beta, \gamma: \mathbb{R}_{0} \rightarrow \mathbb{R}$ satisfy the equation

$$
\begin{equation*}
\alpha(x+y)=\beta(x)+\gamma(y) \tag{4}
\end{equation*}
$$

for all $(x, y) \in D_{0}:=\left\{(x, y) \in \mathbb{R}^{2}: x y \neq 0, x \neq 1\right\}$ if, and only if, there exist additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ and real numbers β_{0}, γ_{0} such that, for all $x \in \mathbb{R}_{0}$,

$$
\begin{equation*}
\alpha(x)=A(x)+\beta_{0}+\gamma_{0}, \quad \beta(x)=A(x)+\beta_{0}, \quad \gamma(x)=A(x)+\gamma_{0} \tag{5}
\end{equation*}
$$

Proof. The set D_{0} is the disjoint union of the following six open and connected sets
$D_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y>0\right\}, \quad D_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x<0, y, x+y>0\right\}$,
$D_{3}=\left\{(x, y) \in \mathbb{R}^{2} \mid x, x+y<0, y>0\right\}, \quad D_{4}=\left\{(x, y) \in \mathbb{R}^{2} \mid x<0, y<0\right\}$,
$D_{5}=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y, x+y<0\right\}, \quad D_{6}=\left\{(x, y) \in \mathbb{R}^{2} \mid x, x+y>0, y<0\right\}$.
Applying the result of Rimán [7] on each $D_{k}(k=1,2,3,4,5,6)$ separately, we get that the functions α, β, γ have the following form on the corresponding projections of D_{k}

$$
\alpha(x)=A_{k}(x)+\beta_{0 k}+\gamma_{0 k}, \quad \beta(x)=A_{k}(x)+\beta_{0 k}, \quad \gamma(x)=A_{k}(x)+\gamma_{0 k}
$$

with some additive function A_{k} and real numbers $\beta_{0 k}, \gamma_{0 k}$. It is not difficult to show that all the additive functions A_{1}, \ldots, A_{6} coincide, moreover $\beta_{01}=\ldots=\beta_{06}$ and $\gamma_{01}=\ldots=\gamma_{06}$. Thus we have (5) with some additive function A and real numbers β_{0}, γ_{0}. The converse is obvious.

Now we are ready to give all the functions $F, G, K: \mathbb{R}_{0} \rightarrow \mathbb{R}, Q: \mathbb{R}_{0} \backslash\{-1\} \rightarrow \mathbb{R}$ satisfying (3) on $E:=\left\{(x, y) \in \mathbb{R}^{2}: x, y, x+y \in \mathbb{R}_{0}\right\}$.

Theorem 2. The functions $F, G, K: \mathbb{R}_{0} \rightarrow \mathbb{R}$ and $Q: \mathbb{R}_{0} \backslash\{-1\} \rightarrow \mathbb{R}$ satisfy (3) for all $(x, y) \in E$ if, and only if, there exist an additive function $a: \mathbb{R} \rightarrow \mathbb{R}$, logarithmic functions $\left.l_{1}, l_{2}:\right] 0,+\infty\left[\rightarrow \mathbb{R}\right.$ and real numbers $a_{0}, b_{0}, c_{0}, d_{0}$ with $a_{0}+b_{0}=c_{0}+d_{0}$ such that

$$
\begin{gather*}
F(x)=a(x)+l_{1}(|x|)+a_{0}, \quad G(x)=a(x)+l_{2}(|x|)+b_{0}, \\
K(x)=a(x)+l_{1}(|x|)+l_{2}(|x|)+c_{0} \quad\left(x \in \mathbb{R}_{0}\right) \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
Q(x)=l_{1}\left(\left|\frac{x}{x+1}\right|\right)+l_{2}\left(\frac{1}{|x+1|}\right)+d_{0} . \quad\left(x \in \mathbb{R}_{0} \backslash\{-1\}\right) . \tag{7}
\end{equation*}
$$

Proof. It follows from Theorem 1 that equations (6) and (7) hold for all $x>0$, instead of $x \in \mathbb{R}_{0}$ and $x \in \mathbb{R}_{0} \backslash\{-1\}$, respectively, with some additive function $a: \mathbb{R} \rightarrow \mathbb{R}$, logarithmic functions $\left.l_{1}, l_{2}:\right] 0, \infty[\rightarrow \mathbb{R}$ and real numbers $a_{0}, b_{0}, c_{0}, d_{0}$ with $a_{0}+b_{0}=c_{0}+d_{0}$. We show that (6) and (7) hold also for $x<0$
and $x<0, x \neq-1$, respectively. Indeed, replacing x and y in (3) by $-x$ and $-y$, respectively and subtracting the equation so obtained from (3) we get that

$$
\begin{equation*}
K(x+y)-K(-(x+y))=F(x)-F(-x)+G(y)-G(-y) . \quad\left((x, y) \in D_{0}\right) \tag{8}
\end{equation*}
$$

Define the functions α, β, γ on \mathbb{R}_{0} by

$$
\alpha(x)=K(x)-K(-x), \quad \beta(x)=F(x)-F(-x), \quad \gamma(x)=G(x)-G(-x)
$$

to get (4) from (8). Applying Lemma 1 and Theorem 1, by (5) and (9), after some calculation we have that

$$
\begin{array}{ll}
F(x)=-a(x)+A(x)+l_{1}(|x|)+a_{0}+\beta_{0}, & (x<0) \\
G(x)=-a(x)+A(x)+l_{2}(|x|)+b_{0}+\gamma_{0}, & (x<0) \\
K(x)=-a(x)+A(x)+l_{1}(|x|)+l_{2}(|x|)+c_{0}+\beta_{0}+\gamma_{0}, & (x<0) \tag{10}
\end{array}
$$

where $a, A: \mathbb{R} \rightarrow \mathbb{R}$ are additive functions, $\left.l_{1}, l_{2}:\right] 0, \infty[\rightarrow \mathbb{R}$ are logarithmic functions and a_{0}, b_{0}, c_{0} are real numbers. Now we show that $A=2 a$ on \mathbb{R}. To prove this, let $x>0, y<0$ such that $x+y>0$ in (3). Then, by (6) (which holds for $x>0$) and (10), after some calculation, we obtain that

$$
\begin{aligned}
l_{1}(x)+l_{2}(|y|)+A(x)-a & (y)+a_{0}+b_{0}+\gamma_{0} \\
& =a(y)+l_{1}(|x+y|)+l_{2}(|x+y|)+c_{0}+Q\left(\frac{x}{y}\right) .
\end{aligned}
$$

Let $0<t \in \mathbb{R}$ be arbitrary and replace here x and y by $t x$ and $t y$, respectively, and compare the equation so obtained with the above one. Then an easy calculation shows that $A(t y)-2 a(t y)=A(y)-2 a(y)$ holds for all $t>0$ and $y<0$. This implies $A=2 a$. Thus (10) can be written in the form

$$
\begin{array}{ll}
F(x)=a(x)+l_{1}(|x|)+a_{0}+\beta_{0} & (x<0) \\
G(x)=a(x)+l_{2}(|x|)+b_{0}+\gamma_{0} & (x<0) \\
K(x)=a(x)+l_{1}(|x|)+l_{2}(|x|)+c_{0}+\beta_{0}+\gamma_{0} & \tag{11}\\
(x<0)
\end{array}
$$

In what follows, using that (6) holds for all $x>0$, (11) holds for all $x<0$, and (3) holds for all $(x, y) \in D_{0}$, it can easily be proved that $\beta_{0}=\gamma_{0}=0$ in (11), that is, (6) holds also for all $x \in \mathbb{R}_{0}$.

Finally, we get (7) to hold for $x<-1$, and for $0>x>-1$, respectively.

3. The main result

In the following theorem we determine the general solution of (2) on D in case (c). The suitable domains of the unknown functions f, g, h and k will be

$$
\begin{aligned}
& D_{f}=\left\{r_{0}+\left(r_{1} x+r_{2}\right)\left(r_{3} y+r_{4}\right):(x, y) \in D\right\} \\
& D_{g}=\left\{s_{0}+\left(s_{1} x+s_{2}\right)\left(s_{3} y+s_{4}\right):(x, y) \in D\right\} \\
& D_{h}=\{x:(x, y) \in D\} \quad \text { and } \quad D_{k}=\{y:(x, y) \in D\}
\end{aligned}
$$

respectively.
Theorem 3. Under the conditions $\beta \neq 0, \delta=0$, the functions f, g, h, k satisfy (2) for all $(x, y) \in D$ if, and only if,

$$
\begin{array}{ll}
f(x)=a\left(\frac{\alpha}{\beta}\left(x-r_{0}\right)\right)+l_{1}\left(\left|\frac{\alpha}{\beta}\left(x-r_{0}\right)\right|\right)+a_{0}, & \left(x \in D_{f}\right) \\
g(x)=a\left(-\frac{1}{\beta \gamma}\left(x-s_{0}\right)\right)+l_{2}\left(\left|-\frac{1}{\beta \gamma}\left(x-s_{0}\right)\right|\right)+b_{0}, & \left(x \in D_{g}\right) \\
h(x)=l_{1}\left(\left|\frac{\alpha}{\beta}\left(r_{1} x+r_{2}\right)\right|\right)+l_{2}\left(\left|-\frac{1}{\beta}\left(s_{1} x+s_{2}\right)\right|\right)+c_{0}, & \left(x \in D_{h}\right) \\
k(x)=a\left(r_{3} x+r_{4}\right)+l_{1}\left(\left|r_{3} x+r_{4}\right|\right)+l_{2}\left(\left|r_{3} x+r_{4}\right|\right)+d_{0}, & \left(x \in D_{k}\right) \tag{12}
\end{array}
$$

with some additive function $a: \mathbb{R} \rightarrow \mathbb{R}$, logarithmic functions $\left.l_{1}, l_{2}:\right] 0,+\infty[\rightarrow \mathbb{R}$ and real numbers a_{0}, b_{0}, c_{0}, d_{0} satisfying $a_{0}+b_{0}=c_{0}+d_{0}$.

Proof. Let $(u, v) \in D_{0}$ and $x=\frac{\beta}{s_{1}} u-\frac{r_{2}}{r_{1}}, y=\frac{v-r_{4}}{r_{3}}$. Then $(x, y) \in D$ and, with the definitions

$$
\begin{array}{ll}
F(x)=f\left(r_{0}+\frac{\beta}{\alpha} x\right), & G(x)=g\left(s_{0}-\beta \gamma x\right) \\
H(x)=h\left(\frac{\beta}{s_{1}} x-\frac{r_{2}}{r_{1}}\right), & K(x)=k\left(\frac{x-r_{4}}{r_{3}}\right), \quad\left(x \in \mathbb{R}_{0}\right) \tag{13}
\end{array}
$$

equation (2) and the condition $\delta=0$ imply that

$$
\begin{equation*}
F(u v)+G((1-u) v)=H(u)+K(v) \tag{14}
\end{equation*}
$$

for all $(u, v) \in D_{0}$. Define the function Q on $\mathbb{R}_{0} \backslash\{-1\}$ by

$$
\begin{equation*}
Q(x)=H\left(\frac{x}{1+x}\right) \tag{15}
\end{equation*}
$$

Then (14) implies that (3) holds on E. Thus Theorem 2 can be applied. Finally, (12) follows from the definitions (13) and (15). The converse is a simple computation.

Remark 1. If (2) holds for all $(x, y) \in \mathbb{R}^{2}$ with $f, g, h, k: \mathbb{R} \rightarrow \mathbb{R}$ then (14) holds for all $(u, v) \in \mathbb{R}^{2}$. The substitution $v=0$ shows that H is constant thus (14) becomes a Pexider equation and, by (13), h is constant, as well. Therefore the logarithmic functions l_{1} and l_{2} vanish in the general solution.

Remark 2. The case $(d)(\beta=0, \delta \neq 0)$ can be handled in a quite similar way. Here the definitions

$$
\begin{array}{ll}
F(x)=f\left(r_{0}+\frac{\delta}{\gamma} x\right), & G(x)=g\left(s_{0}-\alpha \delta x\right), \\
H(x)=h\left(\frac{x-r_{2}}{r_{1}}\right), & K(x)=k\left(\frac{\delta}{s_{3}} x-\frac{r_{4}}{r_{3}}\right)
\end{array}
$$

lead to equation (14) and, after all, to the general solution of (2).
Remark 3. The regular solutions (say the locally integrable or measurable solutions) can easily be obtained from the general ones in the cases we investigated.

References

[1] J. A. Baker, On the functional equation $f(x) g(y)=p(x+y) q\left(\frac{x}{y}\right)$, Aequationes Math. 14 (1976), 493-506.
[2] D. Blanuša, The functional equation $f(x+y-x y)+f(x y)=f(x)+f(y)$, Aequationes Math. 5 (1970), 63-70.
[3] Z. Daróczy, On the general solution of the functional equation $f(x+y-x y)+f(x y)=$ $f(x)+f(y)$, Aequationes Math. 6 (1971), 130-132.
[4] I. Fenyő, Über die Funktionalgleichung $f\left(a_{0}+a_{1} x+a_{2} y+a_{3} x y\right)+g\left(b_{0}+b_{1} x+b_{2} y+\right.$ $\left.b_{3} x y\right)=h(x)+k(y)$, Acta Math. Hung. 21 (1970), 35-46.
[5] K. Lajkó, Remark to a paper by J. A. Baker, Aequationes Math. 19 (1979), 227-231.
[6] K. Lajkó, Generalized Hosszú functional equations, Annales Academiae Paedagogicae Cracoviensis, Studia Mathematica I 4 (2001), 59-68.
[7] J. Rimán, On an extension of Pexider's equation, Zbornik Rad. Mat, Inst. Beograd 1(9) (1976), 65-72.

KÁROLY LAJKÓ
Institute of mathematics GYULA MAKSA
INSTITUTE OF MATHEMATICS
AND COMPUTER SCIENCE UNIVERSITY OF DEBRECEN
COLLEGE OF NYÍREGYHÁZA
H-4401 NYÍREGYHÁZA, P.O. BOX 166
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY
HUNGARY
E-mail: lajko@math.klte.hu
E-mail: maksa@math.klte.hu
FRUZSINA MÉSZÁROS
INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY
E-mail: mefru@math.klte.hu
(Received April 16, 2008; revised September 28, 2008)

