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On generalized Einstein metrics in Finsler geometry

By GUOJUN YANG (Chengdu) and XINYUE CHENG (Chongqing)

Abstract. In this paper we define the generalized Einstein metrics in Finsler geom-

etry by Cartan connection and study the geometrical properties of such Finsler metrics.

Further, by use of the theory of Y -Riemannian metrics, we discuss the curvature prop-

erties of the Y -Riemannian space induced from a vector field which is determined by β

and α in a generalized Einstein (α, β)-space.

1. Introduction

In this paper we mainly study the analogues in Finsler geometry of some im-
portant results of Einstein metrics in Riemann geometry. For an n-dimensional
Finsler manifold (M, F ), let Rh

i
jk denote the h-curvature tensor of the Cartan

connection. Define Rij := R r
i jr and Rhijk := girRh

r
jk, where gij denote the

fundamental tensor of F . We call a Finsler metric a generalized Einstein met-
ric if Rij = (n − 1)λ(x, y)gij for a scalar function λ(x, y) on TM \ {0} which
is a positively homogeneous function of degree zero in y. By the definition,
Ric(x, y) = Rij(x, y)yiyj , where Ric(x, y) denotes the Ricci curvature of F .
A Finsler metric F is called an Einstein metric if Ric = (n − 1)K(x)F 2 for a
scalar function K(x) on M . Obviously, a generalized Einstein metric must be an
Einstein metric if λ = λ(x) is a scalar function on M . For the studies of Einstein
metrics and Ricci curvature in Finsler geometry, see [7], [13].
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It is well-known that, for an n-dimensional Riemann manifold, if there exists
a scalar function λ(x) such that Rij = (n − 1)λgij , then λ = constant (n ≥ 3),
where Rij is just the Ricci tensor defined by Levi–Civita connection. If n = 3,
then such a Riemann metric has constant sectional curvature. In this paper, we
first generalize the above results in Riemann geometry to the case of generalized
Einstein manifolds in Finsler geometry.

Theorem 1.1. Let (M, F ) be an n-dimensional Finsler manifold. Assume

that F is a generalized Einstein metric with Rij = (n − 1)λ(x, y)gij . Then we

have the following results:

(a) (n = 3) λ is a constant and (M, F ) has constant flag curvature K = λ.

(b) (n ≥ 4) λ is a constant and (M, F ) has constant flag curvature K = λ

provided that (M,F ) is of scalar flag curvature.

Further, if F is a Landsberg metric, we have the following theorem, in which
item (a) is based on Theorem 1.1 and Numata’s theorem in [11].

Theorem 1.2. Let (M,F ) be an n-dimensional Landsberg space. Assume

that F is a generalized Einstein metric with Rij = (n − 1)λ(x, y)gij . Then we

have the following results:

(a) (n = 3) the Finsler manifold (M, F ) is a Riemannian manifold of constant

curvature K = λ provided that λ 6= 0.

(b) (n ≥ 3) λ is a h-covariant constant, that is, λ|k = 0, where “|” denotes the

horizontal covariant derivative with respect to the Cartan connection of F .

We note that Rij are not symmetric in i and j in general. However, besides
Riemannian metrics, there are some interesting Finsler metrics , whose Rij are
symmetric in i and j. For example, we can prove that, for a Finsler metric of
scalar flag curvature, Rij are symmetric (see Proposition 5.1 below).

In the case of n = 2, Finsler metrics must be of scalar flag curvature and
always satisfy Rij = (n− 1)λ(x, y)gij for a λ(x, y). However, λ(x, y) is generally
not a constant. Then Theorem 1.1 does not hold generally. Besides, we can find
many Landsberg metrics with Rij = (n− 1)λ(x, y)gij , which are not Riemannian
and λ|k 6= 0. These examples can be found in 2-dimensional Finsler spaces with
constant main scalar.

In 1986, M. Matsumoto introduced so-called Y -Riemannian metric and Car-
tan Y -connection defined from a Finsler metric F and a non-zero tangent vector
field Y (x) on the underlying manifold M when he studied minimal hypersurfaces
in a Finsler space ([3], [10]). Concretely, given a non-zero tangent vector field
Y (x) on a Finsler manifold (M, F ), we can introduce the Riemannian metric
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g̃ij(x) := gij(x, Y (x)), which is called the Y -Riemannian metric. In particular,
for an (α, β)-metric F = F (α, β), where F is a positively homogeneous function of
degree one in α and β, α =

√
aij(x)yiyj is a Riemannian metric and β = bi(x)yi

is a differential 1-form on a manifold M , we can introduce a non-zero tangent vec-
tor field B(x) = bi(x) ∂

∂xi when β 6= 0, where bi = aijbj . Now we can investigate
the B-Riemannian metric on an (α, β)-space and obtain the following theorem.

Theorem 1.3. Let F = F (α, β) be an (α, β)-metric on an n-dimensional

manifold. Suppose that F is a non-Riemannian Landsberg metric. Let g̃(x) :=
g(x,B(x)) be the B-Riemannian metric. Then we have the following results:

(ia) (n = 2) both g̃ and α are flat and F (α, β) is flat-parallel.

(ib) (n ≥ 3) g̃ has constant sectional curvature if and only if F (α, β) is flat-

parallel. In this case, both g̃ and α are flat.

(ic) (n ≥ 3) g̃ is an Einstein metric if and only if α is an Einstein metric. In this

case, both g̃ and α are Ricci-flat. In particular, in the case of n = 3, both g̃

and α are flat.

If we further assume that F (α, β) is a generalized Einstein metric with Rij =
(n− 1)λ(x, y)gij , then

(iia) (n = 2, 3) g̃ is flat and F (α, β) is flat-parallel. In this case, λ(x, y) = 0.

(iib) (n ≥ 4) both g̃ and α are Ricci-flat and λ(x,B(x)) = 0.

Here, an (α, β)-metric is said to be flat-parallel if α is locally flat and β is parallel

with respect to α. In this case, the (α, β)-metric is locally Minkowski metric.

We have known that a non-Riemannian (α, β)-metric is Landsbergian if and
only if β is parallel with respect to α. In this case, it is Berwaldian (cf. [4], [16]).
The proof of Theorem 1.3 will be partially based on this result.

Remark 1.4. In Theorem 1.2 and Theorem 1.3, we assume that the Finsler
metrics are Landsberg metrics. If Landsberg metrics are Berwald metrics, as
newly several mathematicians claim, then our proof can be simplified.

In [5], D. Bao and C. Robles studied Einstein Randers metrics. We can see
that our results on generalized Einstein metrics in Theorems 1.1- Theorem 1.3 are
similar to those on Einstein Randers metrics in Lemma 11 and Propositions 12,
16 in [5].

In section 5, we will give some remarks about the Theorems in this section.
In Section 6, we will give some examples about generalized Einstein metrics.
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2. Preliminaries

Let (M, F ) be a Finsler manifold with the fundamental function F = F (x, y).
For a vector y = yi ∂

∂xi |x 6= 0, F induces an inner product gy on TxM as follows

gy(u, v) = gij(x, y)uivj ,

where gij(x, y) := 1
2 [F 2]yiyj , u = ui ∂

∂xi |x and v = vi ∂
∂xi |x. Further, the Cartan

torsion C is defined as follows ([9])

Cy(u, v, w) := Cijkuivjwk,

where
Cijk(x, y) :=

1
4
[F 2]yiyjyk(x, y)

and w = wk ∂
∂xk |x. Let Ii(x, y) := gjk(x, y)Cijk(x, y). I := Ii(x, y)dxi is called

the mean Cartan torsion.
Further, the geodesic x = x(t) of Finsler metric F is characterized by the

following system of 2nd order ordinary differential equations:

d2xi(t)
dt2

+ 2Gi
(
x(t), x′(t)

)
= 0,

where
Gi :=

1
4
gil

{(
∂r∂̇l(F 2)

)
yr − ∂l(F 2)

}
,

where ∂̇i = ∂
∂yi , ∂i = ∂

∂xi . Gi are called the geodesic coefficients of F .
Let

Gj
i := ∂̇iG

j

and

Γi
jk :=

gil

2
{
δjgkl + δkgjl − δlgjk

}
,

where δk := ∂k − Gr
k∂̇r. Let the symbols “ | ” and “ | ” denote the horizontal

and vertical covariant derivatives with respect to Cartan connection respectively.
As we know, Cartan connection is determined by the triple (Γi

jk, Gi
j , C

i
jk), where

Ci
jk := gilCljk. The h-, hv- and v-curvature tensors of Cartan connection are

given respectively by

Rh
i
jk = {δkΓi

hj + Γr
hjΓ

i
rk − (j/k)}+ Ci

hrR
r
jk, (1)

Ph
i
jk = ∂̇kΓi

hj − Ci
hk|j + Ci

hrL
r
jk, (2)

Sh
i
jk = ∂̇kCi

hj + Cr
hjC

i
rk − (j/k) = Cr

hjC
i
rk − (j/k), (3)
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where Ri
jk := δkGi

j−(j/k) = R i
0 jk and Li

jk = ∂̇kGi
j−Γi

kj = P i
0 jk and Tij−(i/j)

means Tij −Tji for a general tensor Tij . We have the following identities ([3], [9])

Rijkl = −Rjikl = −Rijlk, (4)

Lijk = Cijk|0, Phijk = ∂̇hLijk + LhjrC
r
ik − (h/i), (5)

where Cijk|0 = Cijk|ryr, Lijk := girL
r
jk, Rijkl := gjrR

r
i kl and Pijkl := gjrP

r
i kl.

Further, it is easy to see that Lijk = − 1
2ysgrsG

r
i jk, where Gh

i
jk = ∂̇h∂̇j ∂̇kGi. A

Finsler metric is called a Berwald metric if Gh
i
jk = 0. A Finsler metric is called

a Landsberg metric if Lijk = 0 ([9], [16]). A Landsberg metric has good geometric
properties (see [1]).

For Cartan connection, we have the following Bianchi identities ([3], [9]).

Ch
irR

r
jk −R h

i jk + (i, j, k) = 0, (6)

P h
m irR

r
jk + R h

m ij|k + (i, j, k) = 0, (7)

Rh
ij |k −R h

k ij +
{
Rh

irC
r
jk + Lh

irL
r
jk + Lh

jk|i − (i/j)
}

= 0, (8)

where Tijk + (i, j, k) means Tijk + Tjki + Tkij for a general tensor Tijk.
For a tangent plane P = span{y, X} ⊆ TxM , we define the flag curvature K

of P by

K(x, y, X) :=
Rhijk(x, y)yhXiyjXk

{ghj(x, y)gik(x, y)− (j/k)}yhXiyjXk
.

This definition is independent of some well-known connections. If the curvature
K(x, y, X) is independent of X, that is K = K(x, y) is just a scalar function on
TM\{0}, then the Finsler space is said to be of scalar flag curvature. If K is a
constant, then the space is said to be of constant flag curvature. On the studies
of scalar flag curvature, see [8], [12], [14], [15], etc.

Let Y = Y i(x)∂/∂xi be a non-zero tangent vector filed on a domain D of
the manifold M and g̃ := g(x, Y (x)) be the Y -Riemannian metric induced from
the vector field Y . Denote by BΓ̃ the Barthel linear connection associated to
Cartan connection by the vector field Y . Let Γ̃i

jk be the connection coefficients
and T̃ i

jk and R̃ i
h jk be the torsion and the curvature tensor of the connection BΓ̃

respectively. Then

Γ̃i
jk = Γi

jk(x, Y ) + Ci
jr(x, Y )Y r

k (x, Y ), (9)

T̃ i
jk = Ci

jr(x, Y )Y r
k (x, Y )− (j/k), (10)
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R̃h
i
jk = Rh

i
jk(x, Y ) +

{
P i

h jk(x, Y )Y r
k (x, Y )− (j/k)

+ S i
h rs(x, Y )Y s

k (x, Y )Y r
j (x, Y )

}
, (11)

where Y i
j (x, y) := ∂jY

i + Gi
j(x, y) ([3], [10]). It is easy to see that if Y i

j (x, Y )= 0
for some vector field Y , then the Barthel connection is just the Levi–Civita con-
nection of the induced Riemann metric g̃.

3. Proofs of Theorem 1.1 and Theorem 1.2

In order to prove Theorem 1.1, we first give the following lemmas. Because
Li

jk = P i
0 jk, by (5), it is easy to show the following lemma.

Lemma 3.1. Let (M, F ) be a Finsler manifold. Then F is a Landsberg

metric if and only if the hv-curvature tensor P i
h jk = 0.

Furthermore, we can obtain the following

Lemma 3.2. Let (M,F ) be a 3-dimensional Finsler manifold. Fix x ∈ M

and y ∈ TxM . By the local diffeomorphism between TxM and M at x, we can

choose a small enough neighborhood at x ∈ M with the local coordinate system

(xr) such that at x ∈ M , grs := gy(∂/∂xr, ∂/∂xs) = 0 for r 6= s. Let ρ = grsRrs.

Then we have the following result at the fixed point (x, y) ∈ TM for arbitrarily

fixed i 6= j :

Rijij − giiRjj − gjjRii +
1
2
ρgiigjj = 0.

Proof. In the whole of the proof, all values should be taken at the fixed
point (x, y) ∈ TM .

Note that the dimension n = 3. Now we fix in the following arbitrary i, j, k

satisfying i 6= j, j 6= k, i 6= k. By the choice of the local coordinate system and
the the relations in (4), we have grs = 0 and grs = 0 for r 6= s, and Riiji = 0,
Rijjj = 0. Then we easily get

Rij =
∑

r

R r
i jr =

∑
r,s

grsRisjr = giiRiiji + gjjRijjj + gkkRikjk

= gkkRikjk =
1

gkk
Rikjk,

Similarly,

Rii =
∑

r

R r
i ir =

∑
r,s

grsRisir = gjjRijij + gkkRikik =
1

gjj
Rijij +

1
gkk

Rikik.
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Therefore,

Rijij − giiRjj − gjjRii = − 1
gkk

{gkkRijij + (i, j, k)}

and
{Rijij − giiRjj − gjjRii}/giigjj = − 1

det(g)
{gkkRijij + (i, j, k)}. (12)

where det(g) = giigjjgkk is the determinant of the matrix (grs).
On the other hand, we have

ρ =
∑

r

grrRrr = gii

{
1

gjj
Rijij +

1
gkk

Rikik

}
+ (i, j, k)

=
2

det(g)
{gkkRijij + (i, j, k)}. (13)

Comparing (12) and (13) we obtain

Rijij − giiRjj − gjjRii +
1
2
ρgiigjj = 0.

Now we have completed the proof. ¤

Lemma 3.3. Let (M,F ) be a 3-dimensional Finsler manifold with Rij =
2λ(x, y)gij for some scalar λ(x, y). Then (M, F ) is of scalar flag curvature K = λ.

Proof. To compute the flag curvature of any plane spanned by two vectors
y,X ∈ TxM with gy(y, X) = 0, we choose Y ∈ TxM satisfying gy(y, Y ) = 0
and Y 6= X. Select a local coordinate system (xr) such that y = ∂/∂x1|x,
X = ∂/∂x2|x and Y = ∂/∂x3|x. By Lemma 3.2 we have

R1212 − g11R22 − g22R11 +
1
2
ρg11g22 = 0.

Therefore,
R1212

g11g22
=

R11

g11
+

R22

g22
− 1

2
ρ = 4λ− 1

2
ρ = λ,

where we have used the fact ρ = grsRrs = 6λ. This result is independent of
the vector X, which implies that the Finsler manifold is of scalar flag curvature
K = λ. This completes the proof. ¤

Lemma 3.4. Let (M, F ) be an n-dimensional Finsler manifold with the

dimension n ≥ 3 and Rij = (n−1)λ(x, y)gij for some scalar λ(x, y). Then λ(x, y)
is a constant and (M, F ) is of constant flag curvature K = λ provided that (M,F )
is of scalar flag curvature.
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Proof. By the Bianchi identity (8) we have

R h
k ij = Rh

ij·k + Rr
ijC

h
rk +

{
Lh

irL
r
jk + Lh

jk|i − (i/j)
}
, (14)

where we define the symbol Ti·j := ∂Ti

∂yj as an example. The same is in the
following. By contraction on h and j in (14) we have

Rki = Rr
ir·k + Rr

isC
s
rk +

{
Ls

irL
r
sk − Ir|0Lr

ik + Ik|0|i − Lr
ik|r

}
. (15)

Now suppose the Finsler space (M,F ) is of scalar flag curvature τ(x, y). Then
we have

Ri
jk = hi

kτj − hi
jτk,

where τj = 1
3F 2τ.j + τyj . Therefore we have

Rr
ir =

1
3
(n− 2)F 2τ·i + (n− 1)τyi,

Rr
ir·k =

2
3
(n− 2)τ·iyk +

1
3
(n− 2)F 2τ·i·k + (n− 1)τ·kyi + (n− 1)τgik,

Rr
isC

s
rk =

1
3
F 2(Ikτ·i − Cr

ikτ·r) + τIkyi.

Now plug the above relations into (15) and we get

Rki − (n− 1)τgik =
2
3
(n− 2)τ·iyk +

1
3
(n− 2)F 2τ·i·k + (n− 1)τ·kyi

+
1
3
F 2

(
Ikτ·i − Cr

ikτ·r
)

+ τIkyi +
{
Ls

irL
r
sk − Ir|0Lr

ik + Ik|0|i − Lr
ik|r

}
. (16)

Contracting (16) by yi and yk, we have
{
Rki − (n− 1)τgik

}
yiyk = 0 (17)

Since Rij = (n− 1)λ(x, y)gij , by (17), we obtain

λ = τ. (18)

Further, contracting (16) by yk and using (18) we get

1
3
(n− 2)F 2τ·i = 0. (19)

Therefore we have τ·i = 0 in dimension n > 2. Now by Proposition 3.2.2.1 in [3],
we see that τ = constant when the dimension n > 2. So λ(x, y) is a constant and
(M, F ) is of constant flag curvature K = λ. This completes the proof. ¤
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Proof of Theorem 1.1. Theorem 1.1(a) follows directly from Lemma 3.3
and Lemma 3.4. Theorem 1.1(b) follows directly from Lemma 3.4. ¤

Proof of Theorem 1.2. (a) If λ 6= 0, then the Finlser manifold (M, F ) is
a Riemannian manifold of constant curvature λ by Theorem 1.1(a) and Numata’s
theorem in [11].

(b) Since F is a Landsberg metric, we get P i
h jk = 0 by Lemma 3.1. Then

by the Bianchi identity (7) we obtain

R h
i jk|l + (j, k, l) = 0.

Therefore
R r

i jr|k + R r
i rk|j + R r

i kj|r = 0.

Because gij|k = 0 and Rij = (n− 1)λgij , by (4), we have

(n− 1)
(
λ|kgij − λ|jgik

)
+ grsRiskj|r = 0

and
gij

{
(n− 1)

(
λ|kgij − λ|jgik

)− grsRsikj|r
}

= 0.

From this, using gijRsikj = R j
s kj = Rsk, we can get (n − 2)λ|k = 0. Hence

λ|k = 0 when n > 2. That is, λ is a h-covariant constant in case of n ≥ 3. Now
we have completed the proof. ¤

4. Proof of Theorem 1.3

In [16], Z. Shen proved that an (α, β)-metric F (α, β) is Landsbergian if and
only if β is parallel with respect to α. In this case, F (α, β) is Berwaldian (also
see [4]). Then Gi

jk is independent of y and Gi
jk(x) = Γi

jk(x), where Γi
jk are the

connection coefficients of Cartan connection. Further, we have Gi = Ĝi, where
Ĝi denotes the geodesic coefficients of α.

Now we consider the induced Riemann metric g̃ by the tangent vector field
B(x) = bi ∂

∂xi . Since β is parallel with respect to α and Gi = Ĝi, we have Y i
j = 0

in (9) and (11). As we mentioned in Section 2, the Barthel connection induced
by B is just the Levi–Civita connection of the induced Riemann metric g̃ by B.
By (9) we have Γ̃i

jk(x) = Γi
jk(x). So Γ̃i

jk(x) = Ĝi
jk(x) and β is parallel with

respect to the Riemann metric g̃.
Thus we have the following facts: (i) Γi

jk(x) = Ĝi
jk = Γ̃i

jk(x) for F, α and g̃;
(ii) β is parallel with respect to the Riemann metrics α and g̃. Then Theorem 1.3
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(ia), (ib) and (ic) follow from these facts and the theories of Einstein metrics in
Riemann geometry.

Next assume that F (α, β) is a generalized Einstein metric. By Y i
j = 0 and

(11) we have
R̃h

i
jk(x) = Rh

i
jk(x, B(x)).

Since Rij = (n− 1)λ(x, y)gij we see that

R̃ r
i jr(x) = (n− 1)λ(x,B(x))g̃ij(x),

which implies that the Riemann metric g̃ is an Einstein metric. By the theories
of Einstein metrics in Riemann geometry and (ia), (ic), we can get (iia) and (iib).
In the case of (iia), since F (α, β) is flat-parallel, F (α, β) is locally Minkowskian,
which implies that λ(x, y) = 0. Now we have completed the proof. ¤

5. Remarks

In this section we give some remarks and discussions on Theorems in Sec-
tion 1. Firstly, we prove the following proposition.

Proposition 5.1. If a Finsler metric F is of scalar flag curvature, then

Rijkl = Rklij . In this case, we have Rij = Rji.

Proof. By the Bianchi identity (6) we have

Rijkl + Rkjli + Rljik = CijrR
r
kl + (i, k, l),

Rjkli + Rlkij + Rikjl = CjkrR
r
li + (j, l, i),

Rklij + Riljk + Rjlki = CklrR
r
ij + (k, i, j),

Rlijk + Rjikl + Rkilj = ClirR
r
jk + (l, j, k).

Adding up the four identities above and using the relations (4), we get

2(Rljik −Riklj) = CijrR
r
kl + CjkrR

r
li + CljrR

r
ik + (i, j, k, l). (20)

where Tijkl +(i, j, k, l) means Tijkl +Tjkli +Tklij +Tlijk for a general tensor Tijkl

as an example. Notice that

CijrR
r
kl + (i, j, k, l) = CjkrR

r
li + (i, j, k, l),

CljrR
r
ik + (i, j, k, l) = 0,
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(20) is reduced to the following

Rljik −Riklj =
1
2
{CijrR

r
kl + (i, j, k, l)}. (21)

Now suppose F is of scalar flag curvature K = λ(x, y). Then we have

Ri
jk = hi

kλj − hi
jλk, (22)

where λj = 1
3F 2λ.j + λyj , λ.j = ∂̇iλ, hi

k = δi
k − yiyk

F 2 and yk = yrgkr. Plugging
(22) into (21) and using yrCijr = 0 we obtain

Rljik −Riklj =
1
2
{Cijlλk − Cijkλl + (i, j, k, l)} = 0.

This completes the proof. ¤

Proposition 5.1 shows that Rij is a symmetric tensor in Finsler spaces of
scalar flag curvature. However, Rij also may be symmetric in non-trivial Finsler
spaces which are not of scalar flag curvature (see examples in Section 6).

As we know, for an n-dimensional Riemann manifold (n ≥ 3), if Rij =
(n − 1)λ(x)gij , then λ = constant. However, Theorem 1.1 and Theorem 1.2 do
not assure that λ(x, y) must be a constant in Finsler spaces of dimension n ≥ 4
which are not of scalar flag curvature ( cf. Example 6.2).

Let (M, F ) be an n-dimensional Finsler space with constant flag curvature
K = λ. Then by (16), Rij = (n− 1)λgij is equivalent to

λIkyi + Ls
irL

r
sk − Ir|0Lr

ik + Ik|0|i − Lr
ik|r = 0. (23)

It is easily seen that (23) holds in Landsberg spaces with vanishing flag curvature
λ = 0. In this case, Rij = 0. Besides, we can verify that (23) always holds in the
Finsler manifold of dimension 2.

Now we consider two kinds of generalized Einstein metrics. one of them
is the metrics satisfying Rhijk = λ(x, y)(ghjgik − ghkgij). Another one is the
metrics satisfying Rijkl = 1

n−1 (Rikgjl−Rilgjk). For the former case, when n > 2,
Akbar-Zadeh shows in [2] that λ(x, y) is a constant. Further, S i

h jk = 0 and
P i

h jk = P i
h kj if λ 6= 0. For the latter case, we have the following proposition.

Proposition 5.2. Let (M, F ) be a Finsler manifold of dimension n ≥ 3.

Suppose that Rijkl satisfies Rijkl = 1
n−1 (Rikgjl − Rilgjk). Define ρ = gijRij .

Then

(i) ρ is a constant and F has constant flag curvature K with K = ρ
n(n−1) .
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(ii) if ρ 6= 0, then S i
h jk = 0 and P i

h jk = P i
h kj .

(iii) if ρ 6= 0 and F is reversible , then F is a Riemannian metric of constant

curvature.

This Proposition can be easily proved by using Akbar-Zadeh’s result in [2]
and Brickell’s result in [6].

6. Examples

In this section, we will give some examples on generalized Einstein metrics.
We are also interested in finding the examples satisfying P i

h jk = P i
h kj .

Firstly, we introduce the Weyl tensor W which is defined by

W i
jk = Ri

jk +
{
yiHjk + δi

jHk − (j/k)
}
/(n + 1), (24)

where Hjk = Rr
kr.j , Hj = (nH0j + Hj0)/(n − 1) ([3]). It is well-known that a

Finsler space is of scalar flag curvature if and only if W i
jk = 0.

Example 6.1. Consider M = M0 × Rn−2(n > 2). Let (M, F ) be an n-
dimensional Finsler space with the metric F given by

F (x, y) =
√

F 2
0 + β2

3 + · · ·+ β2
n,

where (M0, F0) is a 2-dimensional Finsler space with F0 = F0(x1, x2, y1, y2) and
β3 = a3(x3)y3, · · · , βn = an(xn)yn are non-zero 1-forms on Rn−2. Let K0 be the
scalar flag curvature of F0 and K be the flag curvature of F . Then the metric
F (x, y) has the following properties:

(a1) F is of scalar flag curvature ⇐⇒ K0 = 0 ⇐⇒ K = 0.

(a2) Rij = (n − 1)λgij for some scalar λ = λ(x, y) ⇐⇒ K0 = 0 ⇐⇒ K = 0. In
this case, λ = 0.

(a3) P i
h jk are symmetric in j and k.

(a4) F is a Landsberg metric if and only if F0 is a Landsberg metric.

Proof. (a1) Suppose that F is of scalar flag curvature, that is, W i
jk = 0.

By F 2 = F 2
0 + β2

3 + · · · + β2
n and the definition of R i

h jk in (1), it is easily seen
that R i

h jk are equal in (M0, F0) and (M, F ) for i, j, k = 1, 2, and R i
h jk = 0 if

one of the indices h, j, k, i is greater than 2. Therefore, Ri
jk (= yrR i

r jk) and
Hjk = Rr

kr.j are also equal in (M0, F0) and (M, F ) for i, j, k = 1, 2.
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Consider arbitrary j, k = 1, 2 and some fixed i ≥ 3. Then it is easily seen that
Ri

jk = 0, and then W i
jk = 0 implies that Hjk = Hkj by (24). Now we consider

again arbitrary i, j, k = 1, 2. Note that we also have W i
jk = 0 in the Finsler space

(M0, F0) ( dim M0 = 2). Then since W i
jk = 0 in (M0, F0), W i

jk = 0 in (M,F ) and
(24) we have

1
3
δi
j(2H0k + Hk0)− (j/k) =

1
n2 − 1

δi
j(nH0k + Hk0)− (j/k),

which can be simplified to

δi
j [(2n + 1)H0k + (n + 2)Hk0]− (j/k) = 0.

By contraction on i and j (note that i, j, k = 1, 2) we have

(2n + 1)H0k + (n + 2)Hk0 = 0. (25)

Since H0k and Hk0 are equal in (M0, F0) and (M,F ), we see by (3.5.2.6) in [3]
that

H0k = τyk, Hk0 = τyk + τ;2F0mk, (26)

where we put the scalar curvature K0 = τ , F0τ.i = τ;2mi, and (l, m) is the
Berwald frame on (M0, F0). Plugging (26) into (25), we have

3(n + 1)τyk + (n + 2)τ;2F0mk = 0.

Thus we have K0 = τ = 0. If K0 = 0, it is easily verified that F has vanishing
flag curvature, that is, K = 0.

(a2) Suppose Rij = (n− 1)λgij . Since R33 = 0 and g33 = (a3(x3))2, we have
λ = 0 and then K0 = 0. It is clear that Rij = 0 if K0 = 0.

(a3) By a similar proof as that in (a1), P i
h jk are are equal in (M0, F0) and

(M, F ) for h, j, k, i = 1, 2. So in this case, P i
h jk = P i

h kj . In other cases, P i
h jk = 0

if one of h, i, j, k is greater than 2.
(a4) This assertion is easily verified as that in (a3). ¤

Example 6.1 shows that there are many non-Landsberg spaces with vanishing
flag curvature such that Rij = 0.

Example 6.2. Consider M = M1 × M2 × · · · × Mn. Let (M, F ) be a 2n-
dimensional Finsler space with the metric F given by

F (x, y) =
√

F 2
1 + F 2

2 + · · ·+ F 2
n ,
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where all of (Mi, Fi)(i = 1 · · ·n) are 2-dimensional Finsler space with

F1 = F1(x1, x2, y1, y2), · · · , Fn = Fn(x2n−1, x2n, y2n−1, y2n)

and they are of the same constant flag curvature Ki = λ. Then the metric F has
the following properties:

(a1) F is of scalar curvature if and only if λ = 0. Hence, if λ 6= 0, then F is not
of scalar flag curvature.

(a2) Rij = (n− 1)λgij .

(a3) P i
h jk are symmetric in j and k.

(a4) F is a Landsberg metric if and only if all Fi’s are Landsberg metrics.

The proof of Example 6.2 is similar to the proof of Example 6.1. Example 6.2
shows that, in the case of dimension n ≥ 4, we can find many Finsler metrics which
are not of scalar flag curvatures such that Rij = (n−1)λgij for some constants λ.

Finally, the following two open problems are interesting and important for
further study:

(i) Find the non-Riemannian Finsler metrics of non-zero constant flag curvature
λ with Rij = (n− 1)λgij in the case of dimension n ≥ 3.

(ii) Find the non-Riemannian Landsberg spaces with Rij = (n − 1)λ(x, y)gij ,
λ(x, y) 6= 0, in the case of dimension n ≥ 4.
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