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Cubes in products of terms in arithmetic progression

By LAJOS HAJDU (Debrecen), SZABOLCS TENGELY (Debrecen)
and ROBERT TIJDEMAN (Leiden)

Abstract. Euler proved that the product of four positive integers in arithmetic

progression is not a square. Győry, using a result of Darmon and Merel, showed that the

product of three coprime positive integers in arithmetic progression cannot be an l-th

power for l ≥ 3. There is an extensive literature on longer arithmetic progressions such

that the product of the terms is an (almost) power. In this paper we extend the range

of k’s such that the product of k coprime integers in arithmetic progression cannot be a

cube when 2 < k < 39. We prove a similar result for almost cubes.

1. Introduction

In this paper we consider the problem of almost cubes in arithmetic progres-

sions. This problem is closely related to the Diophantine equation

n(n + d) . . . (n + (k − 1)d) = byl (1)

in positive integers n, d, k, b, y, l with l ≥ 2, k ≥ 3, gcd(n, d) = 1, P (b) ≤ k,

where for u ∈ Z with |u| > 1, P (u) denotes the greatest prime factor of u, and

P (±1) = 1.

This equation has a long history, with an extensive literature. We refer to

the research and survey papers [3], [10], [11], [14], [16], [18], [19], [20], [23], [25],

[26], [28], [29], [31], [32], [33], [34], [35], [36], [37], [38], [40], [41], the references

given there, and the other papers mentioned in the introduction.
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In this paper we concentrate on results where all solutions of (1) have been

determined, under some assumptions for the unknowns. We start with results

concerning squares, so in this paragraph we assume that l = 2. Already Euler

proved that in this case equation (1) has no solutions with k = 4 and b = 1 (see

[7] pp. 440 and 635). Obláth [21] extended this result to the case k = 5. Erdős

[8] and Rigge [22] independently proved that equation (1) has no solutions with

b = d = 1. Saradha and Shorey [27] proved that (1) has no solutions with

b = 1, k ≥ 4, provided that d is a power of a prime number. Later, Laishram

and Shorey [19] extended this result to the case where either d ≤ 1010, or d

has at most six prime divisors. Finally, most importantly from the viewpoint

of the present paper, Hirata-Kohno, Laishram, Shorey and Tijdeman [17]

completely solved (1) with 3 ≤ k < 110 for b = 1. Combining their result with

those of Tengely [39] all solutions of (1) with 3 ≤ k ≤ 100, P (b) < k are

determined.

Now assume for this paragraph that l ≥ 3. Erdős and Selfridge [9] proved

the celebrated result that equation (1) has no solutions if b = d = 1. In the general

case P (b) ≤ k but still with d = 1, Saradha [24] for k ≥ 4 and Győry [12],

using a result of Darmon and Merel [6], for k = 2, 3 proved that (1) has no

solutions with P (y) > k. For general d, Győry [13] showed that equation (1)

has no solutions with k = 3, provided that P (b) ≤ 2. Later, this result has been

extended to the case k < 12 under certain assumptions on P (b), see Győry,

Hajdu, Saradha [15] for k < 6 and Bennett, Bruin, Győry, Hajdu [1] for

k < 12.

In this paper we consider the problem for cubes, that is equation (1) with

l = 3. We solve equation (1) nearly up to k = 40. In the proofs of our results we

combine the approach of [17] with results of Selmer [30] and some new ideas.

2. Notation and results

As we are interested in cubes in arithmetic progressions, we take l = 3 in (1).

That is, we consider the Diophantine equation

n(n + d) . . . (n + (k − 1)d) = by3 (2)

in integers n, d, k, b, y where k ≥ 3, d > 0, gcd(n, d) = 1, P (b) ≤ k, n 6= 0, y 6= 0.

(Note that similarly as e.g. in [1] we allow n < 0, as well.)

In the standard way, by our assumptions we can write

n + id = aix
3
i (i = 0, 1, . . . , k − 1) (3)
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with P (ai) ≤ k, ai is cube-free. Note that (3) also means that in fact n + id

(i = 0, 1, . . . , k − 1) is an arithmetic progression of almost cubes.

In case of b = 1 we prove the following result.

Theorem 2.1. Suppose that (n, d, k, y) is a solution to equation (2) with

b = 1 and k < 39. Then we have

(n, d, k, y) = (−4, 3, 3, 2), (−2, 3, 3,−2), (−9, 5, 4, 6) or (−6, 5, 4, 6).

We shall deduce Theorem 2.1 from the following theorem.

Theorem 2.2. Suppose that (n, d, k, b, y) is a solution to equation (2) with

k < 32 and that P (b) < k if k = 3 or k ≥ 13. Then (n, d, k) belongs to the

following list:

(−10, 3, 7), (−8, 3, 7), (−8, 3, 5), (−4, 3, 5), (−4, 3, 3), (−2, 3, 3),

(−9, 5, 4), (−6, 5, 4), (−16, 7, 5), (−12, 7, 5),

(n, 1, k) with − 30 ≤ n ≤ −4 or 1 ≤ n ≤ 5,

(n, 2, k) with − 29 ≤ n ≤ −3.

Note that the above statement follows from Theorem 1.1 of Bennett,

Bruin, Győry, Hajdu [1] in case k < 12 and P (b) ≤ Pk with P3 = 2, P4 =

P5 = 3, P6 = P7 = P8 = P9 = P10 = P11 = 5.

3. Lemmas and auxiliary results

We need some results of Selmer [30] on cubic equations.

Lemma 3.1. The equations

x3 + y3 = cz3, c ∈ {1, 2, 4, 5, 10, 25, 45, 60, 100, 150, 225, 300},

ax3 + by3 = z3, (a, b) ∈ {(2, 9), (4, 9), (4, 25), (4, 45), (12, 25)}

have no solution in non-zero integers x, y, z.

As a lot of work will be done modulo 13, the following lemma will be very

useful. Before stating it, we need to introduce a new notation. For u, v, m ∈ Z,

m > 1 by u
c≡ v (mod m) we mean that uw3 ≡ v (mod m) holds for some integer

w with gcd(m, w) = 1. We shall use this notation throughout the paper, without

any further reference.
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Lemma 3.2. Let n, d be integers. Suppose that for five values

i ∈ {0, 1, . . . , 12} we have n + id
c≡ 1 (mod 13). Then 13 | d, and n + id

c≡ 1

(mod 13) for all i = 0, 1, . . . , 12.

Proof. Suppose that 13 ∤ d. Then there is an integer r such that n ≡ rd

(mod 13). Consequently, n + id ≡ (r + i)d (mod 13). A simple calculation yields

that the cubic residues of the numbers (r + i)d (i = 0, 1, . . . , 12) modulo 13 are

given by a cyclic permutation of one of the sequences

0, 1, 2, 2, 4, 1, 4, 4, 1, 4, 2, 2, 1,

0, 2, 4, 4, 1, 2, 1, 1, 2, 1, 4, 4, 2,

0, 4, 1, 1, 2, 4, 2, 2, 4, 2, 1, 1, 4.

Thus the statement follows. �

Lemma 3.3. Let α = 3
√

2 and β = 3
√

3. Put K = Q(α) and L = Q(β).

Then the only solution of the equation

C1 : X3 − (α + 1)X2 + (α + 1)X − α = (−3α + 6)Y 3

in X ∈ Q and Y ∈ K is (X, Y ) = (2, 1). Further, the equation

C2 : 4X3 − (4β + 2)X2 + (2β + 1)X − β = (−3β + 3)Y 3

has the single solution (X, Y ) = (1, 1) in X ∈ Q and Y ∈ L.

Proof. Using the point (2, 1) we can transform the genus 1 curve C1 to

Weierstrass form

E1 : y2 + (α2 + α)y = x3 + (26α2 − 5α − 37).

We have E1(K) ≃ Z as an Abelian group and (x, y) = (−α2−α+3,−α2−3α+4)

is a non-torsion point on this curve. Applying elliptic Chabauty (cf. [4], [5]), in

particular the procedure “Chabauty” of MAGMA (see [2]) with p = 5, we obtain

that the only point on C1 with X ∈ Q is (2, 1).

Now we turn to the second equation C2. We can transform this equation to

an elliptic one using its point (1, 1). We get

E2 : y2 = x3 + β2x2 + βx + (41β2 − 58β − 4).

We find that E2(L) ≃ Z and (x, y) = (4β − 2,−2β2 + β + 12) is a non-torsion

point on E2. Applying elliptic Chabauty (as above) with p = 11, we get that the

only point on C2 with X ∈ Q is (1, 1). �
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4. Proofs

In this section we provide the proofs of our results. As Theorem 2.1 follows

from Theorem 2.2 by a simple inductive argument, first we give the proof of the

latter result.

Proof of Theorem 2.2. As we mentioned, for k = 3, 4 the statement fol-

lows from Theorem 1.1 of [1]. Observe that the statement for every

k ∈ {6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31}

is a simple consequence of the result obtained for some smaller value of k. Indeed,

for any such k let pk denote the largest prime with pk < k. Observe that in case

of k ≤ 13 P (a0a1 . . . apk−1) ≤ pk holds, and for k > 13 we have P (a0a1 . . . apk
) <

pk + 1. Hence, noting that we assume P (b) ≤ k for 3 < k ≤ 11 and P (b) < k

otherwise, the theorem follows inductively from the case of pk-term products and

pk + 1-term products, respectively. Hence in the sequel we deal only with the

remaining values of k.

The cases k = 5, 7 are different from the others. In most cases a “brute force”

method suffices. In the remaining cases we apply the elliptic Chabauty method

(see [4], [5]).

The case k = 5. In this case a very simple algorithm works already. Note

that in view of Theorem 1.1 of [1], by symmetry it is sufficient to assume that

5 | a2a3. We look at all the possible distributions of the prime factors 2, 3, 5 of

the coefficients ai (i = 0, . . . , 4) one-by-one. Using that if x is an integer, then x3

is congruent to ±1 or 0 both (mod 7) and (mod 9), almost all possibilities can

be excluded. For example,

(a0, a1, a2, a3, a4) = (1, 1, 1, 10, 1)

is impossible modulo 7, while

(a0, a1, a2, a3, a4) = (1, 1, 15, 1, 1)

is impossible modulo 9. (Note that the first choice of the ai cannot be excluded

modulo 9, and the second one cannot be excluded modulo 7.)

In case of the remaining possibilities, taking the linear combinations of three

appropriately chosen terms of the arithmetic progression on the left hand side of

(2) we get all solutions by Lemma 3.1. For example,

(a0, a1, a2, a3, a4) = (2, 3, 4, 5, 6)
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obviously survives the above tests modulo 7 and modulo 9. However, in this

case using the identity 4(n + d) − 3n = n + 4d, Lemma 3.1 implies that the only

corresponding solution is given by n = 2 and d = 1.

After having excluded all quintuples which do not pass the above tests we

are left with the single possibility

(a0, a1, a2, a3, a4) = (2, 9, 2, 5, 12).

Here we have

x3
0 + x3

2 = 9x3
1 and x3

0 − 2x3
2 = −6x3

4. (4)

Factorizing the first equation of (4), a simple consideration yields that x2
0−x0x2+

x2
2 = 3u3 holds for some integer u. Put K = Q(α) with α = 3

√
2. Note that the

ring OK of integers of K is a unique factorization domain, α−1 is a fundamental

unit and 1, α, α2 is an integral basis of K, and 3 = (α− 1)(α+1)3, where α+1 is

a prime in OK . A simple calculation shows that x0 −αx2 and x2
0 + αx0x2 + α2x2

2

can have only the prime divisors α and α + 1 in common. Hence checking the

field norm of x0 − αx2, by the second equation of (4) we get that

x0 − αx2 = (α − 1)ε(α2 + α)y3

with y ∈ OK and ε ∈ {0, 1, 2}. Expanding the right hand side, we deduce that

ε = 0, 2 yields 3 | x0, which is a contradiction. Thus we get that ε = 1, and we

obtain the equation

(x0 − αx2)(x
2
0 − x0x2 + x2

2) = (−3α + 6)z3

for some z ∈ OK . Hence after dividing both sides of this equation by x3
2, the

theorem follows from Lemma 3.3 in this case.

The case k = 7. In this case by similar tests as for k = 5, we get that the only

remaining possibilities are given by

(a0, a1, a2, a3, a4, a5, a6) = (4, 5, 6, 7, 1, 9, 10), (10, 9, 1, 7, 6, 5, 4).

By symmetry it is sufficient to deal with the first case. Then we have

x3
1 + 8x3

6 = 9x3
5 and x3

6 − 3x3
1 = −2x3

0. (5)

Factorizing the first equation of (5), just as in case of k = 5, a simple consideration

gives that 4x2
6 − 2x1x6 + x2

1 = 3u3 holds for some integer u. Let L = Q(β) with

β = 3
√

3. As is well-known, the ring OL of integers of L is a unique factorization
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domain, 2−β2 is a fundamental unit and 1, β, β2 is an integral basis of L. Further,

2 = (β − 1)(β2 + β + 1), where β − 1 and β2 + β + 1 are primes in OL, with

field norms 2 and 4, respectively. A simple calculation yields that x6 − βx1 and

x2
6 + βx1x6 + β2x2

1 are relatively prime in OL. Moreover, as gcd(n, d) = 1 and x4

is even, x0 should be odd. Hence as the field norm of β2 + β + 1 is 4, checking

the field norm of x6 − βx1, the second equation of (5) yields

x6 − βx1 = (2 − β2)ε(1 − β)y3

for some y ∈ OL and ε ∈ {0, 1, 2}. Expanding the right hand side, a simple

computation shows that ε = 1, 2 yields 3 | x6, which is a contradiction. Thus we

get that ε = 0, and we obtain the equation

(x6 − βx1)(4x2
6 − 2x1x6 + x2

1) = (−3β + 3)z3

for some z ∈ OL. We divide both sides of this equation by x3
1 and apply Lemma 3.3

to complete the case k = 7.

Description of the general method. So far we have considered all the possible

distributions of the prime factors ≤ k among the coefficients ai. For larger values

of k we use a more efficient procedure similar to that in [17]. We first outline the

main ideas. We explain the important case that 3, 7, and 13 are coprime to d

first.

The case gcd(3 · 7 · 13, d) = 1. Suppose we have a solution to equation (2) with

k ≥ 11 and gcd(3 ·7, d) = 1. Then there exist integers r7 and r9 such that n ≡ r7d

(mod 7) and n ≡ r9d (mod 9). Further, we can choose the integers r7 and r9 to

be equal; put r := r7 = r9. Then n+id ≡ (r+i)d (mod q) holds for q ∈ {7, 9} and

i = 0, 1 . . . , k − 1. In particular, we have r + i
c≡ aisq (mod q), where q ∈ {7, 9}

and sq is the inverse of d modulo q. Obviously, we may assume that r + i takes

values only from the set {−31,−30, . . . , 31}.
First we make a table for the residues of h modulo 7 and 9 up to cubes for

|h| < 32, but here we present only the part with 0 ≤ h < 11.

h 0 1 2 3 4 5 6 7 8 9 10

h mod 7 0 1 2 4 4 2 1 0 1 2 4

h mod 9 0 1 2 3 4 4 3 2 1 0 1

In the first row of the table we give the values of h and in the second and third

rows the corresponding residues of h modulo 7 and modulo 9 up to cubes, respec-

tively, where the classes of the relation
c≡ are represented by 0, 1, 2, 4 modulo 7,

and by 0, 1, 2, 3, 4 modulo 9.
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Let ai1 , . . . , ait
be the coefficients in (3) which do not have prime divisors

greater than 2. Put

E = {(uij
, vij

) : r + ij
c≡ uij

(mod 7), r + ij
c≡ vij

(mod 9), 1 ≤ j ≤ t}

and observe that E is contained in one of the sets

E1 := {(1, 1), (2, 2), (4, 4)}, E2 := {(1, 2), (2, 4), (4, 1)},

E3 := {(2, 1), (4, 2), (1, 4)}.

We use this observation in the following tests which we shall illustrate by some

examples.

In what follows we assume k and r to be fixed. In our method we apply the

following tests in the given order. By each test some cases are eliminated.

Class cover. Let ui

c≡ r + i (mod 7) and vi

c≡ r + i (mod 9) (i = 0, 1, . . . , k − 1).

For l = 1, 2, 3 put

Cl = {i : (ui, vi) ∈ El, i = 0, 1, . . . , k − 1}.
Check whether the sets C1∪C2, C1∪C3, C2∪C3 can be covered by the multiples

of the primes p with p < k, p 6= 2, 3, 7. If this is not possible for Cl1 ∪Cl2 , then we

know that E ⊆ El3 is impossible and El3 is excluded. Here {l1, l2, l3} = {1, 2, 3}.
The forthcoming procedures are applied separately for each case where E ⊆ El

remains possible for some l. From this point on we also assume that the odd

prime factors of the ai are fixed.

Parity. Define the sets

Ie = {(ui, vi) ∈ El : r + i is even, P (ai) ≤ 2},

Io = {(ui, vi) ∈ El : r + i is odd, P (ai) ≤ 2}.

As the only odd power of 2 is 1, min(|Ie|, |Io|) ≤ 1 must be valid. If this does not

hold, the corresponding case is excluded.

Test modulo 13. Assume that E ⊆ El with fixed l ∈ {1, 2, 3}. Further, suppose

that based upon the previous tests we can decide whether ai can be even for the

even or the odd values of i. For t = 0, 1, 2 put

Ut = {i : ai = ±2t, i ∈ {0, 1, . . . , k − 1}}

and let

U3 = {i : ai = ±5γ, i ∈ {0, 1, . . . , k − 1}, γ ∈ {0, 1, 2}}.
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Assume that 13 | n + i0d for some i0. Recall that 13 ∤ d and 5
c≡ 1 (mod 13). If

i, j ∈ Ut for some t ∈ {0, 1, 2, 3}, then i− i0
c≡ j− i0 (mod 13). If i ∈ Ut1 , j ∈ Ut2

with 0 ≤ t1 < t2 ≤ 2, then i − i0 6 c≡ j − i0 (mod 13). We exclude all the cases

which do not pass these tests.

Test modulo 7. Assume again that E ⊆ El with fixed l ∈ {1, 2, 3}. Check whether

the actual distribution of the prime divisors of the ai yields that for some i with

7 ∤ n + id, both ai = ±t and |r + i| = t hold for some positive integer t with 7 ∤ t.

Then

t
c≡ n + id

c≡ (r + i)d
c≡ td (mod 7)

implies that d
c≡ 1 (mod 7). Now consider the actual distribution of the prime

factors of the coefficients ai (i = 0, 1, . . . , k−1). If in any ai we know the exponents

of all primes with one exception, and this exceptional prime p satisfies p
c≡ 2, 3, 4, 5

(mod 7), then we can fix the exponent of p using the above information on n. As

an example, assume that 7 | n, and a1 = ±5γ with γ ∈ {0, 1, 2}. Then d
c≡ 1

(mod 7) immediately implies γ = 0. Further, if 7 | n and a2 = ±13γ with

γ ∈ {0, 1, 2}, then d
c≡ 1 (mod 7) gives a contradiction. We exclude all cases

yielding a contradiction. Moreover, in the remaining cases we fix the exponents

of the prime factors of the ai-s whenever it is possible.

We remark that we used this procedure for 0 ≥ r ≥ −k + 1. In almost all

cases it turned out that ai is even for r+i even. Further, we could prove that with

|r + i| = 1 or 2 we have ai = ±1 or ±2, respectively, to conclude d
c≡ 1 (mod 7).

The test is typically effective in case when r is “around” −k/2. The reason for

this is that then in the sequence r, r+1, . . . ,−1, 0, 1, . . . , k−r−2, k−r−1 several

powers of 2 occur.

Induction. For fixed distribution of the prime divisors of the coefficients ai, search

for arithmetic sub-progressions of length l with l ∈ {3, 5, 7} such that for the

product Π of the terms of the sub-progression P (Π) ≤ Ll holds, with L3 = 2,

L5 = 5, L7 = 7. If there is such a sub-progression, then in view of Theorem 1.1

of [1], all such solutions can be determined.

An example. Now we illustrate how the above procedures work. For this purpose,
take k = 24 and r = −8. Then, using the previous notation, we work with the
following stripe (with i ∈ {0, 1, . . . , 23}):

r + i −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mod 7 1 0 1 2 4 4 2 1 0 1 2 4 4 2 1 0 1 2 4 4 2 1 0 1

mod 9 1 2 3 4 4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4 4 3

In the procedure Class cover we get the following classes:

C1 = {0, 4, 6, 7, 9, 10, 12, 16}, C2 = {3, 13, 18}, C3 = {19, 21}.
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For p = 5, 11, 13, 17, 19, 23 put

mp = |{i : i ∈ C1 ∪ C2, p | n + id}|,

respectively. Using the condition gcd(n, d) = 1, one can easily check that

m5 ≤ 3, m11 ≤ 2, m13 ≤ 2, m17 ≤ 1, m19 ≤ 1, m23 ≤ 1.

Hence, as |C1 ∪ C2| = 11, we get that E ⊆ E3 cannot be valid in this case.

By a similar (but more sophisticated) calculation one gets that E ⊆ E2 is also

impossible. So after the procedure Class cover only the case E ⊆ E1 remains.

From this point on, the odd prime divisors of the coefficients ai are fixed,

and we look at each case one-by-one. Observe that p | n + id does not imply

p | ai. Further, p | n + id implies p | n + jd whenever i ≡ j (mod p).

We consider two subcases. Suppose first that we have

3 | n + 2d, 5 | n + d, 7 | n + d, 11 | n + 7d, 13 | n + 7d,

17 | n + 3d, 19 | n, 23 | n + 13d.

Then by a simple consideration we get that in Test modulo 13 either

4 ∈ U1 and 10 ∈ U2,

or

10 ∈ U1 and 4 ∈ U2.

In the first case, using 13 | n + 7d we get

−3d
c≡ 2 (mod 13) and 3d

c≡ 4 (mod 13),

which by −3d
c≡ 3d (mod 13) yields a contradiction. In the second case we get a

contradiction in a similar manner.

Consider now the subcase where

3 | n + 2d, 5 | n + d, 7 | n + d, 11 | n + 7d, 13 | n + 8d,

17 | n + 3d, 19 | n, 23 | n + 13d.

This case survives the Test modulo 13. However, using the strategy explained in

Test modulo 7, we can easily check that if ai is even then i is even, which yields

a9 = ±1. This immediately gives d
c≡ 1 (mod 7). Further, we have a7 = ±11ε7

with ε7 ∈ {0, 1, 2}. Hence we get that

±11ε7
c≡ n + 7d

c≡ d
c≡ 1 (mod 7).

This gives ε7 = 0, thus a7 = ±1. Therefore P (a4a7a10) ≤ 2. Now we apply the

test Induction.
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The case gcd(3 · 7 · 13, d) 6= 1. In this case we shall use the fact that almost

half of the coefficients are odd. With a slight abuse of notation, when k > 11

we shall assume that the coefficients a1, a3, . . . , ak−1 are odd, and the other co-

efficients are given either by a0, a2, . . . , ak−2 or by a2, a4, . . . , ak. Note that in

view of gcd(n, d) = 1 this can be done without loss of generality. We shall use

this notation in the corresponding parts of our arguments without any further

reference.

Now we continue the proof, considering the remaining cases k ≥ 11.

The case k = 11. When gcd(3 · 7, d) = 1, the procedures Class cover, Test

modulo 7 and Induction suffice. Hence we may suppose that gcd(3 · 7, d) > 1.

Assume that 7 | d. Observe that P (a0a1 . . . a4) ≤ 5 or P (a5a6 . . . a9) ≤ 5.

Hence the statement follows by induction.

Suppose next that 3 | d. Observe that if 11 ∤ a4a5a6 then P (a0a1 . . . a6) ≤ 7

or P (a4a5 . . . a10) ≤ 7. Hence by induction and symmetry we may assume that

11 | a5a6. Assume first that 11 | a6. If 7 | a0a6 then we have P (a1a2a3a4a5) ≤ 5.

Further, in case of 7 | a5 we have P (a0a1a2a3a4) ≤ 5. Thus by induction we

may suppose that 7 | a1a2a3a4. If 7 | a1a2a4 and 5 ∤ n, we have P (a0a5a10) ≤ 2,

whence by applying Lemma 3.1 to the identity n + (n + 10d) = 2(n + 5d) we get

all the solutions of (2). Assume next that 7 | a1a2a4 and 5 | n. Hence we deduce

that one among P (a2a3a4) ≤ 2, P (a1a4a7) ≤ 2, P (a1a2a3) ≤ 2 is valid, and the

statement follows in each case in a similar manner as above. If 7 | a3, then a simple

calculation yields that one among P (a0a1a2) ≤ 2, P (a0a4a8) ≤ 2, P (a1a4a7) ≤ 2

is valid, and we are done. Finally, assume that 11 | a5. Then by symmetry we

may suppose that 7 | a0a1a4a5. If 7 | a4a5 then P (a6a7a8a9a10) ≤ 5, and the

statement follows by induction. If 7 | a0 then we have P (a2a4a6a8a10) ≤ 5, and

we are done too. In case of 7 | a1 one among P (a0a2a4) ≤ 2, P (a2a3a4) ≤ 2,

P (a0a3a6) ≤ 2 holds. This completes the case k = 11.

The case k = 14. Note that without loss of generality we may assume that

13 | ai with 3 ≤ i ≤ 10, otherwise the statement follows by induction from the

case k = 11. Then, in particular we have 13 ∤ d.

The tests described in the previous section suffice to dispose of the case

gcd(3 · 7 · 13, d) = 1. Assume now that gcd(3 · 7 · 13, d) > 1 (but recall that 13 ∤ d).

Suppose first that 7 | d. Among the odd coefficients a1, a3, . . . , a13 there

are at most three multiples of 3, two multiples of 5 and one multiple of 11. As

13
c≡ 1 (mod 7), this shows that at least for one of these ai-s we have ai

c≡ 1

(mod 7). Hence ai

c≡ 1 (mod 7) for every i = 1, 3, . . . , 13. Further, as none of
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3, 5, 11 is a cube modulo 7, we deduce that if i is odd, then either gcd(3 · 5 ·
11, ai) = 1 or ai must be divisible by at least two out of 3, 5, 11. Noting that

13 ∤ d, by Lemma 3.2 at most four numbers among a1, a3, . . . , a13 can be equal

to ±1. Moreover, gcd(n, d) = 1 implies that 15 | ai can be valid for at most

one i ∈ {0, 1, . . . , k − 1}. Hence among the coefficients with odd indices there is

exactly one multiple of 11, exactly one multiple of 15, and exactly one multiple

of 13. Moreover, the multiple of 11 in question is also divisible either by 3 or

by 5. In view of the proof of Lemma 3.2 a simple calculation yields that the

cubic residues of a1, a3, . . . , a13 modulo 13 must be given by 1, 1, 4, 0, 4, 1, 1, in

this order. Looking at the spots where 4 occurs in this sequence, we get that

either 3 | a5, a9 or 5 | a5, a9 is valid. However, this contradicts the assumption

gcd(n, d) = 1.

Assume now that 3 | d, but 7 ∤ d. Then among the odd coefficients a1, a3,

. . . , a13 there are at most two multiples of 5 and one multiple of 7, 11 and 13

each. Lemma 3.2 together with 5
c≡ 1 (mod 13) yields that there must be exactly

four odd i-s with ai

c≡ 1 (mod 13), and further, another odd i such that ai is

divisible by 13. Hence as above, the proof of Lemma 3.2 shows that the ai-s with

odd indices are
c≡ 1, 1, 4, 0, 4, 1, 1 (mod 13), in this order. As the prime 11 should

divide an ai with odd i and ai

c≡ 4 (mod 13), this yields that 11 | a5a9. However,

as above, this immediately yields that P (a0a2 . . . a12) ≤ 7 (or P (a2a4 . . . a14) ≤ 7),

and the case k = 14 follows by induction.

The case k = 18. Using the procedures described in the previous section, the

case gcd(3 · 7 · 13, d) = 1 can be excluded. So we may assume gcd(3 · 7 · 13, d) > 1.

Suppose first that 7 | d. Among a1, a3, . . . , a17 there are at most three mul-

tiples of 3, two multiples of 5 and one multiple of 11, 13 and 17 each. Hence at

least for one odd i we have ai = ±1. Thus all of a1, a3, . . . , a17 are
c≡ 1 (mod 7).

Among the primes 3, 5, 11, 13, 17 only 13 is
c≡ 1 (mod 7), so the other primes can-

not occur alone. Hence we get that ai = ±1 for at least five out of a1, a3, . . . , a17.

However, by Lemma 3.2 this is possible only if 13 | d. In that case ai = ±1 holds

for at least six coefficients with i odd. Now a simple calculation shows that among

them three are in arithmetic progression. This leads to an equation of the shape

X3 + Y 3 = 2Z3, and Lemma 3.1 applies.

Assume next that 13 | d, but 7 ∤ d. Among the odd coefficients a1, a3, . . . a17

there are at most three multiples of 3, two multiples of 5 and 7 each, and one

multiple of 11 and 17 each. Hence, by 5
c≡ 1 (mod 13) there are at least two

ai

c≡ 1 (mod 13), whence all ai

c≡ 1 (mod 13). As from this list only the prime 5

is a cube modulo 13, we get that at least four out of the above nine odd ai-s are
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equal to ±1. Recall that 7 ∤ d and observe that the cubic residues modulo 7 of a

seven-term arithmetic progression with common difference not divisible by 7 is a

cyclic permutation of one of the sequences

0, 1, 2, 4, 4, 2, 1, 0, 2, 4, 1, 1, 4, 2, 0, 4, 1, 2, 2, 1, 4.

Hence remembering that for four odd i we have ai = ±1, we get that the cubic

residues of a1, a3, . . . , a17 modulo 7 are given by 1, 1, 4, 2, 0, 2, 4, 1, 1, in this order.

In particular, we have exactly one multiple of 7 among them. Further, looking

at the spots where 0, 2 and 4 occur, we deduce that at most two of the ai-s with

odd indices can be multiples of 3. Switching back to modulo 13, this yields that

ai = ±1 for at least five ai-s. However, this contradicts Lemma 3.2.

Finally, assume that 3 | d. In view of what we have proved already, we may

further suppose that gcd(7 · 13, d) = 1. Among the odd coefficients a1, a3, . . . , a17

there are at most two multiples of 5 and 7 each, and one multiple of 11, 13 and 17

each. Hence as 7 ∤ d and 13
c≡ 1 (mod 7), we get that the cubic residues modulo 7

of the coefficients ai with odd i are given by one of the sequences

1, 0, 1, 2, 4, 4, 2, 1, 0, 0, 1, 2, 4, 4, 2, 1, 0, 1, 1, 1, 2, 4, 0, 4, 2, 1, 1.

In view of the places of the values 2 and 4, we see that it is not possible to

distribute the prime divisors 5, 7, 11 over the ai-s with odd indices. This finishes

the case k = 18.

The case k = 20. By the help of the procedures described in the previous section,

in case of gcd(3 · 7 · 13, d) = 1 all solutions to equation (2) can be determined.

Assume now that gcd(3 · 7 · 13, d) > 1.

We start with the case 7 | d. Then among the odd coefficients a1, a3, . . . , a19

there are at most four multiples of 3, two multiples of 5, and one multiple of 11,

13, 17 and 19 each. As 13
c≡ 1 (mod 7), this yields that ai

c≡ 1 (mod 7) for all i.

Hence the primes 3, 5, 11, 17, 19 must occur at least in pairs in the ai-s with odd

indices, which yields that at least five such coefficients are equal to ±1. Thus

Lemma 3.2 gives 13 | d, whence ai

c≡ 1 (mod 13) for all i. Hence we deduce that

the prime 5 may be only a third prime divisor of the ai-s with odd indices, and

so at least seven out of a1, a3, . . . , a19 equal ±1. However, then there are three

such coefficients which form an arithmetic progression. Thus by Lemma 3.1 we

get all solutions in this case.

Assume next that 13 | d. Without loss of generality we may further suppose

that 7 ∤ d. Then among the odd coefficients a1, a3, . . . , a19 there are at most four

multiples of 3, two multiples of 5 and 7 each, and one multiple of 11, 17 and
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19 each. As 5
c≡ 1 (mod 13) this implies ai

c≡ 1 (mod 13) for all i, whence the

primes 3, 7, 11, 17, 19 should occur at least in pairs in the ai-s with odd i. Hence

at least four of these coefficients are equal to ±1. By a similar argument as in

case of k = 18, we get that the cubic residues of a1, a3, . . . , a19 modulo 7 are given

by one of the sequences

1, 0, 1, 2, 4, 4, 2, 1, 0, 1, 1, 1, 4, 2, 0, 2, 4, 1, 1, 4, 4, 1, 1, 4, 2, 0, 2, 4, 1, 1.

In view of the positions of the 0, 2 and 4 values, we get that at most two cor-

responding terms can be divisible by 3 in the first case, which modulo 13 yields

that the number of odd i-s with ai = ±1 is at least five. This is a contradiction

modulo 7. Further, in the last two cases at most three terms can be divisible by

3, and exactly one term is a multiple of 7. This yields modulo 13 that the number

of odd i-s with ai = ±1 is at least five, which is a contradiction modulo 7 again.

Finally, suppose that 3 | d. We may assume that gcd(7 · 13, d) = 1. Then

among the odd coefficients a1, a3, . . . , a19 there are at most two multiples of 5

and 7 each, and one multiple of 11, 13, 17 and 19 each. Hence Lemma 3.2 yields

that exactly four of these coefficients should be
c≡ 1 (mod 13), and exactly one of

them must be a multiple of 13. Further, exactly two other ai-s with odd indices

are multiples of 7, and these ai-s are divisible by none of 11, 13, 17, 19. So in view

of the proof of Lemma 3.2 a simple calculation gives that the cubic residues of

a1, a3, . . . , a19 modulo 13 are given by one of the sequences

0, 2, 4, 4, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 4, 4, 2, 0,

2, 4, 2, 1, 1, 4, 0, 4, 1, 1, 1, 1, 4, 0, 4, 1, 1, 2, 4, 2.

In the upper cases we get that 7 divides two terms with ai

c≡ 2 (mod 13), whence

the power of 7 should be 2 in both cases. However, this implies 72 | 14d, hence

7 | d, a contradiction. As the lower cases are symmetric, we may assume that

the very last possibility occurs. In that case we have 7 | a5 and 7 | a19. We may

assume that 11 | a17, otherwise P (a6a8 . . . a18) ≤ 7 and the statement follows

by induction. Further, we also have 13 | a7, and 17 | a9 and 19 | a15 or vice

versa. Hence either P (a3a8a13) ≤ 2 or P (a4a10a16) ≤ 2, and induction suffices to

complete the case k = 20.

The case k = 24. The procedures described in the previous section suffice to

completely treat the case gcd(3 · 7 · 13, d) = 1. So we may assume that gcd(3 · 7 ·
13, d) > 1 is valid.

Suppose first that 7 | d. Among the odd coefficients a1, a3, . . . , a23 there are

at most four multiples of 3, three multiples of 5, two multiples of 11, and one

multiple of 13, 17, 19 and 23 each. We know that all ai belong to the same cubic
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class modulo 7. As 3
c≡ 4 (mod 7), 5

c≡ 2 (mod 7) and among the coefficients

a1, a3, . . . , a23 there are at most two multiples of 32 and at most one multiple

of 52, we get that these coefficients are all
c≡ 1 (mod 7). This yields that the

primes 3, 5, 11, 17, 19, 23 may occur only at least in pairs in the coefficients with

odd indices. Thus we get that at least five out of a1, a3, . . . , a23 are
c≡ 1 (mod 13).

Hence, by Lemma 3.2 we get that 13 | d and consequently ai

c≡ 1 (mod 13) for

all i. This also shows that the 5-s can be at most third prime divisors of the ai-s

with odd indices. So we deduce that at least eight out of the odd coefficients

a1, a3, . . . , a23 are equal to ±1. However, a simple calculation shows that from

the eight corresponding terms we can always choose three forming an arithmetic

progression. Hence this case follows from Lemma 3.1.

Assume next that 13 | d, but 7 ∤ d. Among the coefficients with odd indices

there are at most four multiples of 3, three multiples of 5, two multiples of 7

and 11 each, and one multiple of 17, 19 and 23 each. Hence, by 5
c≡ 1 (mod 13)

we deduce ai

c≡ 1 (mod 13) for all i. As before, a simple calculation yields that

at least for four of these odd coefficients ai = ±1 hold. Hence looking at the

possible cases modulo 7, one can easily see that we cannot have four multiples

of 3 at the places where 0, 2 and 4 occur as cubic residues modulo 7. Hence in

view of Lemma 3.2 we need to use two 11-s, which yields that 11 | a1 and 11 | a23.

Thus the only possibility for the cubic residues of a1, a3, . . . , a23 modulo 7 is given

by the sequence

2, 1, 0, 1, 2, 4, 4, 2, 1, 0, 1, 2.

However, the positions of the 2-s and 4-s allow to have at most two ai-s with odd

indices which are divisible by 3 but not by 7. Hence switching back to modulo 13,

we get that there are at least five ai-s which are ±1, a contradiction by Lemma 3.2.

Finally, assume that 3 | d, and gcd(7 · 13, d) = 1. Then among a1, a3, . . . , a23

there are at most three multiples of 5, two multiples of 7 and 11 each, and one

multiple of 13, 17, 19 and 23 each. Hence by Lemma 3.2 we get that exactly

four of the coefficients a1, a3, . . . , a23 are
c≡ 1 (mod 13), and another is a multiple

of 13. Further, all the mentioned prime factors (except the 5-s) divide distinct ai-s

with odd indices. Using that at most these coefficients can be divisible by 72 and

112, in view of the proof of Lemma 3.2 we get that the only possibilities for the

cubic residues of these coefficients modulo 13 are given by one of the sequences

2, 2, 4, 2, 1, 1, 4, 0, 4, 1, 1, 2, 2, 1, 1, 4, 0, 4, 1, 1, 2, 4, 2, 2.

By symmetry we may assume the first possibility. Then we have 7 | a3, 11 | a1,

13 | a15, and 17, 19, 23 divide a5, a7, a13 in some order. Hence P (a4a9a14) ≤ 2, or

5 | n + 4d whence P (a16a18a20) ≤ 2. In both cases we apply induction.
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The case k = 30. By the help of the procedures described in the previous section,

the case gcd(3·7·13, d) = 1 can be excluded. Assume now that gcd(3·7·13, d) > 1.

We start with the case 7 | d. Then among the odd coefficients a1, a3, . . . , a29

there are at most five multiples of 3, three multiples of 5, two multiples of 11 and

13 each, and one multiple of 17, 19, 23 and 29 each. As 13
c≡ 29

c≡ 1 (mod 7), this

yields that ai

c≡ 1 (mod 7) for all i. Hence the other primes must occur at least in

pairs in the ai-s with odd indices, which yields that at least six such coefficients

are equal to ±1. Further, we get that the number of such coefficients
c≡ 0, 1

(mod 13) is at least eight. However, by Lemma 3.2 this is possible only if 13 | d,

whence ai

c≡ 1 (mod 13) for all i. Then 5 and 29 can be at most third prime

divisors of the coefficients ai-s with odd i-s. So a simple calculation gives that at

least ten out of the odd coefficients a1, a3, . . . , a29 are equal to ±1. Hence there

are three such coefficients in arithmetic progression, and the statement follows

from Lemma 3.1.

Assume next that 13 | d, but 7 ∤ d. Then among the odd coefficients

a1, a3, . . . , a29 there are at most five multiples of 3, three multiples of 5 and 7

each, two multiples of 11, and one multiple of 17, 19, 23 and 29 each. From

this we get that ai

c≡ 1 (mod 13) for all i. Hence the primes different from 5

should occur at least in pairs. We get that at least five out of the coefficients

a1, a3, . . . , a29 are equal to ±1. Thus modulo 7 we get that it is impossible to

have three terms divisible by 7. Then it follows modulo 13 that at least six ai-s

with odd indices are equal to ±1. However, this is possible only if 7 | d, which is

a contradiction.

Finally, assume that 3 | d, but gcd(7 · 13, d) = 1. Then among the odd

coefficients a1, a3, . . . , a29 there are at most three multiples of 5 and 7 each, two

multiples of 11 and 13 each, and one multiple of 17, 19, 23 and 29 each. Further,

modulo 7 we get that all primes 5, 11, 17, 19, 23 divide distinct ai-s with odd

indices, and the number of odd i-s with ai

c≡ 0, 1 (mod 7) is seven. However,

checking all possibilities modulo 7, we get a contradiction. This completes the

proof of Theorem 2.2. �

Proof of Theorem 2.1. Obviously, for k < 32 the statement is an im-

mediate consequence of Theorem 2.2. Further, observe that b = 1 implies that

for any k with 31 < k < 39, one can find j with 0 ≤ j ≤ k − 30 such that

P (ajaj+1 . . . aj+29) ≤ 29. Hence the statement follows from Theorem 2.2. �
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[22] O. Rigge, Über ein diophantisches Problem, 9th Congress Math. Scand., Helsingfors 1938,
Mercator 1939, 155–160.

[23] J. W. Sander, Rational points on a class of superelliptic curves, J. London Math. Soc. 59

(1999), 422–434.



232 L. Hajdu, Sz. Tengely and R. Tijdeman : Cubes in products of terms. . .

[24] N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta
Arith. 82 (1997), 147–172.

[25] N. Saradha, Squares in products with terms in an arithmetic progression, Acta Arith. 86

(1998), 27–43.

[26] N. Saradha and T. N. Shorey, Almost perfect powers in arithmetic progression, Acta
Arith. 99 (2001), 363–388.

[27] N. Saradha and T. N Shorey, Almost squares in arithmetic progression, Compositio
Math. 138 (2003), 73–111.

[28] N. Saradha and T. N. Shorey, Almost squares and factorisations in consecutive integers,
Compositio Math. 138 (2003), 113–124.

[29] N. Saradha and T. N. Shorey, Contributions towards a conjecture of Erdős on perfect
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