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Abstract. In this paper, the (ψ, γ)-stability of the Cauchy functional equation is

investigated on some noncommutative groups. It is shown that if γ is invariant with re-

spect to inner automorphisms of a step-two solvable group G, then the Cauchy equation

f(xy) = f(x)+f(y) is (ψ, γ)-stable on G. If ψ satisfies the condition limn→∞
ψ(n2)

n
= 0,

then the Cauchy equation is (ψ, γ)-stable on step-two solvable groups and also on step-

three nilpotent groups.

1. Introduction

In 1940, S. M. Ulam [17] posed the following fundamental problem. Given
a group G1, a metric group (G2, d) and a positive number ε, does there exist a
number δ > 0 such that if f : G1 → G2 satisfies d(f(xy), f(x)f(y)) < δ for all
x, y ∈ G1, then a homomorphism T : G1 → G2 exists with d(f(x), T (x)) < ε for
all x, y ∈ G1? See S. M. Ulam [17] for a discussion of such problems, as well
as D. H. Hyers [8], [9], D. H. Hyers and S. M. Ulam [11], [12], Aoki [2],
Th. M. Rassias [15], [16], G. L. Forti [7], and J. Aczél and J. Dhombres

[1]. The first affirmative answer was given by D. H. Hyers [8] in 1941.
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Theorem 1.1 (Hyers [8]). Let E1 and E2 be Banach spaces. If the function

f : E1 → E2 satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ < ε (1.1)

for some ε > 0 and for all x, y ∈ E1, then there exists a unique function T : E1 →
E2 such that

T (x + y)− T (x)− T (y) = 0 for all dx, y ∈ E1 (1.2)

and

‖f(x)− T (x)‖ < ε for all x ∈ E1. (1.3)

Aoki [2] proved a generalized version of Hyers’ result which permitted the
Cauchy difference to become unbounded. That is, he assumed that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) for all x, y ∈ E1,

where ε and p are constants satisfying ε > 0 and 0 ≤ p < 1. By making use of the
direct method of Hyers [8], he proved in this case too, that there is an additive
function T from E1 into E2 given by the formula

T (x) = lim
n→∞

1
2n

f(2nx)

such that
‖T (x)− f(x)‖ ≤ kε‖x‖p,

where k depends on p as well as ε. Independently, Th. M. Rassias [15] in
1978 rediscovered the above result and proved that the mapping T is not only
additive, under certain conditions, it is also linear. Rassias’s paper [15] pro-
vided an impetus for a lot of activities in the development of what we now call
Hyers–Ulam–Rassias stability theory of functional equations. On an arbitrary
group G, the Cauchy functional equation f(x + y) = f(x) + f(y) takes the form
f(xy) = f(x)+f(y) for all x, y ∈ G. The first paper to extend Rassias’s result to a
class nonabelian groups and semigroups was [5]. In [5] among other results, it was
proven that the Cauchy functional equation f(xy) = f(x) + f(y) is (ψ, γ)-stable
on any abelian group as well as any metabelian (step-two nilpotent) group. It was
also shown that any group A can be embedded into a group G, where the Cauchy
functional equation is (ψ, γ)-stable. This paper is a continuation of the study of
(ψ, γ)-stability initiated in [5]. In this paper, we study the (ψ, γ)-stability of the
Cauchy functional equation on step-two solvable groups and step-three nilpotent
groups.
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2. The space of (ψ, γ)-pseudoadditive mappings

In this section, we recall some important notions from [5] that we need for this
paper. We will denote the set of real numbers by R and the set of natural numbers
by N. Let R+

0 = [0,∞) be the set of non-negative numbers and R+ = (0,∞)
be the set of positive numbers. Let S be an arbitrary semigroup and G be a
group. Throughout this paper, the function ψ : R+

0 → R+ is considered to be an
increasing function satisfying the following three additional conditions:

(1) ψ(t1 t2) ≤ ψ(t1)ψ(t2) for all t1, t2 ∈ R+
0 ,

(2) ψ(t1 + t2) ≤ ψ(t1) + ψ(t2) for all t1, t2 ∈ R+
0 , and

(3) limn→∞
ψ(n)

n = 0, n ∈ N.

Throughout this paper, by γ we will mean a function γ : S → R+
0 satisfying the

inequality

(1) γ(xy) ≤ γ(x) + γ(y) for all x, y ∈ S.

It is obvious that for any x ∈ S and for any m ∈ N the inequality

γ(xm) ≤ mγ(x) (2.1)

holds.

Definition 2.1. Let S be an arbitrary semigroup and E a Banach space.
Further, let ψ : R+

0 → R+ and γ : S → R+
0 be the functions as described above.

The mapping f : S → E is said to be a (ψ, γ)-quasiadditive mapping if there
exists a θ ∈ R+ such that

‖f(xy)− f(x)− f(y)‖ ≤ θ[ψ(γ(x)) + ψ(γ(y))] ∀x, y ∈ S (2.2)

holds.

It is clear that the set of all (ψ, γ)-quasiadditive mappings from S to E

is a real linear space relative to the usual operations. Let us denote it by
KAMψ,γ(S;E).

Definition 2.2. Let ϕ : S → E be a mapping from the semigroup S to a
Banach space E. The mapping ϕ is said to be a (ψ, γ)-pseudoadditive mapping
if it is a (ψ, γ)-quasiadditive mapping satisfying ϕ(xn) = nϕ(x) for all x ∈ S and
for each n ∈ N.

We denote the space of all (ψ, γ)-pseudoadditive mappings from a semigroup
S to a Banach space E by PAMψ,γ(S; E). By HOM(S; E) we mean the set of
all homomorphisms from S to E. By Bψ,γ(S; E) we denote the linear space of
functions from S to E over reals satisfying the relation:

‖f(x)‖ ≤ cψ(γ(x)) for some c > 0 and for all x ∈ S.
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3. Stability

In this section, we prove some general results related to the (ψ, γ)-stability
of the Cauchy functional equation. In [5] the following theorem was established.

Theorem 3.1. The linear space KAMψ,γ(S; E) is a direct sum of the sub-

spaces PAMψ,γ(S;E) and Bψ,γ(S;E), that is

KAMψ,γ(S; E) = PAMψ,γ(S;E)⊕Bψ,γ(S; E).

Definition 3.2. The Cauchy functional equation

f(xy) = f(x) + f(y), ∀x, y ∈ S (3.1)

is said to be (ψ, γ)-stable for the pair (S;E) if for any f : S → E satisfying the
functional inequality

‖f(xy)− f(x)− f(y)‖ ≤ θ[ψ(γ(x)) + ψ(γ(y))] ∀x, y ∈ S (3.2)

there is a solution g : S → E of functional equation (3.1) such that the function
f(x)− g(x) belongs to the space Bψ,γ(S; E).

It was shown in [5] that the equation (3.1) is (ψ, γ)-stable for the pair (S; E)
if and only if PAMψ,γ(S;E) = HOM(S;E).

The following theorem and its proof are generalizations of a similar result
proved in [6].

Theorem 3.3. Let E1 and E2 be Banach spaces over reals. Then the equa-

tion (3.1) is (ψ, γ)-stable for the pair (S, E1) if and only if it is (ψ, γ)-stable for

the pair (S, E2).

Proof. Let E be a Banach space over reals and R be the set of reals. Let
the equation (3.1) be stable for the pair (S,E). Suppose (3.1) is not stable for
the pair (S,R). Then there is a nontrivial (ψ, γ)-pseudocharacter f on S. So, for
some θ ≥ 0 we have

‖f(xy)− f(x)− f(y)‖ ≤ θ[ψ(γ(x)) + ψ(γ(y))] ∀x, y ∈ S.

Now let e ∈ E and ‖e‖ = 1. Consider the function ϕ : S → E given by the
formula ϕ(x) = f(x) · e. It is clear that ϕ is a nontrivial (ψ, γ)-pseudoadditive
E-valued function, and we obtain a contradiction.
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Now suppose that the equation (3.1) is stable for the pair (S,R), that is,
PAMψ,γ(S;R) = HOM(S;R). Denote by E∗ the space of linear bounded func-
tionals on E endowed by functional norm topology. It is clear that for any
ϕ ∈ PAMψ,γ(S; E) and any λ ∈ E∗ the function λ ◦ ϕ belongs to the space
PAMψ,γ(S;R). Indeed, for some nonnegative θ and any x, y ∈ S we have
‖ϕ(xy)− ϕ(x)− ϕ(y)‖ ≤ θ[ψ(γ(x)) + ψ(γ(y))]. Hence

|λ ◦ ϕ(xy)− λ ◦ ϕ(x)− λ ◦ ϕ(y)| = |λ(ϕ(xy)− ϕ(x)− ϕ(y))|
≤ ‖λ‖ (θ[ψ(γ(x)) + ψ(γ(y))]) = ‖λ‖θ[ψ(γ(x)) + ψ(γ(y))].

Obviously, λ ◦ ϕ(xn) = nλ ◦ ϕ(x) for any x ∈ S and for any n ∈ N. Hence
the function λ ◦ ϕ belongs to the space PAMψ,γ(S;R). Let f : S → E be a
nontrivial (ψ, γ)-pseudoadditive mapping. Then there are x, y ∈ S such that
f(xy) − f(x) − f(y) 6= 0. Hahn–Banach Theorem implies that there is a ` ∈ E∗

such that `(f(xy) − f(x) − f(y)) 6= 0, and we see that ` ◦ f is a nontrivial
(ψ, γ)-pseudoadditive real-valued function on S. This contradiction proves the
theorem. ¤

In view of Theorem 3.3, it is not important which Banach space is used on
the range. Thus one may consider the (ψ, γ)-stability of the functional equa-
tion (3.1) on the pair (S,R). Let us simplify the following notations: In the
case E = R the spaces KAMψ,γ(S;R), PAMψ,γ(S;R), and HOM(S;R) will be
denoted by KXψ,γ(S), PXψ,γ(S), X(S), respectively. Further, we will call a
(ψ, γ)-additive map a (ψ, γ)-quasicharacter, and a (ψ, γ)-pseudoadditive map a
(ψ, γ)-pseudocharacter. We also will use the following properties of the (ψ, γ)-
pseudocharacter

(1) f(xy) = f(yx) for any x, y ∈ S,

(2) f(ab) = f(a) + f(b), if ab = ba

established in [5]. From the first property it follows that if S is a group, then
for any x, y ∈ S, the relation f(y−1xy) = f(x) holds. This implies that every
(ψ, γ)-pseudocharacter f is invariant under inner automorphisms of group S. As
usually by pseudocharacter we mean a real-valued function f : S → R satisfying
conditions:

(2) the set {f(xy)− f(x)− f(y) | ∀x, y ∈ S} is bounded, and

(2) f(xn) = nf(x) for any x ∈ S and any n ∈ N.

The set of pseudocharacters of a semigroup S will be denoted by PX(S). It is
clear that if γ is a constant function then PXψ,γ(S) = PX(S).

Lemma 3.4. Let the group G be the union of its subgroups, G = ∪α∈IGα,

such that for any x, y ∈ G there is α ∈ I such that x, y ∈ Gα. Suppose that the



72 Valerĭı A. Făıziev and Prasanna K. Sahoo

equation (3.1) is (ψ, γ)-stable for any Gα. Then the equation (3.1) is (ψ, γ)-stable

on G.

Proof. Let f ∈ PXψ,γ(G). Then for some θ > 0 and for any x, y ∈ G we
have the inequality

|f(xy)− f(x)− f(y)| ≤ θ[ψ(γ(x))− ψ(γ(x))].

For any x, y ∈ G there is an α such that x, y ∈ Gα. The equation (3.1) is stable
on Gα. Therefore f(xy) = f(x) + f(y). It means that (3.1) is stable on G, and
the proof of the lemma is now complete. ¤

In [5], it was shown that if G is a group and f ∈ PAMψ,γ(G; E), then (i)
f(e) = 0, and (ii) f(x−1) = −f(x) for any x ∈ G.

Now for any group G we introduce the following function γ. Let G′ be com-
mutator subgroup of G and g ∈ G′. Then g can be represented as a product
g = c1c2 . . . ck of commutators ci. By commutator length |g| of g we mean the
minimum number of commutators we need to represent g as a product of com-
mutators. For unit element e we set |e| = 0. Suppose G = G′. Then we define

γ(g) = |g|. (3.3)

We define γ(G) = sup{γ(g) | g ∈ G}. Therefore, γ(G) is a nonnegative integer
or +∞.

Theorem 3.5. Let the group G be the union of its subgroups, G = ∪α∈IGα,

such that for any x, y ∈ G there is an α ∈ I such that x, y ∈ Gα. Suppose that

G = G′, and that for any α there is β such that Gα ⊂ G′β . Let the function γ

be defined by (3.3). Assume that γ(G′α) < ∞ for any α ∈ I. Then the equation

(3.1) is (ψ, γ)-stable on G.

Proof. Since G = G′ = ∪α∈IGα = ∪α∈IG
′
α, by Lemma 3.4 it is necessary

and sufficient to show that (3.1) is (ψ, γ)-stable on G′α for any α ∈ I.
Let γ(G′α) = kα ∈ N. Then for any x ∈ G′α we have γ(x) ≤ kα and

ψ(γ(x)) ≤ ψ(kα). Therefore if f ∈ PXψ,γ(G′α), then

|f(xy)− f(x)− f(y)| ≤ θ[ψ(γ(x)) + ψ(γ(y))], x, y ∈ G′α,

which yields
|f(xy)− f(x)− f(y)| ≤ 2θψ(kα), x, y ∈ G′α.
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From the last relation it follows that f ∈ PX(G′α). Consider f on G′α. Let
a, b ∈ Gα and w = a−1b−1ab their commutator. Let Gα ⊆ G′β for some β ∈ I.
Then we have a, b, w ∈ G′β and

|f(a−1b−1ab)− f(a−1b−1)− f(ab)| ≤ 2θψ(kβ),
which is

|f(a−1b−1ab)− f((ba)−1)− f(ab)| ≤ 2θψ(kβ).

Since f(x−1) = −f(x) (see [5], Lemma 2.8), we have

|f(a−1b−1ab) + f(ba)− f(ab)| ≤ 2θψ(kβ),

which simplifies to
|f(a−1b−1ab)| ≤ 2θψ(kβ).

Thus f is uniformly bounded on the set of commutators {[a, b] | a, b ∈ Gα}.
Now let g = w1w2 . . . wkα , where wi is a commutator for i = 1, . . . , kα. Then
|f(w1w2 . . . wkα)| ≤ 2kαθψ(kβ). Thus f is a bounded function on G′α. Now from
the relation f(xn) = nf(x), ∀x ∈ G′α, ∀n ∈ N it follows that f ≡ 0 on G′α. But
it is known that if a pseudocharacter is zero on commutator subgroup of a group
B then it is an additive character of B (see [4]). Therefore f is a character of Gα

and f(xy) = f(x) + f(y). This completes the proof of the theorem. ¤

4. Stability on step-two solvable groups

Let [x, y] denotes commutator of two group elements x and y, that is [x, y] =
x−1y−1xy. A group G is said to be step-two solvable group if for any x, y, u,
v in G we have the equality [[x, y], [u, v]] = e, where e is the unit element of G

(see [13]). It is obvious that any abelian group is a step-two solvable group. Any
extension of an abelian group by another abelian group is a step-two solvable
group.

Let F = F (X) be a free group of an arbitrary rank with the set of free
generators X. Then a subgroup of F generated by all elements of the form
[[x, y], [u, v]], where x, y, u, v ∈ F is a normal subgroup of F . Let us denote it
by F ′′. Then quotient group F [2](X) = F/F ′′ is a free step-two solvable group
with the free set of generators X. Then for any step-two solvable group H any
mapping τ : X → H can be extended as an homomorphism of F [2] onto the
subgroup of H generated by the set τ(X).
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Let G be a free step-two solvable group with two generators a and b. It is
well known (see [3]) that G′ is a free abelian group with the set of free generators:
wi,j = a−ib−j [a, b]bjai for i, j ∈ Z. When there is no confusion, we will write wi,j

simply as wij . Let w = w00.

Lemma 4.1. For any i, j ∈ Z, we have the following relations:

(1) a−kwi,ja
k = wi+k,j ,

(2) b−kw0,jb
k = w0,j+k.

Proof. The proof is obvious. ¤

Lemma 4.2. For any k ∈ N, we have

a−1b−kabk = w00w01w02 . . . w0(k−1).

Proof. We prove this lemma by induction on k. If k = 1, then we have
a−1b−kabk = w00. Suppose that for any k ≤ n lemma has been established and
let us establish it for n + 1. Since

a−1b−n−1abn+1 = a−1b−1b−nabnb = a−1b−1aa−1b−nabnb

= a−1b−1a[a, bn]b = a−1b−1abb−1[a, bn]b

= [a, b]b−1[a, bn]b = w00b
−1w00w01 . . . w0n−1b

(by induction hypothesis)

= w00w01w02 . . . w0n (by Lemma 4.1 (2))

the proof of the lemma is now complete. ¤

In the last two sections, as usual, for x, y ∈ G, the conjugate of x by y will
be denoted by xy and hence xy = y−1xy.

Theorem 4.3. Let D be an arbitrary step-two solvable group. Suppose that

function γ is invariant with respect to inner automorphism of group D. Then the

equation (3.1) is (ψ, γ)-stable on D.

Proof. First let D = G be a step-two solvable free group with two gener-
ators a and b. Let f ∈ PXψ,γ(G). Thus for some θ > 0, the map f : G → R
satisfies the relation

|f(xy)− f(x)− f(y)| ≤ θ[ψ(γ(x)) + ψ(γ(y))], x, y ∈ G. (4.1)

We should show that f ∈ X(G). Since G is a free step-two solvable group there is
an additive character ξ of G such that ξ(a) = f(a) and ξ(b) = f(b). Then function
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φ = f − ξ is an element of PXψ,γ(G) such that φ(a) = φ(b) = 0. It is clear that
f ∈ X(G) if and only if φ ∈ X(G). So, from the beginning we can assume that
f(a) = f(b) = 0. Then for any k ∈ N, letting x = a−1 and y = b−kabk in the last
inequality, we obtain

|f(a−1b−kabk)− f(a−1)− f(b−kabk)| ≤ θ[ψ(γ(a−1) + ψ(γ(b−kabk))]

and using relations f(a) = 0 and γ(b−kabk) = γ(a) we get

|f(a−1b−kabk)| ≤ θ[ψ(γ(a−1) + ψ(γ(a))], k ∈ N. (4.2)

Taking into account that f
∣∣
G′ is an additive character (since G′ is commutative)

invariant with respect inner automorphisms of G we get

f(a−1b−kabk) = f(w00w01 . . . w0k−1) = kf(w00). (4.3)

Now from (4.2) and (4.3) we obtain

|kf(w00)| ≤ θ[ψ(γ(a−1) + ψ(γ(a))], k ∈ N

which implies f(w00) = 0. Therefore, f(wij) = 0 for any i, j ∈ Z and f
∣∣
G′ ≡ 0.

Let A and B be subgroup of G generated by a and b respectively. Let B be the
subgroup of G generated by B and G′. Then B is the semidirect product of B

and G′, that is B = B oG′. Let us verify that f
∣∣
B
≡ 0.

For any n ∈ N, any c ∈ B and any v ∈ G′ we have

(cv)n = cnvcn−1
vcn−2

. . . vcv. (4.4)

Letting x = cn and y = vcn−1
vcn−2

. . . vcv in (4.1), we have

|f(cnvcn−1
vcn−2

. . . vcv)− f(cn)− f(vcn−1
vcn−2

. . . vcv)|
≤ θ

[
ψ(γ(cn) + ψ(γ(vcn−1

vcn−2
. . . vcv))

]

for each n ∈ N. Hence

|f(cnvcn−1
vcn−2

. . . vcv)| ≤ θ
[
ψ(γ(cn)) + ψ(γ(vcn−1

vcn−2
. . . vcv))

]
.

Using the subadditivity of γ, we have

|f(cnvcn−1
vcn−2

. . . vcv)| ≤ θ

[
ψ(nγ(c)) + ψ

( n−1∑

k=0

γ
(
vck))]

.
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From the last inequality and the fact that γ is invariant with respect to inner
automorphisms, we obtain

|f(cnvcn−1
vcn−2

. . . vcv)| ≤ θψ(n)[ψ(γ(c)) + ψ(γ(v))]

The last relation and (4.4) imply

|f((cv)n)| ≤ θψ(n)[ψ(γ(c)) + ψ(γ(v))].

Since f(xn) = nf(x), we obtain

n|f(cv)| ≤ θψ(n)[ψ(γ(c)) + ψ(γ(v))]

and therefore

|f(cv)| ≤ θ
ψ(n)

n
[ψ(γ(c)) + ψ(γ(v))]

for each n ∈ N. Letting n → ∞ in the last inequality and using the fact that
limn→∞

ψ(n)
n = 0, we obtain f(cv) = 0 and therefore f

∣∣
B
≡ 0.

Now consider group G. This group is a semidirect product of A and B, that
is G = AoB. Every element g of G can be represented in the form g = du, where
d ∈ A and u ∈ B. Arguing as above we can show that f(g) = 0. Therefore f ≡ 0
on the group G. It means that equation (3.1) is (ψ, γ)-stable on G.

Now suppose that H be an arbitrary step-two solvable group with two gen-
erators α and β. The group G is a free step-two solvable with two generators
a and b. Then there is an epimorphism τ : G → H such that τ(a) = α and
τ(b) = β. Define γ∗ by the rule γ∗(x) = γ(τ(x)) for any x ∈ G. It is clear that
γ∗ satisfies conditions:

γ∗(xy) ≤ γ∗(x) + γ∗(y) and γ∗(x−1yx) = γ∗(y)

for any x, y ∈ G.
Let f ∈ PXψ,γ(H). Then for some θ > 0, the map f satisfies

|f(xy)− f(x)− f(y)| ≤ θ[ψ(γ(x)) + ψ(γ(y))], ∀x, y ∈ H.

Let us verify that f ∈ X(H). Suppose that there are c, d ∈ H such that f(cd)−
f(c)−f(d) 6= 0. Then function f∗ defined by the rule f∗(x) = f(τ(x)) belongs to
the space PXψ,γ∗(G). But for elements u and v such that τ(u) = c and τ(v) = d

we get f∗(uv) − f∗(u) − f∗(v) = f(cd) − f(c) − f(d) 6= 0. This contradicts the
relation PXψ,γ∗(G) = X(G). Therefore, f ∈ X(H). So, every step-two solvable
group generated by two generators has the (ψ, γ)-stability property.
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Now let D be an arbitrary step-two solvable group. Then D = ∪x,yD(x, y),
where D(x, y) is a subgroup generated by elements x, y ∈ D. Equation (3.1) is
(ψ, γ)-stable on any D(x, y). Therefore by Lemma 3.4 equation (3.1) is (ψ, γ)-
stable on D. This completes the proof of the theorem. ¤

Theorem 4.4. Let D be an arbitrary step-two solvable group. Suppose

the function ψ satisfies an additional condition: limn→∞
ψ(n2)

n = 0. Then the

equation (3.1) is (ψ, γ)-stable on D.

Proof. As it was done in the previous theorem it is enough to prove this
theorem for the case D = G, where G is a free step-two solvable group with two
generators a and b. Let f ∈ PXψ,γ(G). Then for some θ > 0, the function
f : G → R satisfies the relation

|f(xy)− f(x)− f(y)| ≤ θ[ψ(γ(x)) + ψ(γ(x))], x, y ∈ G.

Let us assume that f(a) = f(b) = 0. Then for any k ∈ N we have

∣∣f(a−1b−kabk)− f(a−1)− f(b−kabk)
∣∣ ≤ θ

[
ψ(γ(a−1)) + ψ(γ(b−kabk))

]
.

From the last inequality, we see that

∣∣f(a−1b−kabk)
∣∣ ≤ θ

[
ψ(γ(a−1)) + ψ(γ(a)) + ψ(γ(b−k)) + ψ(γ(bk))

]

which is

∣∣f(a−1b−kabk)
∣∣ ≤ θ

[
ψ(γ(a−1)) + ψ(γ(a)) + ψ(kγ(b−1)) + ψ(kγ(b))

]
.

Since ψ(t1t2) ≤ ψ(t1)ψ(t2) for all t1, t2 ∈ R+
0 , we have

∣∣f(a−1b−kabk)
∣∣ ≤ θ

[
ψ(γ(a−1)) + ψ(γ(a))] + θψ(k)[ψ(γ(b−1)) + ψ(γ(b))

]
.

Taking into account that f
∣∣
G′ is an additive character invariant with respect inner

automorphisms of G we get

f(a−1b−kabk) = f(w00w01 . . . w0k−1) = kf(w00).

Therefore, for each k ∈ N, we have

∣∣kf(w00)
∣∣ ≤ θ

[
ψ(γ(a−1)) + ψ(γ(a))

]
+ θψ(k)

[
ψ(γ(b−1)) + ψ(γ(b))

]
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and hence

|f(w00)| ≤ θ

k

[
ψ(γ(a−1) + ψ(γ(a))

]
+ θ

ψ(k)
k

[
ψ(γ(b−1)) + ψ(γ(b))

]
.

The last inequality implies that f(w00) = 0. Therefore, f(wij) = 0 for any i, j ∈ Z
and f

∣∣
G′ ≡ 0.

Let B be a subgroup of G generated by B and G′. Then B is a semidirect
product of B and G′, that is B = B o G′. Let us verify that f

∣∣
B
≡ 0. For any

c ∈ B and any v ∈ G′ we have

(cv)n = cnvcn−1
vcn−2

. . . vcv (4.5)
and for each n ∈ N

∣∣f(cnvcn−1
vcn−2

. . . vcv)− f(cn)− f(vcn−1
vcn−2

. . . vcv)
∣∣

≤ θ
[
ψ(γ(cn) + ψ(γ(vcn−1

vcn−2
. . . vcv))

]
.

Hence
∣∣f(cnvcn−1

vcn−2
. . . vcv)

∣∣ ≤ θ
[
ψ(γ(cn)) + ψ(γ(vcn−1

vcn−2
. . . vcv))

]
.

Simplifying the above inequality, we obtain

∣∣f(cnvcn−1
vcn−2

. . . vcv)
∣∣ ≤ θ

[
ψ(nγ(c)) + ψ

(
n−1∑

k=0

γ
(
vck)

)]
.

Using the fact that vck

= c−kvck and the last inequality, we get

∣∣f(cnvcn−1
vcn−2

. . . vcv)
∣∣ ≤ θ

[
ψ(nγ(c)) + ψ

(
n−1∑

k=0

(
γ(c−k) + γ(v) + γ(ck)

)
)]

which implies

|f(cnvcn−1
vcn−2

. . . vcv)| ≤ θ

[
ψ(nγ(c)) + ψ(nγ(v)) + ψ

(
n−1∑

k=0

(
γ(c−k) + γ(ck)

)
)]

.

Further, simplifying the last inequality, we have

|f(cnvcn−1
vcn−2

. . . vcv)|

≤ θ

[
ψ(nγ(c)) + ψ(nγ(v)) + ψ

(
n−1∑

k=0

(
k

[
γ(c−1) + γ(c)

])
)]

.
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|f(cnvcn−1
vcn−2

. . . vcv)|

≤ θ

[
ψ(nγ(c)) + ψ(nγ(v)) + ψ(n(n− 1))ψ

(
γ(c−1) + γ(c))

2

)]
.

Therefore

|f((cv)n)| ≤ θ

[
ψ(nγ(c)) + ψ(nγ(v)) + ψ(n(n− 1))ψ

(
γ(c−1) + γ(c))

2

)]
.

Using the fact f(xn) = nf(x) and simplifying the resulting expression, we obtain

|f(cv)| ≤ θ
ψ(n)

n
[ψ(γ(c)) + ψ(γ(v)] + θ

ψ(n(n− 1))
n

ψ

(
γ(c−1) + γ(c))

2

)
.

Since limn→∞
ψ(n)

n =0 and limn→∞
ψ(n2)

n = 0, the last inequality implies f(cv)= 0
and hence f

∣∣
B
≡ 0 . Now consider group G. This group is a semidirect product

G = AoB. Every element g of G can be represented in the form g = du, where
d ∈ A and u ∈ B. Arguing as above we can show that f(g) = 0. Therefore f ≡ 0
on the group G. It means that the equation (3.1) is (ψ, γ)-stable on G.

Now suppose that H is an arbitrary step-two solvable group with two gen-
erators α and β. If G is a free step-two solvable group with two generators a

and b, then there is an epimorphism τ : G → H such that τ(a) = α and τ(b) = β.
Define γ∗ by the rule γ∗(x) = γ(τ(x)) for any x ∈ G. It is clear that γ∗ satisfies
conditions:

γ∗(xy) ≤ γ∗(x) + γ∗(y) and γ∗(x−1yx) = γ∗(y)

for any x, y ∈ G.
Let f ∈ PXψ,γ(H). Then, for some θ > 0, the map f satisfies

|f(xy)− f(x)− f(y)| ≤ θ[ψ(γ(x)) + ψ(γ(y))], x, y ∈ H.

Let us verify that f ∈ X(H). Suppose that there are c, d ∈ H such that f(cd)−
f(c)−f(d) 6= 0. Then function f∗ defined by the rule f∗(x) = f(τ(x)) belongs to
the space PXψ,γ∗(G). But for elements u and v such that τ(u) = c and τ(v) = d

we get f∗(uv)− f∗(u)− f∗(v) = f(cd)− f(c)− f(d) 6= 0. This is a contradiction
to the fact that PXψ,γ∗(G) = X(G). Therefore f ∈ X(H). So every step-two
solvable group generated by two elements has the (ψ, γ)-stability property.

Now let D be an arbitrary step-two solvable group. Then D = ∪x,yD(x, y),
where D(x, y) is a subgroup generated by elements x, y ∈ D. The equation (3.1)
is (ψ, γ)-stable on any D(x, y). Therefore by Lemma 3.4 the equation (3.1) is
(ψ, γ)-stable on D. Now the proof is completed. ¤

Remark 4.5. The function ψ(t) = tq + 1 with 0 < q < 1/2 satisfies condition
limn→∞

ψ(n2)
n = 0.
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5. Stability on step-three nilpotent groups

A group G is said to be a step-two nilpotent (or metabelian) group if for any
x, y, u ∈ G we have equality [[x, y], u] = e, where e is the unit element of G. A
group G with unit element e is said to be a step-three nilpotent group if for any
x, y, u, v ∈ G the equality [[[x, y], u], v] = e holds (see [13]). It is obvious that any
abelian group is a step-two nilpotent group, and any step-two nilpotent group is
a step-three nilpotent group.

Let K be a commutative field. The set







1 x1 y1 z

0 1 x2 y2

0 0 1 x3

0 0 0 1




∣∣∣∣∣ xi, yi, z ∈ K, i = 1, 2





of all 4× 4 upper triangular matrices forms a group under matrix multiplication.
This group is denoted by UT (4,K), and any subgroup of this group is a step-three
nilpotent group. The group UT (4,K) is also known as Heisenberg group H4(K).

Let F = F (X) be a free group an arbitrary rank with the set of free gen-
erators X. Denote by [[[F, F ], F ], F ] the normal subgroup of F generated by all
elements of the form [[[x, y], u], v], where x, y, u, v ∈ F . Then the quotient group
F (3)(X) = F/[[[F, F ], F ], F ] is a free step-three nilpotent group with a free set of
generators X. It means that for any step-three nilpotent group H any mapping
τ : X → H can be extended to a homomorphism of F (3) onto the subgroup of H

generated by the set τ(X).
Let G be a free step-three nilpotent group with two free generators a and b.

It is well known that G has the following presentation (see [14]):

G =
〈
a, b | b−1ab = ac, b−1cb = cd, a−1ca = ch,

ad = da, bd = db, ah = ha, bh = hb
〉
. (5.1)

From (5.1) it follows that for any integers n,m the following relations

a−ncman = cmhnm, (5.2)

b−ncmbn = cmdnm, (5.3)

hold. Suppose that ϕ ∈ PXψ,γ(G).

Theorem 5.1. Suppose the function ψ satisfies limn→∞
ψ(n2)

n = 0. Then

for any step-three nilpotent group G the equation (3.1) is (ψ, γ)-stable.
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Proof. As we know we can consider only the case when G is free step-three
nilpotent group with two generators a, b. Let ϕ ∈ PXψ,γ(G). We must show that
ϕ ∈ X(G). We can assume that ϕ(a) = ϕ(b) = 0.

Then from (5.2), we get

ϕ(a−ncman) = ϕ(cmhnm). (5.4)

From Theorem 2.11 from [5] it follows that ϕ(u−1vu) = ϕ(v) for any u and v.
Now taking into account this relation, Theorem 2.10 from [5] and (5.4) we get

ϕ(cm) = ϕ(cm) + ϕ(hnm).

So ϕ(h) = 0. Similarly, we get ϕ(d) = 0. From presentation (5.3) it follows
that b−nabn = acnd

n(n−1)
2 , for any n ∈ N. Therefore, ϕ

(
acnd

n(n−1)
2

)
= 0 and

ϕ(acn) = 0. Thus from

|ϕ(acn)− ϕ(a)− ϕ(cn)| ≤ θ[ψ(γ(a)) + ψ(γ(cn))]

we have
|ϕ(cn)| ≤ θ[ψ(γ(a)) + ψ(γ(cn))].

Since ϕ ∈ PXψ,γ(G), we have

n|ϕ(c)| ≤ θ[ψ(γ(a)) + ψ(nγ(c))]

and hence

|ϕ(c)| ≤ θ

[
ψ(γ(a))

n
+

ψ(n)
n

ψ(γ(c))
]

.

The last inequality implies that ϕ(c) = 0. So, we have ϕ(a) = ϕ(b) = ϕ(c) =
ϕ(d) = ϕ(h) = 0.

Now let us show that ϕ ≡ 0 on G. First note that ϕ is a function on factor
group G/Z(G), where Z(G) denotes center of G. Indeed, Z(G) is a free abelian
group generated by elements d and h. From relations ϕ(d) = ϕ(h) = 0 it follows
that ϕ ≡ 0 on Z(G) and for any u ∈ G and any w ∈ Z(G) we have ϕ(uw) = ϕ(u).
Taking into account this note we get the following relations:

anbmckan1bm1ck1 = an+n1bm+m1cn1m+k+k1 (mod Z(G)),

and
(anbmck)p = apnbpmcnm

p(p−1)
2 +pk (mod Z(G)). (5.5)
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For any x, y, z ∈ G, we have

|ϕ(xyz)− ϕ(xy)− ϕ(z)| ≤ θ[ψ(γ(xy)) + ψ(γ(z))]

and
|ϕ(xy)− ϕ(x)− ϕ(y)| ≤ θ[ψ(γ(x)) + ψ(γ(y))].

Therefore

|ϕ(xyz)− ϕ(x)− ϕ(y)− ϕ(z)| ≤ θ[ψ(γ(xy)) + ψ(γ(z)) + ψ(γ(x)) + ψ(γ(y))].

Since ψ(γ(xy)) ≤ ψ(γ(x) + γ(y)) ≤ ψ(γ(x)) + ψ(γ(y)), the last inequality yields

|ϕ(xyz)− ϕ(x)− ϕ(y)− ϕ(z)| ≤ 2θ[ψ(γ(x)) + ψ(γ(y)) + ψ(γ(z))]. (5.6)

Now let v = anbmckdqh` be an arbitrary element of G. From (5.5), it follows that
for any p ∈ N there is a wp ∈ Z(G) such that vp = apnbpmcnm

p(p−1)
2 +pkwp. Hence

we have

ϕ(vp) = ϕ
(
apnbpmcnm

p(p−1)
2 +pkwp

)
= ϕ

(
apnbpmcnm

p(p−1)
2 +pk

)
.

From (5.6), we get

∣∣ϕ(vp)− ϕ(apn)− ϕ(bpm)− ϕ(cnm
p(p−1)

2 +pk)
∣∣

≤ 2θ
[
ψ(γ(apn)) + ψ(γ(bpm)) + ψ(γ(cnm

p(p−1)
2 +pk))

]
.

Hence from the last inequality, we have

|pϕ(v))| ≤ 2θ
[
ψ(γ(apn)) + ψ(γ(bpm)) + ψ(γ(cnm

p(p−1)
2 +pk))

]

which simplifies to

|pϕ(v))| ≤ 2θ
[
ψ(pγ(an)) + ψ(pγ(bm)) + ψ(γ(cnm

p(p−1)
2 )) + ψ(γ(cpk))

]
.

Thus simplifying further, we see that

|ϕ(v))| ≤ 2θ
ψ(p)

p

[
ψ(γ(an)) + ψ(γ(bm)) + ψ(γ(ck))

]

+2θ
ψ(p(p− 1))

p
ψ(1/2)ψ(γ(ck)).

Since limp→∞
ψ(p)

p = 0 and limp→∞
ψ(p(p−1))

p = 0 the last inequality implies
ϕ(v) = 0. Therefore ϕ ≡ 0 on G and equation (3.1) is (ψ, γ)-stable on G. The
proof of the theorem is now complete. ¤
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TVER STATE AGRICULTURAL ACADEMY

TVER, SAKHAROVO

RUSSIA

E-mail: valeriy.faiz@mail.ru

PRASANNA K. SAHOO

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF LOUISVILLE

LOUISVILLE, KENTUCKY 40292

USA

E-mail: sahoo@louisville.edu

(Received October 2, 2008; revised June 1, 2009)


