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On the maximal operator of the Marcinkiewicz—Fejér means
of double Walsh—Kaczmarz-Fourier series

By USHANGI GOGINAVA (Thbilisi) and KAROLY NAGY (Nyifregyhsza)

Dedicated to Professor Zoltdn Dardczy on the occasion of his seventieth birthday

Abstract. In the paper [3] we proved that the maximal operator of the Marcinki-
ewicz—Fejér means of the 2-dimensional Fourier series with respect to the Walsh-Kacz-
marz system is not bounded from the Hardy space H;,3 to the space Ly /3.

Now, in this paper we prove a stronger result, that is there exists a martingale
f € Hysg such that the maximal Marcinkiewicz—Fejér operator with respect to Walsh—
Kaczmarz system does not belong to the space Ly /3.

First, we give a brief introduction to the theory of dyadic analysis [8]. Let P
denote the set of positive integers, N := P U {0}. Denote Zs the discrete cyclic
group of order 2, that is Z = {0, 1}, where the group operation is the modulo 2
addition and every subset is open. The Haar measure on Z, is given such that
the measure of a singleton is 1/2. Let G be the complete direct product of the
countable infinite copies of the compact groups Zs. The elements of GG are of the
form z = (zg, 1, ..., Tk, ... ) with z; € {0,1} (k € N). The group operation on G
is the coordinate-wise addition, the measure (denote by p) and the topology are
the product measure and topology. The compact Abelian group G is called the
Walsh group. A base for the neighborhoods of G can be given in the following
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way:
Iy(z) =G,
I(x) :=T (20, .., Xpe1) = {Yy €G 1y = (o, T, Yns Yntls -« - ) bs

(x € G, n € N). These sets are called dyadic intervals. Let 0= (0:i € N) € G
denote the null element of G, I, :=I,,(0) (n € N). Set e, := (0,...,0,1,0,...) € G,
the nth coordinate of which is 1 and the rest are zeros (n € N).

For k € N and z € G denote

rp(z) = (=1)"*

the kth Rademacher function. If n € N, then n = Y_° n;2%, where n; € {0,1}
(i € N), i.e. n is expressed in the number system of base 2. Denote |n| := max{j €
N :n; # 0}, that is 21"l <n < 2l7/+1,

The Walsh—Paley system is defined as the sequence of Walsh—Paley functions:

Inj—1
s > ngx
wn(x) = H(rk(x))"’“ = r‘n|(x)(—1) = (CL‘ €eG, ne P).
k=0
The Walsh-Kaczmarz functions are defined by k¢ := 1 and for n > 1

|n\—l |n|—1
Z NETin|—k—1

kin (@) 1= 1) (@) [ Oag—1-0 (@)™ = 1y (@) (=1) ¥=0

k=0
For A € N define the transformation 74 : G — G by
TA(X) ;= (TA-1,TA-2y -+, TO, LA, TALT, .-+ )-
By the definition of 74 (see [11]), we have
Kn(T) = T (T)w, _gini (0| (2)) (n €N, € G).

The space L,(G?), 0 < p < oo with norms or quasi-norms || - ||, is defined in
the usual way.
The Dirichlet kernels are defined by

n—1
Dy (z) == Z ag(z),
k=0
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where ap = wy, or k. Recall that (see e.g. [8])

. if z € I,,(0),

Dan(2) := Diu(x) = Din(z) = {0 it 2 ¢ 1,(0)

The two-dimensional dyadic cubes are of the form

In,n(xay) = In(x) X In(y)

The o-algebra generated by the dyadic rectangles {I,, »(x,¥) : (z,y) € GXxG}
is denoted by Fj, .

Denote by f = (f™™) n € N) a martingale with respect to (Fy, ., n € N)
(for details see, e.g. [15]). The maximal function of a martingale f is defined by

7 = sup [fm].
neN
In case f € L1(G x G), the maximal function can also be given by

fo(a,y) = sup

flu,v)du(u,v z,y) € G X G.
sup ]/M(M)< o), (2,9)

For 0 < p < oo the Hardy martingale space HPD(G x @) consists of all
martingales for which

O
£z, = 1/~ ]lp < oo

The Kroneker product (., : n,m € N) of two Walsh(-Kaczmarz) system
is said to be the two-dimensional Walsh(—Kaczmarz) system. Thus,

Oém,n(xa y) = an(x)am (y)

If f € Li(G?), then the number f*(n,m) := [, fomn (n,m € N) is said to
be the (n,m)th Walsh—(Kaczmarz)-Fourier coefficient of f. We can extend this
definition to martingales in the usual way (see WEISz [14], [15]).

Denote by Sy, ,, the (n,m)th rectangular partial sum of the Walsh—(Kaczmarz)
—Fourier series of a martingale f. Namely,

n—1 m—1

m(fix,y) ZZ (ki) o, (z,y).
k=0 i=0

The Marcinkiewicz—Fejér means of a martingale f are defined by

S|
WE

Mz(f;xay) = S?k(f7x7y)'

)

>
Il

0
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The 2-dimensional Dirichlet kernels and Marcinkiewicz—Fejér kernels are de-
fined by

n

=52 D

k=0

Dii(,y) := Dy (z)Df' (y), K3 (x,y)

3|>—‘

For the martingale f we consider the maximal operator
M f(x,y) = sup IM7(f, z,y)|.
n

A bounded measurable function a is a p-atom, if there exists a dyadic 2-
dimensional cube I x I, such that

a) [r.qadn=0;
b) flallec < u(I x I)~1/7;
¢) suppa C I x 1.
The basic result of atomic decomposition is the following one.
Theorem A (WEISz [15]). A martingale f = (f™™ : n € N) is in HpD

(0 < p < 1) if and only if there exists a sequence (ay, k € N) of p-atoms and a
sequence (ug, k € N) of real numbers such that for every n € N,

ZﬂkSganak = flnn) Z |pk|P < oo (2)
k=0

k=0

Moreover,
o 1/p
N' p
1l mf(kz_o'“’“') .

In 1939 for the two-dimensional trigonometric Fourier series MARCINKIEWICZ
[7] has proved for f € Llog L([0,27]?) that the means

n—1
M, f = % > 85(f)
j=1

converge a.e. to f as n — o0o. ZHIZHIASHVILI [16] improved this result for f €
L([0, 27]?).
For the two-dimensional Walsh-Fourier series WEISZ [13] proved that the
maximal operator
MY* f =sup— Z }

n>1"1
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is bounded from the two-dimensional dyadic martingale Hardy space H,, to the
space L, for p > 2/3 and is of weak type (1,1). The first author [4] proved that
the assumption p > 2/3 is essential for the boundedness of the maximal operator
M¥* from the Hardy space H,(G?) to the space L,(G?).

In 1974 ScHIPP [9] and YOUNG [12] proved that the Walsh-Kaczmarz sys-
tem is a convergence system. GAT [1] proved, for any integrable functions, that
the Fejér means with respect to the Walsh—Kaczmarz system converge almost
everywhere to the function itself. Gat’s Theorem was extended by SIMON [10] to
H,, spaces, namely that the maximal operator of Fejér means of one-dimensional
Fourier series is bounded from Hardy space H,(G?) into the space L,(G?) for
p>1/2.

The second author [6] proved, that for any integrable functions, the Marcinki-
ewicz—Fejér means with respect to the two dimensional Walsh—Kaczmarz system
converge almost everywhere to the function itself. This Theorem was extended
in [2]. Namely, the following is true:

Theorem B. Let p > 2/3, then the maximal operator M"* of the Marcinki-
ewicz—Fejér means of double Walsh-Kaczmarz-Fourier series is bounded from the
Hardy space H,(G?) to the space L,(G?).

In the paper [3] it was proved that the assumption p > 2/3 is essential for
the boundedness of the maximal operator M** from the Hardy space H,(G?) to
the space L,(G?). Namely,

Theorem C. The maximal operator M"™* of the Marcinkiewicz—Fejér means
of double Walsh—Kaczmarz-Fourier series is not bounded from the Hardy space
H,3(G?) to the space Ly ;5(G?).

We will prove a stronger theorem than Theorem C.
Theorem 1. There exists a martingale f € Hy/3(G % G) such that
|Mm*f||L2/3 = +o0.

PROOF. Let {my, : k € N} be an increasing sequence of positive integers such
that

=1
Z 273 < % (3)
k=0 M

k—1 28ml 28771;c

, 4
=0 ™M Mk W

28mp 1 omy

< .
mE_1 kmy



100 Ushangi Goginava and Kéaroly Nagy

We note that such an increasing sequence {my, : k& € N} which satisfies condition
(3)—(5) can be constructed. Let

1
FAN@ g = S arley), where Ay = —
k2mp <A "Mk

and
ar(z,y) := 22" (Dgzmy+1(x) = Doy (2))(Dgzmy 41 (y) — Dazmy ().
The martingale f := (f©0, f0D, . fAA ) € Hy)o(G x G). Indeed,

0, if A< 2my,
ap(z,y), if A>2my,

SzA,2A0Jk(l’, y) = {

FAD@) = > Mar(w,y) =D MeSaapaar(,y),

k,2mp<A k=0

from (3) and Theorem A we conclude that f € HQD/3 (G x G).

Now, we investigate the Fourier coefficients. Since,

/ £ (@, ) () () ds(, )
GxG

07 (7’5.]) ¢ U {22mk7 o '722mk+1 - 1} X {22mk7 o '722mk+1 - 1}7
k=0
0, (i,7) € {22mk, ... 22+l _ 1} x {22k . 92+l 1},
= A=0,1,...,2mx,
22mk
L (6, §) € {22, 22l 1Y x {22me | 92l _ 1},
my

A > 2my,

we can write

~

fos5)
22mk
, o (6,5) € {22k, L 22me 1) s (22 L 92metl )
= M o0 (6)
0, (i,7) & {22, ... 22metl 1} x {22me 92mitl _ 1},
k=1

Set qa s := 224 4 225 for any A > s.
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We decompose the (¢m,,s)th Marcinkiewicz—Fejér means as follows

Amy, s 22my _q
Mgmk,sf( Z Z ]y]
qu S _
qmy,,s
> S5 f(zy) = T+II (7)
qu S j 22mk

Let j € {0,1,...,2%m — 1} for some k. Then from (6) and (4), it is easy to
show that

k—1 22mitl 1 22mitl_g k—1 28,,”

c m
1S5, f(z,y)] < )l < 2

- .
— T m,

I
o
N
I
[ V)
M
E
=
I
[ V)
M
2

Consequently, we have

22mk_1 22mk_1

1 c AL
Il < Siif(xy)] <
| | ka,s _]:ZI | 7 ( )l ka,s 1 kmk
€22Mk Mk 2™k

- dmy,s kmk - kmk '

Now, we discuss I1.
Let i € {22, ...,qm, — 1}. Then from (6) we have

SES (@y) =Y > P )k (@)K (y)

k—1 22ml+171 22ml+171

- S @ @)

=0 p=22"1 p=22"

i—1 i—1
+ 3 N e @)k

p=22mp #:22mk
1

= Z 277:1 (D22ml+1 (IE) — Dyom, (I))(D227nl+1 (y) — D22mz (y))
=0
+ 22 (D (@) = Dy (@))(DE(y) — Doy (1) o)
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and
k—1
1 92

IT = (qu75 - 22mk + 1)

ka,s -0 my

% (Dyer1() = Dyson () (Do 1 () — Do (3))

1 22mk dmy,,s
#2223 (D1@) - D (D) = Do (4) ) = Th 12
mg,S

i:22mk

By (4), (5) and |Dan(x)| < 2™, we get that

k—1
28ml omi
ml<cS 2 _<c
= ; mp T kmy,
and o
|Mka,sf(‘T7y)| Z |IIQ| — k—’,nk

We can write the nth Dirichlet kernel with respect to the Walsh—Kaczmarz
system in the following form:

D (2) = Dot (@) + 3 g ()i (e ()
k=2In|
= Dypr(2) + g ()% (o (2)). (10)

By the help of this equation we immediately have for 115 that

22771k 225
Iy = ———— o, (€)72m () > DY (7am, (2)) D (T2my, (1))

qmy,,sMk i—0

22mk 2s yrw
= T2m, (ZE)T’ka (y)2 K22S (Tka ('I))v T2my, (y))
dmy,,sMk
This implies
. 225 c2me
|quk,sf(x’ y)| 2> M |K223 (Tka (I))a T2my, (y))| - kmp, .

We decompose the set G as the following disjoint union:

A-1
G=1I.u |
t=0
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where A >t>1land JA = {x € G:ax4 1= - =x4 ¢ =024 1 = 1},
& = {z € G : x4 = 1}. Notice that, by the definition of 74 we have
7a(JA) = I\I;11. By Corollary 2.4 in [5], for (x,y) € Ia x I

A A+1
faley) = EFNETAD (11)

Therefore, for k > C we write

ka 1

Kok 2/3d > / Kok 2/3d
v/C:XG |M | M Z 27nk 27nk |M | M

mipg— 1
Kk*(2/3
Z /27nk 27nk |M | d'LL

>

mipg— 1

M" 2/3

Z Z /27nk 27nk qu s d'LL

mp—1 2 2/3

248 C2™mk
2 ;} 1/2m,c 2mk< | K322 © (Tomy, X T2m,, )| — kmy, > dp
+

mp—1 2s m 2/3
2 w C2mk
> ) / (—I 2oe| = 4 > dp,
(T2a\T2s41) X (T2 \J2at1) \"Tk Mk

s=["E]+1
and (11) gives

mkl

S m 2/3
/ |Mn*|2/3d'u > Z / 26 _ C2mk d'u
GxG 7nk]+1 I2S\I2s+l)><(l23\125+1) g kmk
mi—1 96s 2/3
2 > () o
S:[mTk]+l (I2s\T2s4+1) X (T2 \I25+1) \ Tk
mk—l 245 1/3
>c Z 2/32 4SZcmk/ — 00 as k — oc.
o= [7nk]+l mk
This completes the proof of the main theorem. (I
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