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Ratio of Stolarsky means: monotonicity and comparison

By LÁSZLÓ LOSONCZI (Debrecen)

Dedicated to Professor Zoltán Daróczy on the occasion of his 70th birthday

Abstract. The Stolarsky mean ([29], [30]) Sa,b(x, y) of the numbers x, y > 0

with parameters a, b ∈ R is defined by

Sa,b(x, y) =

(
b(xa − ya)

a(xb − yb)

) 1
a−b

if ab(a− b)(x− y) 6= 0,

while for ab(a− b)(x−y) = 0 the function Sa,b(x, y) is extended continuously. We study

monotonicity properties of the ratio

Ra,b(x, y, z) :=
Sa,b(x, y)

Sa,b(x, z)
(a, b ∈ R, 0 < x < y < z)

in the parameters a, b where 0 < x < y < z and completely solve the comparison

problem

Ra,b(x, y, z) ≤ Rc,d(x, y, z) (a, b, c, d ∈ R, 0 < x < y < z)

for this ratio. This generalizes, among others, the results of C. E. M. Pearce and

J. Pečarić [27] and F. Qi, Sh.-X. Chen and Ch.-P. Chen [9], [15].
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1. Introduction

Let a > 0 then for any n ∈ N

n

n + 1
<

(
1
n

n∑

k=1

ka
/ 1

n + 1

n+1∑

k=1

ka

)1/a

<
n
√

n!
n+1

√
(n + 1)!

. (1)

The left hand side inequality is due to Alzer [2], the right hand side inequality
is due to Martins [23], the inequality between the far ends is due to Minc and
Sathre [24]. There is a rich literature on inequality (1), various extensions,
generalizations of it were found in [17], [19], [21], [28], [31], see also [15] and the
references there.

In [4], [6], [10], [11] Alzer’s inequality is extended to all real a. In [3], [12]
it was proved that Martin’s inequality is reversed for a < 0. A survey of some
recent results on these two inequalities has been presented in [1], [5].

In 2004 Ch.-P. Chen and F. Qi [9] proved that for fixed 0 < x < y < z the
function

r → Lr(x, y)
Lr(x, z)

(r ∈ R) (2)

is strictly decreasing and it has been re-proved in [2007] by F. Qi, Sh.-X. Chen

and Ch.-P. Chen ([15], see also the correction in [16] Remark 3, p. 801). Here
Lr(x, y) := Sr+1,1(x, y) is the generalized logarithmic mean and Sa,b(x, y) is the
Stolarsky mean of x, y > 0 with parameters a, b ∈ R defined by

Sa,b(x, y) =





(
b(xa − ya)
a(xb − yb)

) 1
a−b

if ab(a− b)(x− y) 6= 0,

(
xa − ya

a(ln x− ln y)

) 1
a

if a(x− y) 6= 0, b = 0,

(
b(ln x− ln y)

xb − yb

)− 1
b

if b(x− y) 6= 0, a = 0,

exp
(
−1

a
+

xa ln x− ya ln y

xa − ya

)
if b(x− y) 6= 0, a = b,

√
xy if x− y 6= 0, a = b = 0,

x if x− y = 0.

Sa,b(x, y) is a C∞ function on the domain {(a, b, x, y) | a, b ∈ R, x, y > 0}.
The monotonicity result of [9], [15] also follows from Theorem 4 of Pearce

and Pečarić [27] who proved that the function

r → Lr(x1, x2)
Lr(y1, y2)

(r ∈ R)



Ratio of Stolarsky means: monotonicity and comparison 223

is nondecreasing, provided that x1, x2, y1, y2 > 0 with max
(

x1
x2

, x2
x1

) ≥ max
(

y1
y2

, y2
y1

)
.

Due to the monotonicity of the function (2) and the known inequality L0(x, y) <

Lr(x, y) < max{x, y}, (valid for r > 0, x 6= y), one gets that

y

z
<

Lr(x, y)
Lr(x, z)

<
L0(x, y)
L0(x, z)

(r > 0, 0 < x < y < z).

This is the connection to (1), as the last inequality can be considered as a con-
tinuous analogue of (1).

Recently Ch.-P. Chen [7], [8] established a more general result: Let a, b, c,
d be fixed positive numbers with a 6= b, c 6= d and r, s be real numbers. Then the
function

(r, s) → Sr,s(a, b)
Sr,s(c, d)

is strictly increasing
decreasing with both r and s according as

min{a, b}
max{a, b} ≶ min{c, d}

max{c, d} .

Let, for a, b ∈ R, 0 < x < y < z

Ra,b(x, y, z) :=
Sa,b(x, y)
Sa,b(x, z)

. (3)

Here we establish monotonicity properties of Ra,b and completely solve the com-
parison problem

Ra,b(x, y, z) ≤ Rc,d(x, y, z) (a, b, c, d ∈ R, 0 < x < y < z)

of these ratios.

2. Monotonicity of the ratio of Stolarsky means

The next theorem is a generalization of the monotonicity result of [9], [15].

Theorem 1 (first monotonicity property). For fixed a, b ∈ R, 0 < x < y < z

the functions

f0(r) := Ra,r(x, y, z) (r ∈ R) f1(r) := Rr,b(x, y, z) (r ∈ R) (4)

are strictly decreasing on R.
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Proof. By the symmetry Ra,b(x, y, z) = Rb,a(x, y, z) it is enough to prove
the statement for f1. Let

g1(r) := ln f1(r) =





l(r)− l(b)
r − b

if r 6= b,

l′(b) if r = b
(5)

where

l(r) :=





ln |yr − xr| − ln |zr − xr| if r 6= 0,

ln | ln y − ln x| − ln | ln z − ln x| if r = 0.

The function f1 is (strictly) decreasing if and only if g1 is (strictly) decreasing.
To prove the decreasingness of g1 we need some lemmas.

The next lemma is due to L. Galvani [20], see also [25], p. 20, Theorem 1.3.1.

Lemma 2 ([25], p. 20). Let f : I → R be a function defined on an interval I.

Then f is convex/concave (respectively strictly convex/concave) if and only if the

associated functions sr defined by

sr : I \ {r} → R, sr(x) =
f(x)− f(r)

x− r

are increasing/decreasing (respectively strictly increasing/decreasing) on I \ {r}
for all r ∈ I.

We also need some properties of the second derivative of the function l.

Lemma 3. The function l′′ is

(i) an even function and limr→∞ l′′(r) = limr→−∞ l′′(r) = 0,

(ii) strictly increasing if r > 0, strictly decreasing if r < 0

(iii)
ln2

(
y
x

)− ln2
(

z
x

)

12
< l′′(r) < 0 (r ∈ R)

Proof. A simple calculation shows that

l′′(r) = −xryr

(
ln x− ln y

xr − yr

)2

+ xrzr

(
ln x− ln z

xr − zr

)2

= −
ln2

(y

x

)

(y

x

)r

− 2 +
(

x

y

)r +
ln2

( z

x

)

( z

x

)r

− 2 +
(x

z

)r

l′′′(r) = xryr(xr + yr)
(

ln x− ln y

xr − yr

)3

− xrzr(xr + zr)
(

ln x− ln z

xr − zr

)3
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=
1
r3

[
H

((y

x

)r )
−H

(( z

x

)r )]
(6)

where

H(u) := u(1 + u)
(

ln u

u− 1

)3

(u ∈ R, u 6= 1).

The second form of l′′ shows that it is an even function and its limit at r → ±∞
is zero, proving (i). To justify (ii) we write H ′ as

H ′(u) =
(

ln u

(u− 1)2

)2

k(u) (7)

with k(u) = −(u2 + 4u + 1) ln u + 3(u2 − 1) (u > 0). It is easy to check that
k(1) = k′(1) = k′′(1) = 0, k′′′(u) = −2(u−1)2

u3 therefore by Taylor’s theorem

k(u) =
−2(ξ − 1)2

6ξ3

where u < ξ < 1 for 0 < u < 1 and 1 < ξ < u for 1 < u. This shows that

k(u) > 0 if 0 < u < 1,

k(u) < 0 if 1 < u,

thus by (7) H is strictly increasing for 0 < u < 1 and strictly decreasing for 1 < u.
If r > 0 then 1r <

(
y
x

)r
<

(
z
x

)r hence by (6) l′′′(r) > 0 and l′′ is strictly
increasing, while for r < 0 we have 1r >

(
y
x

)r
>

(
z
x

)r hence by (6) l′′′(r) < 0 and
l′′ is strictly decreasing.

The negativity of l′′ follows from (i) and (ii) and due to these properties l′′(r)
is not less than limr→0 l′′(r). To calculate this limit we rewrite l′′ as

l′′(r) =
B2

2(coshBr − 1)
− A2

2(coshAr − 1)

where 0 < A = ln
(

y
x

)
< B = ln

(
z
x

)
. Applying L’Hospital’s rule four times we

get that

lim
r→0

l′′(r) =
A2 −B2

12
proving (iii). ¤

Continuation of the proof of Theorem 1. Applying Lemma 1 for the
difference ratio (5) and using (iii) we conclude that the function l is strictly con-
cave hence g1 is strictly decreasing. ¤
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Theorem 4 (second monotonicity property). For fixed a ∈ R, 0 < x < y < z

the function

f2(r) := Rr+a,r(x, y, z) (r ∈ R) (8)

is strictly decreasing on R.

Proof. Let

g2(r) := ln f2(r) =





l(r + a)− l(r)
a

if a 6= 0,

l′(r) if a = 0.
(9)

If a 6= 0 then by the Lagrange mean value theorem there is a ξ between zero and
a such that

g′2(r) =





l′(r + a)− l′(r)
a

= l′′(ξ) if a 6= 0,

l′′(r) if a = 0

thus in both cases g′2(r) < 0, proving our theorem. ¤

The next monotonicity result was proved in the special case 2α = 1 in [27].

Theorem 5 (third monotonicity property). For fixed α ∈ R, 0 < x < y < z

the function

f3(r) := Rr,2α−r(x, y, z) (r ∈ R) (10)

(j) is strictly decreasing on ] − ∞, α] and strictly increasing on [α,∞[ if

α > 0,

(jj) is strictly increasing on ] − ∞, α] and strictly decreasing on [α,∞[ if

α < 0,

(jjj) is constant (=
√

y
z ) on ]−∞,∞[ if α = 0.

Proof. Let

g3(r) := ln f3(r) =





l(r)− l(2α− r)
2(r − α)

if r 6= α,

l′(α) if r = α

and
h3(r) := 4(r − α)2g′3(r) (r ∈ R),

then expressing h3 and its derivative by l we get that

h3(r) = 2
[
(l′(r)− l′(2α− r))(r − α)− l(r) + l(2α− r)

]

h′3(r) = 2
[
l′′(r)− l′′(2α− r)

]
(r − α).
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Assume first that α > 0 then for r < α we have r < 2α− r.
If r > 0 then by (ii) l′′(r)− l′′(2α− r) < 0, hence

h′3(r) = 2
[
l′′(r)− l′′(2α− r)

]
(r − α) > 0. (11)

If r < 0 then 2α−r > 0, 0 < −r < 2α−r and by (i), (ii) l′′(r)− l′′(2α−r) =
l′′(−r)− l′′(2α− r) < 0 and (11) holds again.

By Taylor’s formula h3(r) = h3(α) + h′3(ξ)(r − α) = h′3(ξ)(r − α) where
r < ξ < α, therefore

g′3(r) =
h3(r)

4(r − α)2
=

h′3(ξ)
4(r − α)

< 0

as h′3(ξ) > 0, r − α < 0, proving the first statement of (j). The other proposition
of (j), and (jj) can be proved similarly, (jjj) is justified by direct calculation. ¤

Theorem 6 (fourth monotonicity property). For fixed a > 0 > b, 0 < x <

y < z the function

f4(r) := Rar,br(x, y, z) (r ∈ R) (12)

(k) is strictly decreasing on R if a + b > 0,

(kk) is strictly increasing on R if a + b < 0,

(kkk) is constant (=
√

y
z ) on R if a + b = 0.

We postpone its proof after the next theorem.

Theorem 7 (criterion for the comparison). The comparison inequality

Ra,b(x, y, z) ≤ Rc,d(x, y, z) (a, b, c, d ∈ R, 0 < x < y < z). (13)

holds if and only if

a

1− va
− b

1− vb

a− b
≥

c

1− vc
− d

1− vd

c− d
(a, b, c, d ∈ R, 0 < v < 1) (14)

is satisfied (provided that abcd(a− b)(c−d) 6= 0, otherwise the appropriate limits

should stand in (14)). If the inequality is strict in (14) then it is also strict in (13).

Proof. Rearranging (13) and using the homogeneity of the Stolarsky mean
we get

xSa,b

(
1,

y

x

)

xSc,d

(
1,

y

x

) ≤
xSa,b

(
1,

z

x

)

xSc,d

(
1,

z

x

) (0 < x < y < z).
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With u = y
x , v = z

x we can rewrite this as

Sa,b (1, u)
Sc,d (1, u)

≤ Sa,b (1, v)
Sc,d (1, v)

(1 < u < v).

This holds if and only if
d

du

Sa,b (1, u)
Sc,d (1, u)

≥ 0.

A simple calculation shows that this is equivalent to

(lnSa,b(1, u))′ ≥ (lnSc,d(1, u))′ (1 < u),

or (assuming abcd(a− b)(c− d) 6= 0) by

aua−1

ua − 1
− bub−1

ub − 1
a− b

≥
cuc−1

uc − 1
− dud−1

ud − 1
c− d

(1 < u).

Multiplying by u and writing v = 1/u ∈ ] 0, 1[ we obtain the required inequality
(14). As each inequality is this proof was equivalent with the preceding one (14)
implies (13) completing the equivalence of these two inequalities. Scrutinizing the
proof we easily see that the statement concerning strict inequalities holds. ¤

Now we can complete the proof of Theorem 6.

Proof of Theorem 6. By the preceding theorem it is enough to show that
the function

r →
ar

1− var
− br

1− vbr

ar − br
(r ∈ R)

(for r = 0 defined continuously by its limits 1/2) is strictly decreasing(increasing)
for all fixed 0 < v < 1 according to a + b > 0 (a + b < 0). Let vr = ex, (x ∈ R)
then we need to show that the function

U(x) :=
1

a− b

(
a

1− eax
− b

1− ebx

)
(x ∈ R)

is strictly decreasing(increasing) if a + b < 0 (a + b > 0). As increasing r will
decrease x, the monotonicity is interchanged here. The derivative of U can be
written as

U ′(x) =
a2b2e(a+b)x

(a− b)(1− eax)2(1− ebx)2

[(
1− ebx

be
bx
2

)2

−
(

1− eax

ae
ax
2

)2
]
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=
a2b2e(a+b)x

(a− b)(1− eax)2(1− ebx)2




(
2 sinh bx

2

b

)2

−
(

2 sinh ax
2

a

)2



and here the first factor (the fraction) is always positive. Using well-known iden-
tities and power series development we get

(
2 sinh ax

2

a

)2

=
2
a2

(cosh(ax)− 1) =
∞∑

n=1

2a2n−2x2n

(2n)!
.

hence we can write the second factor (the bracket) of U ′ as

∞∑
n=1

2(b2n−2 − a2n−2)x2n

(2n)!

= 2(a + b)(a− b)
∞∑

n=1

(b2(n−2) + b2(n−3)a2 + · · ·+ a2(n−2))x2n

(2n)!

which shows that for a + b > 0 the derivative U ′ is positive, for a + b < 0 it is
negative, proving (k) and (kk). The third statement (kkk) can be easily checked
by direct calculation. ¤

Figures 1–4 illustrate the four monotonicity properties of Ra,b. In each of
them the directions of decrease are indicated by arrows.
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Figure 1. First monotonicity property. Figure 2. Second monotonicity property.
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Figure 3. Third monotonicity property. Figure 4. Fourth monotonicity property.

From the monotonicity properties we easily obtain

Theorem 8 (equality of ratios). The equality

Ra,b(x, y, z) = Rc,d(x, y, z) (a, b, c, d ∈ R, 0 < x < y < z)

holds if and only if either a + b = c + d = 0, or at least one of the sums a + b,

c + d is not zero, and a = b, c = d or a = d, b = c.

Proof. In the first case equality is obvious as by (kkk) Ra,b(x, y, z) =
√

y
z =

constant if a+ b = 0. If e.g. a+ b 6= 0 and a ≥ b then (by the above monotonicity
properties) moving the point (a, b) to the point (c, d) (different from (a, b)) strictly
increases or decreases the Ra,b(x, y, z) unless a + b = c + d. In the latter case
equality can occur only at one point (c, d) with c ≤ d and this indeed happens if
a = d, b = c. ¤

3. Necessary and sufficient conditions for the comparison

First we find some necessary conditions for (13) to hold.

Theorem 9 (necessary conditions for the comparison). If the comparison

inequality

Ra,b(x, y, z) ≤ Rc,d(x, y, z) (a, b, c, d ∈ R, 0 < x < y < z).

holds then we have

Sc,d(x, y) ≤ Sa,b(x, y) (a, b, c, d ∈ R, x, y > 0). (15)



Ratio of Stolarsky means: monotonicity and comparison 231

Proof. Taking the limits x ↗ y in the comparison inequality we obtain
that

Sc,d(y, z) ≤ Sa,b(y, z) (a, b, c, d ∈ R, 0 < y < z)

which, by the symmetry Sa,b(y, z) = Sa,b(z, y) of the Stolarsky means implies (15).
¤

The solution of the comparison problem (15) is known (cf. [22], [26], [13]).
To formulate this solution and some further results we introduce the following
notations. For u, v ∈ R, let

α(u, v) :=




|u| − |v|
u− v

if u 6= v,

sign(u) if u = v,

β(u, v) :=





u− v

log(u/v)
if 0 < uv and u 6= v,

u if 0 < uv and u = v,

0 otherwise,

γ(u, v) :=





min{u, v} if u, v ≥ 0,

0 if uv < 0,

max{u, v} if u, v ≤ 0.

For the comparison of Stolarsky means, we recall

Theorem 10 (see [13], Theorem 1). The comparison inequality

Sc,d(x, y) ≤ Sa,b(x, y) (a, b, c, d ∈ R, x, y ∈ R+)

of Stolarsky means holds if and only if the parameters a, b, c, d ∈ R satisfy the

conditions

c + d ≤ a + b, α(c, d) ≤ α(a, b), and β(c, d) ≤ β(a, b). (16)

Our main result concerning the comparison is

Theorem 11 (the main result). The comparison inequality

Ra,b(x, y, z) ≤ Rc,d(x, y, z) (a, b, c, d ∈ R, 0 < x < y < z).
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holds if and only if the parameters a, b, c, d ∈ R satisfy the conditions

c + d ≤ a + b, α(c, d) ≤ α(a, b), γ(c, d) ≤ γ(a, b). (17)

Suppose now that (17) holds.

If 0 6= c + d ≤ a + b and (a, b) 6= (c, d), (a, b) 6= (d, c) then strict inequality

holds in (13).
If 0 = c + d < a + b, then again strict inequality holds in the comparison

inequality (13).
If 0 = c + d = a + b, then equality holds in the comparison inequality (13).

Proof. The conditions (17) are necessary. Assume the comparison inequal-
ity then by Theorem 9 and Theorem 10 the inequalities (16) are satisfied. In
Figures 5–11 for seven fixed points (c, d), c = 5, 4, 3, 2, 1, 0,−1, d = c − 4 we
plotted the points (a, b) for which (16) holds. The domains of these (a, b)’s are
indicated by 45 degree parallel lines. The points (a, b) for which (17) holds differ
from this only, if c > 0, d > 0 (Figure 5) and if c < 0, d < 0 (Figure 11).

The set of points (a, b) for which (17) holds are on a thick broken line and to
the north-east direction from these broken lines. On Figure 12 these boundaries
are plotted together for all the mentioned points (c, d). The set of points (a, b)
which satisfy (16) but does not satisfy (17) are two rectangles and two triangles
(both are symmetric to the line y = x). The rectangle and the triangle (below the
line y = x!) on Figures 5 and 11 are distinguished by 135 degree parallel lines.

Figure 5. (c, d) = (5, 1) Figure 6. (c, d) = (4, 0)
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By the symmetry Ra,b = Rb,a we have to show only that if a ≥ b and (a, b)
is in the distinguished rectangle (Figure 5), or in the triangle (Figure 11), then
(13) or the inequality (14) equivalent to it does not hold.

Suppose that (13) holds, c ≥ d > 0 and a > c, 0 < b < d. By Theorem 7 we
have that

C(v) :=

a

1− va
− b

1− vb

a− b
−

c

1− vc
− d

1− vd

c− d
≥ 0 (0 < v < 1).

C can be extended continuously by defining C(0) := limv→0 C(v) = 0. In the
expression

v1−dC ′(v) :=

a2va−d

(1− va)2
− b2vb−d

(1− vb)2

a− b
−

c2vc−d

(1− vc)2
− d2

(1− vd)2

c− d
≥ 0 (0 < v < 1)

the exponents of v on the right hand side satisfy a− d > 0, b− d < 0, c− d ≥ 0,
a > 0, b > 0, c > 0, d > 0 thus taking the limit v → 0 we get that

lim
v→0

v1−dC ′(v) = −∞.

This implies that for v > 0 small enough C ′(v) < 0 hence by the mean value
theorem there exists a ξ such that 0 < ξ < v and

C(v) = C(0) + C ′(ξ)v = C ′(ξ)v < 0

which is a contradiction.

Figure 7. (c, d) = (3,−1) Figure 8. (c, d) = (2,−2)
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Figure 9. (c, d) = (1,−4) Figure 10. (c, d) = (0,−4)

Figure 11. (c, d) = (−1,−5) Figure 12. All points (c, d)

If the point (c, d) is in the second or fourth quadrant (including the bound-
aries) then the points (a, b) satisfying (16) and (17) coincide (this can clearly be
seen in Figures 6–10. To complete the proof of necessity we have to show only
that if (c, d) is strictly in the third quadrant c ≥ d and a ≥ b and (a, b) is in the
distinguished triangle (Figure 11), then (13) or the inequality (14) equivalent to
it does not hold.

Assume that c + d ≤ a + b, d < c < 0, b < a < 0, then we show that the
conditions

b < c, a < c
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cannot hold. By Theorem 7 C(v) ≥ 0 for 0 < v < 1. Again we extend C

continuously to v = 0 by C(0) := limv→0 C(v) = 0. A simple calculation shows
that

v−a−1C ′(v) :=

a2

(v−a − 1)2
− b2va−b

(v−b − 1)2

a− b
−

c2va−c

(v−c − 1)2
− d2va−d

(v−d − 1)2

c− d
≥ 0

(0 < v < 1).

Here the denominators a− b, c− d are positive and the squares (v−α − 1)2 with
α = a, b, c, d tend to 1 as v → 0. The exponents of v in the numerators of the
fractions satisfy

a− b > 0, a− c < 0, and a− d > 0

(the latter inequality comes from writing c + d ≤ a + b as a− d ≥ c− b and using
the assumption b < c to conclude 0 < c − b ≤ a − d). Taking the limit v → 0
we get that limv→0 v−a−1C ′(v) = −∞, therefore for small positive v’s C ′(v) is
negative, and arguing as earlier, we conclude that C(v) < 0 for small v > 0, which
is a contradiction.

Thus the conditions (17) are necessary.
Sufficiency. Using the four monotonicity properties of Ra,b one can easily

see that (17) is sufficient for the comparison.
The statement on strict inequalities is also a simple consequence of the mono-

tonicity properties. ¤

4. Closing remarks, open problems

It is worth to mention that the necessary and sufficient conditions (17) coin-
cide with the necessary and sufficient condition for the comparison

Gc,d(x, y) ≤ Ga,b(x, y) (x, y > 0) (18)

of Gini means (see [13], Theorem 4.1), defined by

Ga,b(x, y) =





(
xa + ya

xb + yb

) 1
a−b

if a− b 6= 0,

exp
(

xa ln x + ya ln y

xa + ya

)
if a− b = 0.
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Thus we can reformulate the main result as follows:
The comparison inequality (13) holds if and only if the inequality (18) is

satisfied.
Using the identity

Ra,b(u, v, w) =
(
R−a,−b(u−1, v−1, w−1)

)−1
(u, v, w > 0)

it is easy to rewrite Theorem 11 to the case when the variables in the comparison
inequality have opposite order x > y > z > 0.

Forming other ratios, like

R̃a,b(x, y, z) :=
Sa,b(x, y)
Sa,b(y, z)

(a, b ∈ R, 0 < x < y < z)

one can easily prove that the modified comparison

R̃a,b(x, y, z) ≤ R̃c,d(x, y, z) (a, b, c, d ∈ R, 0 < x < y < z)

holds if and only if R̃a,b(x, y, z) = R̃c,d(x, y, z) satisfied for all x, y, z > 0.
Let now Ma,b (a, b ∈ R) be a two-parameter, symmetric, homogeneous mean

defined for positive variables and let us form the ratio

Ra,b(x, y, z) :=
Ma,b(x, y)
Ma,b(x, z)

(a, b ∈ R, 0 < x < y < z).

For what means Ma,b has this ratio simple monotonicity properties?
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