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Einstein Landsberg metrics

By NASRIN SADEGHZADEH (Qom), ASADOLLAH RAZAVI (Tehran)
and BAHMAN REZAEI (Urmia)

Abstract. The paper focuses on the study of Ricci curvature of Einstein Finsler

metrics in order to prove the Schur type lemma for Einstein spaces. In this paper, Ein-

stein Finsler metrics of Berwald and SCR type are mainly considered, we will prove that

the Ricci scalar of any Einstein Landsberg metric of SCR type is necessarily constant,

we will also show that every Einstein Finsler metric of SCR type in dimension 3 is of

sectional (flag) curvature. Moreover we will prove that every Einstein Berwald space of

non-zero Ricci scalar is Riemannian.

1. Introduction

The Einstein metrics comprise a major focus in differential geometry, these
metrics are more general than those with constant curvature. The well-known
Ricci tensor was introduced in 1904 by G. Ricci, which was used to formulate
the Einstein’s theory of gravitation in 1913. The so-called Einstein manifolds
whose Ricci tensors are proportional to the metric have been studied extensively,
specially in general relativity.

Define the Ricci scalar by

R =
Ric(x, y)

F 2
:=

Ri
i

F 2
,

where Ri
j are the coefficients of the spray curvature on M . In fact we can think

of Ric as (n− 1) times the average curvature at x in the direction y.
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In Finsler geometry an Einstein metric is a metric F with the property

Ric = (n− 1)K(x)F 2,

where K is a function on M .
We used Akbar-Zadeh’s version of Ricci tensor which is defined by [1]

Ricij =
1
2
(Ric(x, y))yiyj .

The reciprocal relationship between the Ricci scalar and the Ricci tensor tells us
that the Ricci tensor of an Einstein metric is

Ricij = (n− 1)K(x)gij .

F is said to be Ricci flat if the average
(

Ric
F 2

)
does not depend on the location x,

in this case, the function K is constant.
For Riemannian case, this average does not depend on the location x as we

have

Theorem ([9]). If g is an Einstein Riemannian metric on a connected man-

ifold of dimension n ≥ 3, its scalar curvature is constant.

The above theorem is known as Einstein Schur theorem. The following ques-
tion can be raised in Finsler geometry when F is an Einstein metric:
Does the Einstein Schur theorem hold for an arbitrary Finsler metric?
In Finsler geometry this theorem is called Schur lemma, we have chosen this
terminology throughout the paper. Robles succeeded to prove this lemma for
Randers metrics [8]. In this paper we are going to generalize this lemma for more
Finsler metrics. A straight answer to this question is to find Einstein Finsler met-
rics, which are reduced to the Riemannian cases or Finsler metrics of constant
flag curvature. In this paper we consider Finsler metrics with Rm

j mk
yj = Rm

k mjy
j

(so-called of SCR type), and our main results are as follows

Theorem 1.1. Every Einstein Landsberg metric of SCR type on a compact

manifold M is Ricci constant.

Theorem 1.2. Every Einstein Finsler metric of SCR type is of sectional

(flag) curvature (n = 3).

Some Einstein (α, β) metrics and projectively related Einstein metric have
been considered in [14] and [19].
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2. Preliminaries

Let M be a connected n-dimensional C∞ manifold, denote the tangent space
at x ∈ M by TxM , and the tangent bundle of M by TM = ∪x∈MTxM . Each
element of TM has the form (x, y), where x ∈ M and y ∈ TxM . Let TM0 =
TM \ {0}, the natural projection π : TM → M is given by π(x, y) = x. The pull-
back tangent bundle π∗TM is a vector bundle over TM0 whose fiber at v ∈ TM0

is just TxM , where π(v) = x, then

π∗TM = {(x, y, v) | y ∈ TxM0, v ∈ TxM}

A Finsler metric on a manifold M is a function F : TM → [0,∞) with the
following properties:

(i) F is C∞ on TM0,

(ii) F (x, λy) = λF (x, y) x ∈ M , y ∈ TxM and λ > 0,

(iii) For any tangent vector y ∈ TxM , the vertical Hessian of F 2

2 given by

gij(x, y) =
[
1
2
F 2

]

yiyj

,

is positive definite.

We obtain a symmetric tensor C, Cartan tensor, on π∗TM defined by

C(u, v, w) = Cijk(y)uivjwk,

where u = ui∂i, v = vi∂i, w = wi∂i and Cijk = 1
4 [F 2]yiyjyk(y), here we have put

∂i := ∂
∂xi . It is well known that C = 0 if and only if F is Riemannian [18]. Define

Lijk = Cijk|mym,

Ly(u, v, w) = Lijk(y)uivjwk.

Definition 2.1. A Finsler metric F is called isotropic Landsberg if

L + c(x)FC = 0,

where c(x) is a scalar function on M . The Finsler metric F is called Landsberg
if c(x) = 0 i.e. L = 0.



314 Nasrin Sadeghzadeh, Asadollah Razaviand Bahman Rezaei

Define

Iy(u) :=
∑

gij(y)Cy(bi, bj , u) =
∑

gij(y)Cijk(y)uk,

where {bi} is an arbitrary basis for TxM and (gij(y)) := (gij(y))−1. The family
I = {Iy}y∈TxM\{0} is called the mean Cartan torsion.

Definition 2.2. A Finsler metric F is called isotropic weakly Landsberg if

J + c(x)FI = 0,

where Ji = Ii|mym, Jy(u) =
∑

Jk(y)uk and c(x) is a scalar function on M. The
Finsler metric F is called weakly Landsberg if c(x) = 0 i.e. J = 0.

Theorem 2.1 ([18]). A Minkowski norm on a vector space V is Euclidean

if and only if Iy = 0 for any y ∈ V \{0}.
Every Finsler metric F induces a spray G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi by

Gi(x, y) :=
1
4
gil(x, y)

{
2
∂gjl

∂xk
(x, y)− ∂gjk

∂xl
(x, y)

}
yjyk.

Definition 2.3. A Finsler metric F on a manifold M is called Berwald metric if
in a local coordinate system (xi, yi) on TM , the spray coefficients Gi are quadratic
in y ∈ TxM for all x ∈ M .

The Riemann curvature Ry = Ri
kdxk ⊗ ∂

∂xi |p : TpM → TpM is defined by

Ri
k(y) := 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
. (1)

It has the following properties:
For any non-zero vectors y, u, v ∈ TpM ,

(a) Ry(y) = 0, gy(Ry(u), v) = gy(u,Ry(v)),

(b) Ri
kl = 1

3

{∂Ri
k

∂yl
− ∂Ri

l

∂yk

}
,

(c) Rj
i
kl = Ri

kl.j + Li
kj|l − Li

lj|k + Li
lmLm

kj − Li
kmLm

lj . (2)

Put Rickl = gjrRk
i
jlgir (cf. the Ricci tensor in Riemannian geometry) and

also
Ric0k = Riclk yl, Rick0 = Rickl y

l.

Definition 2.4. A Finsler metric is called of Symmetric Corresponding Ricci
tensor or Finsler metric of SCR type if Ric0k = Rick0.
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Example 1. Let F = F (x, y, u, v) be a Finsler metric on an open subset
U ⊂ R2 in the form

F = e2ρ(x,y) exp
[
2Q arctan

(u

v

)]
(u2 + v2),

where ρ is a function and Q > 0 is a constant. Then the mean Cartan torsion
of F satisfies

I2 =
4Q2

1 + Q2
< 4.

The spray coefficients G1 = G and G2 = H of F are given by

G = − 1
2(1 + Q2)

{(ρx −Qρy)u2 + 2(ρy + Qρx)uv − (ρx −Qρy)v2}, (3)

H = − 1
2(1 + Q2)

{−(ρy + Qρx)u2 + 2(ρx − 2Qρy)uv + (ρy + Qρx)v2}. (4)

Its Ricci scalar is
R = −ρ.x.x + ρ.y.y

1 + Q2
(u2 + v2).

hence F is a Berwald metric. Thus its geodesic spray coefficients are

Gi = Γi
jk(x)yjyk.

and we can show that [16]

Rj
m

mly
j =

{
2
∂Γm

jk

∂xm
− 2

∂Γm
mk

∂xj
+ 4Γm

lmΓl
jk − 4Γm

lkΓl
mj

}
yj = ηjk(x)yj .

Now, this metric is of SCR type if and only if ηjk(x)yj = ηkj(x)yj , which is
equivalent to

∂Γm
mk

∂xj
=

∂Γm
mj

∂xk
,

and reduces to
∂Γm

m1

∂x2
=

∂Γm
m2

∂x1
.

We can calculate the coefficients of connection by (3) and (4), then we get

Γm
m1 = Γ1

11 + Γ2
21 =

1
4

[
∂2G

∂u∂u
+

∂2H

∂v∂u

]
.

Therefore the above metric is of SCR type if and only if

[G.u + H.v].u.y = [G.u + H.v].v.x.
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Moreover calculations show that ([16], [17])

2ρ.x.y − 3Qρ.y.y = 2ρ.y.x + 2Qρ.x.x.

Now if Q > 0 (i.e. F is not Riemannian) then ρ.y.y = − 2
3ρ.x.x.

As every two dimensional Finsler metric is of scalar curvature, the Ricci curva-
ture R is related to flag curvature K(y) by K(y) = R

L (which is defined below).
Assuming Q = 1 and ρ.x.x = − 3

2ρ.y.y 6= 0 we have

K(y) =
ρ.y.y

2e2ρe2arc tan u
v

.

Evidently, its flag curvature is not constant, which means that the class of SCR
type Finsler spaces is not contained in the class of Finsler spaces of constant flag
curvature.

Definition 2.5. A Finsler metric is called R-quadratic if Ry is quadratic in y,
namely, in local coordinates, Ri

k(y) are quadratic in y ∈ TxM.

For a two-dimensional plane P ⊂ TpM and a non-zero vector y ∈ TpM , the
flag curvature K(P, y) is defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
,

where P = span{y, u}. F is said to be of scalar curvature K = λ(x, y) if for any
y ∈ TpM , the flag curvature K(P, y) = λ(x, y) is independent of P containing
y ∈ TpM , which in a local coordinate system (xi, yi) on TM , is equivalent to the
following:

Ri
k = λ(x, y) F 2{δi

k − F−1Fykyi}.
Moreover if λ is a constant, then F is said to be of constant flag curvature.
A Finsler metric is of sectional (flag) curvature if its flag curvature depends only
on the plane section.

A Finsler manifold is said to be negatively curved if for all non-zero vectors
y, v ∈ TxM with gy(u, y) = 0,

gy(u,Ry(u)) < 0.

The Ricci scalar function of F is given by

ρ :=
1

F 2
Ri

i.
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Therefore, the Ricci scalar function is positive homogeneous of degree 0 in y. This
means that ρ(x, y) depends on the direction of the flag pole y but not its length.

The Ricci tensor of a Finsler metric F is defined by

Ricij :=
{

1
2
Rk

k

}

yiyj

.

Ricci-flat manifolds are those with vanishing Ricci tensor. In physics, they are
important because they represent vacuum solutions to Einstein’s equation.

Definition 2.6. A Finsler metric F is said to be an Einstein metric if the
Ricci scalar is a function of x alone, equivalently

Ric = ρ(x)F 2,

In fact, Ricci-flat manifolds are special cases of Einstein manifolds.

3. Proof of theorems

The properties of Einstein Riemannian metrics are most known, for example
the Einstein Schur lemma holds for them. In Finsler geometry this is an open
problem in general, Robles proved this problem for Randers metrics [8]. For
a different class namely SCR type we are going to prove Einstein Schur lemma.
Now, we are going to give the proofs of our main theorems. First we quote some
lemmas.

Lemma 3.0 ([3]). Let (M, g) be a Landsberg manifold of dimension n. Then

we have

‖Ij|i‖2 = F 2Ii|iIj |j − (n− 2)ImRm
k IkF−2 + Div on S(M). (5)

Proof. See [3] for details. ¤

Lemma 3.1. Let (M,F ) be a Landsberg manifold and T = T pqbp ⊗ bq a

section of π∗T ∗M ⊗ π∗T ∗M , then

T pq
.j|i − T pq |i.j = T sqP p

s ij + T psPsq
ij .

Proof. As T pq |k and T pq
.l are defined by

dT pq + T sqωp
s + T psωq

s = T pq |kωk + T pq
.lω

n+l, (6)
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differentiating and using the structure equations one deduces

(dT tq + T sqωt
s) ∧ ωp

t + (dT pt + T psωt
s) ∧ ωq

t + T sqΩp
s + T psΩq

s

= (dT pq |k − T pq |rωr
k) ∧ ωk + (dT pq

.l − T pq
.rω

r
l ) ∧ ωn+l. (7)

Recall that Ωi
j has the following form

Ωi
j =

1
2
Ri

jkl
ωk ∧ ωl + P i

j kl
ωk ∧ ωn+l.

Hence as F is Landsberg by taking the components of ωi ∧ ωn+j and ωi ∧ ωj

we get
T pq

.j|i − T pq |i.j = T sqP p
s ij + T psP q

s ij . (8)

¤

Lemma 3.2. Let (M, F ) be a Berwald space. If F is Einstein of non-zero

Ricci scalar then it is Riemannian.

Proof. Let (M, F ) be an Einstein Berwald metric of the non-zero Ricci
scalar λ(x), then for its geodesic spray we have

Gi = Γi
jk(x)yjyk.

Applying (1) we obtain

Ric = Rm
m =

{
2
∂Γm

jk

∂xm
− 2

∂Γm
mk

∂xj
+ 4Γm

lmΓl
jk − 4Γm

lkΓl
mj

}
yjyk = ηjk(x)yjyk.

As F has a non-zero Ricci scalar λ(x) for any direction y ∈ TxM , ηjk(x)
λ(x) yjyk is

always positive regardless of the sign of λ(x). Thus

F =

√
ηjk(x)
λ(x)

yjyk,

which means (M, F ) is Riemannian. ¤

Proof of Theorem 1.1. First we prove

(a) Ii
|j = 0,

(b) Cijk|l = 0.
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Let compute ImRm
k Ik. For a positively homogeneous function f : TM\{0}→R,

one has
df = f|iωi + f.iω

n+i.

By the equation (13–3) in [18] we have

0 = d2f =
1
2

(
f|l|k − f|k|l +

1
2
f.iR

i
kl

)
ωk∧ωl+(f|i.j−f.j|i+f.kLk

ij)ω
n+j∧ωi. (9)

This yields the following Ricci identities

f|k|l − f|l|k = f.iR
i
kl. (10)

f|i.j − f.j|i = −f.kLk
ij . (11)

Now we show that ImRm
k = 0, for Finsler metrics of SCR type. According to [18]

we have
Rjikl + Rijkl + 2CijmRm

kl = 0, (12)

contracting with gij and yl yields

2ImRm
k = −2Rm

mk0. (13)

By contracted Bianchi identity and being of SCR type we have

0 = Rj
i
i0 −R0

i
ij = Ri

i
j0.

This gives
ImRm

k = 0. (14)

Now we use Lemma 3.1 by taking T pq = gpq we deduce that gpq
.j|i = P qp

ij+P qp
ij ,

contracting by yi after some calculation ([7]) we get

gpq
.j|0 = 0. (15)

The task is now to show Ii
|m.iy

m = 0 and then Ii
|i = 0. For a compact manifold M

we have
〈J, J〉 = −1

3
〈b, R〉, (16)

where 〈 , 〉 denotes the global products over S(M), this product is introduced
in [1], R = Ry as before and

F−2bk
i = 2[Ik

.i + F−2(ykIi + yiI
k)] + IiI

k + grs(δi
k − F−2ykyi)Is.r. (17)
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The best reference here is [3].
Now we show that

KgrsIs.r = 0, (18)

where K = 1
n−1Rm

m, using (16) and F being Landsberg metric. Taking f = τ

as distortion function defined in [18] and using (11) we get

τ|k|lyl = τ|l|kyl.

As F is Landsberg noting the equation (13)–(20) in [18],we obtain τ|k = S.k.
Moreover we have

S.k|lyl − S|k = 0.

As S.k|lyl − S|k = − 1
3 (2Rm

k.m + Rm
m.k) (by [18]) we have

2Rm
k.m = −Rm

m.k. (19)

Since F is Einstein this means that IkRi
k.i = 0.

Using (14) we have
Ik
.iR

i
k = (IkRi

k).i − IkRi
k.i = 0.

Combining this equation with (16) and (17) yields (18).
If K 6= 0 by (15) we have

0 = (grsIs.r)|mym = (Ir
.r − Isg

rs
.r)|0 = Ir

.r|0 − Is(grs
.r|0) = Ir

.r|0.

Now in the same way as in Lemma 3.1, we can prove that Ip
.j|iyj = Ip|i.jyj when

(M, F ) is Landsberg. Hence

0 = Ir
.r|mym = grsIr.s|mym = grsIr|m.sy

m = Ir |m.ry
m.

By (5) we get
〈Ii|j , Ii|j〉 = ‖Ii|j‖2 = Div on S(M).

By integrating we have
∫

S(M)
‖Ii|j‖2dV = 0 and hence Ii|j = 0. This completes

the proof of (a). In order to prove (b), first we consider the equation (1–4) of
Chapter 5 in [1], i.e.

∇0∇0C
i
km + Cr

kmR0
i
r0 +∇.

mRj
i
kly

jyl = 0.

As F is Landsberg by equation (3.5.4) in [6] we have ∇.
mRj

i
kly

j=Ri
kl.ym.yj yj=0,

hence
Cr

kmRi
r = 0. (20)
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By (12) we have
Rijk0 + Rjik0 = 0. (21)

The following equation can be found in Chapter 5 of [1]

‖FCijk|l‖2 = ‖Ik|l‖2−(n−2)Cl
isC

is
r Rr

l−2F 2Cl
isC

jrsRr
i
jl+Div on S(M). (22)

Using Ik|l = 0 we need to show that second and third sentences in the right side
of (22) are equal to zero. As before CsilR

l
r = 0 then Cl

isRrl = ClisR
l
r = 0.

Now we prove that Cl
isC

jrsRr
i
jl = 0.

Applying (12) and changing the indices k and l yield

0 = Cli
sC

jks(Rijkl + Rjikl) = CjksCli
sCijmRm

kl. (23)

Now we show that Cjk
sC

ls
iR

i
kl = 0. By (20) and (23) we have

CjksCl
isR

i
l.k = Cjks(Cl

isR
i
l︸ ︷︷ ︸

0

).k − CjksCl
is.kRi

l

= −CjksRi
l{glpCpsi.k − Clp

kCl
si} = −CjksClis.kRil,

and

CjisCl
siR

k
l.k = Cjis(Cl

siR
k

l︸ ︷︷ ︸
0

).k − CjisCl
sikRk

l

= −CjisRk
l{glpCpsi.k − ClpkCpsi} = −CjisClsi.kRkl = −CjksClsi.kRil.

Comparing the two above equations and by (19) one sees immediately that

CjksCl
siR

i
l.k = λ(x)CjisCl

siyl = 0. (24)

We prove that CjksCl
isR

i
k.l = 0 and then by (24) we show that CjksC

l
siR

i
kl = 0.

CjksCl
siR

i
k.l = Cjks(Cl

siR
i
k︸ ︷︷ ︸

0

).l − CjksCl
si.lR

i
k = −Cl

si.k CjksRi
k︸ ︷︷ ︸

0

= 0.

Now we show that
CjksCl

siR
i
jkl

= 0.

As F is Landsberg we have

CjksCl
siR

i
jkl

= CjksClsiRi
kl.j = (CjksCl

isR
i
kl︸ ︷︷ ︸

0

).j − (CjksClsi).jR
i
kl

− (CjksCl
si).jR

i
kl = (CjlsCk

si).jR
i
kl = −2(Cjl

sg
ks

.i).jR
i
kl

− 2 (Cjl
sg

ks).i.jR
i
kl︸ ︷︷ ︸

A

+2 (Cjl
s.ig

ks).jR
i
kl︸ ︷︷ ︸

B

.
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In the following we show that A = B = 0.

A = (Cjl
sg

ks).i.jR
i
kl = (Cjlk).i.jR

i
kl = (CjlkRi

kl).i.j − Cjlk
.iR

i
jkl

= (CjlkRi
kl︸ ︷︷ ︸

0

).i.j − (Cjlk Ri
ikl︸︷︷︸
0

).j − Cjlk
.iR

i
jkl

= glpgkqCj
pq.iR

i
jkl︸ ︷︷ ︸

0

−2Clp
iC

jk
pR

i
jkl
− 2Ckq

iC
lj

qR
i
jkl

= −2Clp
iC

jk
pR

i
jkl

+ 2Clp
iC

kj
pR

i
jkl

= 0.

And

B = (Cjl
s.ig

ks).jR
i
kl = (glpgjqgksCpqs.i).jR

i
kl = −2Cpqs.iR

i
klC

lpqgks

︸ ︷︷ ︸
D

−2Cpqs.iR
i
klI

qglpgks

︸ ︷︷ ︸
E

−2Cpqs.iR
i
klC

ksqglq

︸ ︷︷ ︸
F

−glpgjqgksCpqs.i.jR
i
kl︸ ︷︷ ︸

H

,

and we show that D + F = E = H = 0.

E = −2Cpqs.iR
i
klg

lpgksIq = −2Cpqs.iR
i
klg

lsgkpIq = 2Cpqs.iR
i
klg

lpgksIq = −E,

it means that E = 0.

D + F = −2Cpqs.iR
i
klC

lpqgks − 2Cpqs.iR
i
klC

ksqglp = 2Cpqs.iR
i
klC

kpqgls

+2Cpqs.iR
i
klC

lsqgkp = 2Cpqs.iR
i
klC

ksqglp + 2Cpqs.iR
i
klC

lpqgks = −(D + F ),

then D + F = 0. Now we show that H = 0.

H = −2glpgjqgksCpqs.i.jR
i
kl = 2gkpgjqglsCpqs.i.jR

i
kl

= 2gksgjqglpCpqs.i.jR
i
kl = −H,

thus H = 0.
Now we can rewrite (22) as ‖FCijk|l‖2 = Div on S(M). By integration we

get Cijk|l = 0. F is Landsberg metric, then 0 = FCi
jk|l = P i

j kl
= −F

∂Γi
jk

∂yl , this
means that F is Berwald. Now Lemma 3.2. completes the proof of theorem. ¤

Corollary 3.1 (Extension of Numata Theorem). Let (M, F ) be Landsberg

metric of SCR type on a compact manifold M of dimension ≥ 3. Suppose that F

is Einstein metric with non-zero Ricci scalar. Then F is Riemannian.
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Corollary 3.2. Every negatively curved Finsler space of SCR type is Rie-

mannian.

Proof. Assume that F is negatively curved at a point x ∈ M . Since the
vector Iy is orthogonal to y with respect to gy, it follows from Ry(Iy) = 0 that
gy(Ry(I), I) = 0 but F is negatively curved at the point x therefore Iy = 0 for
any y ∈ TxM\{0}. By Deicke’s theorem, F is Riemannian.
In [14], it has been proved that some Einstein (α, β)-metrics such as Matsumoto
and Kropina metrics with si = 0 and rij = 0 must be Riemannian or Ricci flat.
This results are exactly the same as Theorem 1.1 when F being the above (α, β)-
metrics.
Now we give an example of Einstein Landsberg metric. ¤

Example 2 ([17]). Let F = F (x, y, u, v) be a Finsler metric on an open subset
U ⊂ R2 in the form

F 2 = e2ρ(x,y)v2 exp
(
2a

u

v

)
,

where a is a constant. The mean Cartan torsion of F satisfies

I2 = 4.

The spray coefficients G1 = G and G2 = H by F are given by

G = −aρxuv +
1
2
(ρx − aρy)v2,

H = −1
2
aρyv2.

Thus F is a Berwald metric. Its Ricci scalar is

R = ρxxv2.

As F is Einstein if and only if
(

R
F 2

)
.k

= 0, this yields ρ.x.x = 0 or a = 0. These
are equivalent to F being Riemannian or Ricci flat.

Proof of Theorem 1.2. Let (M, F ) be a 3-dimensional Einstein Finsler
space of SCR type with Ricci scalar λ(x). The Riemann curvature in a direction
y ∈ TxM is a linear transformation Ry : TxM → TxM and the Ricci curvature is
defined as the trace of the Riemann curvature. In the other hand, for an arbitrary
basis {bi}3i=1 for TxM it can be expressed as

Ric(y) =
3∑

i=1

Ri
i(y).
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Assume that {bi}3i=1 is an orthonormal basis with respect to gy such that

b2 =
I

F (I)
, b3 =

y

F (y)
.

Let

Pi = span{bi, y}, i = 1, 2, 3

K(Pi, y) =
1

F 2(y)
gy(Ry(bi), bi).

Using Ry(y) = 0 and (14) we have

Ric(y) = F 2(y)K(P1, y).

As F is Einstein then

λ(x)F 2(y) = F 2(y)K(P1, y) = gy(Ry(b1), b1).

Thus the flag curvature of the flag P1 is a scalar function of x alone. We will
show that the flag curvature of every arbitrary flag P at x containing y depends
only on the section. Let P = span{V, y}, where V is an arbitrary vector in TxM

such that gy(V, V ) = 1 and gy(V, y) = 0, put v1 = gy(V, b1), v2 = gy(V, I) and
v3 = gy(V, y) = 0. As Ry is a linear function

Ry(V ) = Ry(v1b1 + v2b2 + v3b3) = v1Ry(b1) + v2Ry(I) + v3Ry(y) = v1Ry(b1).

Hence

gy(Ry(V ), V ) = gy(v1Ry(b1), V ) = (v1)2gy(Ry(b1), b1) + v1v2gy(Ry(b1), I)

+ v1v3gy(Ry(b1), y) = (v1)2gy(Ry(b1), b1) = (v1)2λ(x)F 2.

Thus
K(P, y) = λ(x)(v1)2. ¤

Theorem 3.1 (Ricci rigidity). Let F be an Einstein Landsberg metric of

SCR type in dimension 3 on a compact manifold M . Then F is locally Minkowski

if it is Ricci flat.

Proof. As it is proved in the proof of Theorem 1.2 one concludes that , for
each flag P at x containing y of this Einstein metric, the flag curvature K(P, y)
is a multiple of its Ricci scalar. If F is Ricci flat then it is of zero flag curvature.
According to Akbar-zadeh [2] (every Finsler metric of zero flag curvature is
locally Minkowskian), the proof is completed. ¤

The following question still remains open.
Is there any R-flat Landsberg metric which is not locally Minkowskian?
The above theorem is answered to this question in dimension 3. This states that
if there is R-flat Landsberg metric in dimension 3 which is not locally Minkowski,
it can not be of SCR type.
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