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Projective changes of Finsler spaces of constant curvature

By MAKOTO MATSUMOTO (Kyoto) and XIANZHU WEI (Fujian)

To the memory of Professor András Rapcsák

We have many interesting papers concerned with the theory of projec-
tive changes of Finsler spaces. In particular, projective changes between
Finsler spaces of constant curvature have been studied by some authors,
for instance, [1], [6] and [7]. The most essential result seems to be Fukui–
Yamada’s [1]: A projective map of a Finsler space Fn of constant curva-
ture is also a space F̄n of constant curvature if and only if the projective
factor P (x, y) satisfies Qij = P.i;j − P.j;i = 0. Precisely speaking, the
meaning of this “if and only if” is as follows:

Let Fn → F̄n be a projective map between Finsler spaces and let Fn

be of constant curvature. Then F̄n is also of constant curvature if and
only if the projective factor P satisfies Qij = 0.

It is, however, not sure that the map F̄n has also a Finsler metric,
and the “if and only if” above may cause misunderstanding.

The purpose of the present paper is to discuss the metrizability of
the projective change of Finsler spaces of constant curvature based on
A. Rapcsák’s remarkable results [5]. The main results are stated as The-
orems 1 and 2.

§1. Rapcsák’s theorem on projective changes

Let Fn = (Mn, L(x, y)) be a Finsler space on a differentiable n–
manifold Mn equipped with the fundamental function L(x, y). We denote
by gij(x, y) and gij(x, y) the fundamental tensor gij = ∂2F/∂yi∂yj (F =
L2/2) and its reciprocal. If we put

Gi(x, y) =
{
yr(∂2F/∂xr∂yi)− ∂F/∂xi

}
/2 ,

and Gi = gijGj , then the Berwald connection BΓ =
(
Gj

i
k(x, y), Gi

j(x, y)
)

of Fn is defined by Gi
j = ∂Gi/∂yj and Gj

i
k = ∂Gi

j/∂yk, and a geodesic
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of Fn is given by the differential equations

d2xi/ds2 + 2Gi(x, dx/ds) = 0 ,

where we put ds = L(x, dx). The h– and v-covariant differentiations with
respect to BΓ are denoted by (; ) and (. ) respectively; if we are concerned,
for instance, with a covariant vector field Xi(x, y), we have

Xi;j = ∂jXi − (∂̇rXi)Gr
j −XrGi

r
j , Xi.j = ∂̇jXi ,

where ∂j = ∂/∂xj and ∂̇j = ∂/∂yj .
Let F̄n = (Mn, L̄(x, y)) be another Finsler space on the same mani-

fold Mn equipped with the fundamental function L̄(x, y) and the Berwald
connection BΓ̄ = (Ḡj

i
k, Ḡi

j). As A. Rapcsák [5] has shown, we obtain
the following general relation between Gi and Ḡi:

(1.1) 2Ḡi = 2Gi + L̄;0y
i/L̄− L̄ḡij∆j(L̄) ,

where the subscript 0 denotes transvection by yi, and ∆j(S) [4] for a scalar
field S stands for

(1.2) ∆j(S) = S;j − S;r.jy
r .

Now the change p : L(x, y) → L̄(x, y) of the metric is called a pro-
jective change and Fn is called projective to F̄n, if any geodesic of Fn is
also a geodesic of F̄n as a point set and vice versa. As is well-known, p
is projective if and only if there exists a positively homogeneous function
P (x, y) of degree one in yi, called the projective factor, satisfying

(1.3) Ḡi(x, y) = Gi(x, y) + P (x, y)yi .

From (1.3) we get

(1.4) Ḡi
j = Gi

j + P.jy
i + Pδi

j .

Then the metricity condition L̄;̄i = ∂iL̄ − (∂̇rL̄)Ḡr
i = 0 for BΓ̄ of F̄n is

written in the form

L̄;̄i = ∂iL̄− ∂̇rL̄(Gr
i + P.iy

r + Pδr
i ) = L̄;i − (L̄P ).i = 0 .

Thus we have ∆j(L̄) = (L̄P ).i − (L̄P ).r.iy
r, which is equal to zero from

the homogeneity of L̄P . Conversely, if we have ∆j(L̄) = 0, then (1.1) has
the form of (1.3) where P = L̄;0/2L̄.

Therefore we obtain Rapcsák’s fundamental theorem [4], [5] on pro-
jective changes as follows:
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Theorem (Rapcsák). If a Finsler space F̄n = (Mn, L̄(x, y)) is projec-
tive to a Finsler space Fn = (Mn, L(x, y)), then L̄ satisfies the differential
equations

∆i(L̄) = L̄;i − L̄;r.iy
r = 0 ,

and the projective factor P (x, y) is given by P = L̄;0/2L̄. Conversely, if
we have a scalar field L̄ satisfying the differential equations ∆i(L̄) = 0 and
the well-known conditions for a fundamental function of a Finsler space,
then we get a Finsler space F̄n = (Mn, L̄(x, y)) which is projective to Fn.

As Rapcsák has shown, the equations ∆i(L̄) = 0 are equivalent to
one of the following two conditions:

(1.5) (1) L̄;i.j − L̄;j.i = 0, (2) L̄.i;j − L̄.j;i = 0 .

For later use we shall express ∆i(L̄) = 0, P and (2) of (1.5) in terms of
F̄ = L̄2/2:

2F̄ (F̄;i − F̄;r.iy
r) + F̄;0ȳi = 0 ,(1.6)

P = F̄;0/4F̄ ,(1.7)

2F̄ (F̄;i.j − F̄;j.i) = F̄;iȳj − F̄;j ȳi .(1.8)

§2. Projective change between Finsler spaces of scalar curvature

We consider a projective change p : Fn → F̄n with the projective fac-
tor P (x, y). According to Z. Szabó’s theorem [2], a projectively invariant
Weyl tensor vanishes if and only if the space is of scalar curvature. Thus,
if Fn be assumed to be of scalar curvature K(x, y), then F̄n too must be
of scalar curvature K̄(x, y).

The Berwald connection BΓ of Fn has two surviving curvatures and
one surviving torsion [3]:

h-curvature Hh
i
jk = Ri

jk.h, hv-curvature Gh
i
jk = ∂̇kGh

i
j ,

(v)h-torsion Ri
jk = ∂kGi

j − ∂jG
i
k − (∂̇rG

i
j)Gr

k + (∂̇rG
i
k)Gr

j .

From (1.4) we get the relation [2]

(2.1) R̄i
0k = Ri

0k + yi(Q0k + Qk)− δi
kQ0 ,

where we put

Qk = P;k − PP.k, Qik = P.i;k − P.k;i = −(Qi.k −Qk.i) .
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It is easy to show the relation

(2.2) Q0.k = (Qry
r).k = 2Qk −Q0k .

As is well-known [3], the space Fn is of scalar curvature K, if and
only if we have Ri

0k = L2Khi
k where hi

k = δi
k − lilk is the angular metric

tensor. Since we have also the similar equation R̄i
0k = L̄2K̄h̄i

k for F̄n,
(2.1) implies

(2.3) L̄2K̄h̄i
k = L2Khi

k + yi(Q0k + Qk)− δi
kQ0 .

Contracting (2.3) by i = k, we get

(2.4) L̄2K̄ = L2K −Q0 .

Eliminating Q0 from (2.3) and (2.4) and paying attention to Lli = yi,
(2.3) reduces to the form

(2.5) L̄K̄l̄k = LKlk − (Q0k + Qk) .

Differentiating (2.4) by yk and substituting from (2.2) and (2.5), we obtain

(2.6) L̄2K̄.k = L2K.k + 3Q0k .

Summarizing the above, we have

Proposition 1. Let p : Fn = (Mn, L(x, y)) → F̄n = (Mn, L̄(x, y))
be a projective change from a Finsler space Fn of scalar curvature K(x, y)
to a Finsler space F̄n. Then F̄n is of scalar curvature K̄(x, y), where L̄
and K̄ satisfy (2.4) and (2.6).

§3. Projective change between Finsler spaces of constant curvature

Let p : Fn = (Mn, L(x, y)) → F̄n = (Mn, L̄(x, y)) be a projective
change from a Finsler space Fn of constant curvature K to a Finsler space
F̄n of constant curvature K̄. Then (2.6) reduces to Q0k = 0 and (2.2)
implies 2Qk = (Qry

r).k, that is, Qk = Qr.kyr. Differentiating this by yi,
we get Qk.i −Qi.k = Qr.k.iy

r. Consequently we have

Qr.k.iy
r = 0 ,(3.1)

Qi.k −Qk.i = P.k;i − P.i;k = 0 .(3.2)

The former is, however, only a consequence of the latter, because the
latter shows that Qr.k.iy

r = Qk.r.iy
r = Qk.i.ry

r, which is equal to zero
from the homogeneity.

Now (2.5) reduces to

(3.3) K̄ȳk = Kyk −Qk .
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Differentiating this by yi, we get

(3.4) K̄ḡik = Kgik −Qk.i .

If we put

(3.5) Q = Qry
r/2 = (P;0 − P 2)/2 ,

then we have Q.i = (Qi+Qr.iy
r)/2, which is equal to (Qi+Qi.ry

r)/2 = Qi

from (3.2); that is,

(3.6) Qi = Q.i .

Thus (3.4) is written in the form

(3.7) K̄ḡij = Kgij −Q.i.j ,

and (2.4) is also written as

(3.8) L̄2K̄ = L2K − 2Q .

Summarizing the above we get

Proposition 2. Let p : Fn = (Mn, L(x, y)) → F̄n = (Mn, L̄(x, y))
be a projective change from a Finsler space Fn of constant curvature K
to a Finsler space F̄n of constant curvature K̄ with the projective factor
P (x, y). Then P must satisfy (3.2) and we have (3.8) where Q(x, y) is
defined by (3.5).

§4. Metrizability condition

We consider Rapcsák’s metrizability condition (1.8). Since we have
(3.8), that is, F̄ K̄ = FK −Q, (1.8) is written as

(4.1) 2(FK −Q)(Q.i;j −Q.j;i) = (Kyi −Q.i)Q;j − (i/j) ,

provided that K̄ is assumed not to be equal to zero, where (i/j) stands
for the terms obtained from the preceding terms by interchanging indices
i, j. We have easily from (3.6), (3.2) and the Ricci identity

Q.i;j −Q.j;i = P;i.j − P.iP;j − (i/j) =

= − P.rR
r
ij − P.i(Qj + PP.j) + P.j(Qi + PP.i) =

= − P.rK(yiδ
r
j − yjδ

r
i )− P.iQj + P.jQi = P.i(Kyj −Qj)− (i/j) .

Thus (4.1) is rewritten as

(Kyi −Qi){Q;j + 2(FK −Q)P.j} − (i/j) = 0 ,
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which implies that we must have a scalar field v(x, y) satisfying

(4.2) Q;i + 2(FK −Q)P.i = v(Kyi −Qi) .

Then, in virtue of (3.8), (1.7) is written as P = F̄;0K̄/4F̄ K̄ = −Q;0/4
(FK − Q), and (4.2) gives Q;0 = 2(FK − Q)(v − P ). Consequently we
have v = −P and (4.2) is rewritten in the form

(4.3) Q;i + P (Kyi −Qi) + 2(FK −Q)P.i = 0 .

Summarizing all the above, we have

Theorem 1. Let p : Fn = (Mn, L(x, y)) → F̄n = (Mn, L̄(x, y)) be
a projective change from a Finsler space Fn of constant curvature K to
a Finsler space F̄n of non-zero constant curvature K̄ with the projective
factor P (x, y). Then P must satisfy (3.2) and (4.3), where Qi = P;i −
PP.i, Q = Q0/2 and F = L2/2. Then we get the relation (3.8) between
(L,K) and (L̄, K̄).

The metrizability condition (1.8) has been considered satisfactorily,
and the necessity of the following conditions has been stated above. We
can conclude the sufficiency as follows:

Theorem 2. Let Fn = (Mn, L(x, y)) be a Finsler space of constant
curvature K and assume that there exists in Fn a positively homogeneous
function P (x, y) of degree one in yi such that L2K − 2Q 6= 0 and (3.2)
and (4.3) are satisfied, where Qi = P;i − PP.i, Q = Q0/2 and F = L2/2.
Then Fn is projective to a Finsler space F̄n = (Mn, L̄(x, y)) of non-zero
constant curvature K̄, where L̄ and K̄ are given by (3.8).

Remark. For a non-zero quantity L2K− 2Q, we may choose any con-
stant K̄ of the same sign with L2K − 2Q and determine L̄ by (3.8). A
different choice of the constant K̄ corresponds to a homothetic change of
the metric L̄.

§5. Projective change between Riemannian spaces
of constant curvature

We shall apply our result to Riemannian spaces of constant curvature.
Then (3.2) shows that Pi of P = Pi(x)yi is locally a gradient vector field.
We have

Qi = (Pi;r − PiPr)yr, Q = (Pr;s − PrPs)yrys/2 .

Thus, putting

(5.1) pij(x) = Pi;j − PiPj ,
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it defines a symmetric tensor field and Q = pijy
iyj/2, Qi = pi0 and

Qi.j = pij . Therefore (3.7) gives

(5.2) K̄ḡij = Kgij − pij .

Further we consider (4.3); it is easy to show that the left-hand side of
(4.3) is a quadratic form in yi. If we consider the coefficients, then (4.3)
is written in the form

(5.3) pjk;i = Pj(pik −Kgik) + Pk(pij −Kgij) + 2Pi(pjk −Kgjk) .

Consequently we get the following result from Theorem 1:

Theorem 3. Let p : Rn = (Mn, gij(x)) → R̄n = (Mn, ḡij(x)) be a
projective change from a Riemannian space Rn of constant curvature K
to a Riemannian space R̄n of non-zero constant curvature K̄. Then we
have the projective factor P = Pi(x)yi with a locally gradient vector field
Pi and (5.2) where pij(x) is defined by (5.1) and must satisfy (5.3).

The theorem corresponding to Theorem 2 is easily stated.
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[5] A. Rapcs�ak, Über die bahntreuen Abbildungen metrischer Räume, Publ. Math.,
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