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Generalizations of Mitrinović, Adamović and Lazarević’s
inequalities and their applications

By SHANHE WU (Longyan) and ÁRPÁD BARICZ (Cluj-Napoca)

Abstract. In this paper, by introducing a parameter, we give new generalizations

of Mitrinović–Adamović’s inequality and Lazarević’s inequality, and we apply these re-

sults to present new refinements of Cusa–Huygens’ inequality and Wilker’s inequality.

These results improve many known results in the literature.

1. Introduction

Mitrinović and Adamović [11] proved that the inequality

cos x <

(
sin x

x

)3

(1)

holds for all x ∈ (0, π/2), and showed that the exponent 3 is the largest possible.
A hyperbolic analogue of inequality (1) was presented by Lazarević, which is
stated as follows:

cosh x <

(
sinhx

x

)3

, (2)

where x 6= 0, and the exponent 3 is the least possible (see [8, p. 131]).
Inequalities (1) and (2) were recorded by Mitrinović and Vasić in their

famous monograph [12], and from then they have evoked the interest of many
mathematicians. Surveys on various generalizations and developments of these
inequalities can be found in the monograph of Kuang [10]. Recently, several new
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proofs, variations, extensions and applications of this pair of inequalities have
been discussed in the literature. The interested reader is referred to the papers
[1], [3], [5], [6], [15], [19], [20], [21], [23] and to the references therein.

In this paper, we shall generalize the inequalities (1) and (2) by introducing
a parameter. It is important to note that the results presented here contain the
refinements of Mitrinović–Adamović’s inequality and Lazarević’s inequality as
special cases. In Section 4 of this paper, we show that our results can be applied
to the refinements of the Cusa–Huygens’s inequality and the Wilker’s inequality.

2. Main results

Our main results are the following theorems.

Theorem 1. If x ∈ (0, π/2), then the inequality

1− λ

3
+

λ

3
cosx <

(
sin x

x

)λ

(3)

holds if and only if λ < 0 or λ ≥ λ0, where λ0 ' 1.420330769 is the root of the

equation λ/3 + (2/π)λ − 1 = 0. Moreover, the inequality (3) is reversed if and

only if 0 < λ ≤ 7/5.

Theorem 2. If x 6= 0, then the inequality

1− λ

3
+

λ

3
cosh x <

(
sinhx

x

)λ

(4)

holds if and only if λ < 0 or λ ≥ 7/5. Moreover, the inequality (4) is reversed if

and only if 0 < λ ≤ 1.

3. Proof of the main results

Proof of Theorem 1. Define a function f : (0, π/2) → R by

f(x) = ln
(

1− λ

3
+

λ

3
cos x

)
− ln

(
sin x

x

)λ

,
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where λ is a parameter and λ < 3. Differentiating f(x) with respect to x gives

f ′(x) =
−λ sin x

3− λ + λ cosx
− λ cosx

sin x
+

λ

x

=
λ

(−x sin2 x + (λ− 3)(x cos x− sin x)− λx cos2 x + λ sin x cos x
)

(3− λ + λ cosx)x sin x

, λg1(x)
(3− λ + λ cosx)x sin x

.

Computing the derivative of g1(x) gives

g′1(x) = (sin x)(−2x cos x− sin x + 3x− λx + 2λx cos x− λ sin x)

, (sinx)g2(x).

Similarly, we have

g′2(x) = 2x sin x− 3 cos x + 3− λ− 2λx sin x + λ cosx

= (sin x)
(
(3− λ) tan

x

2
+ (2− 2λ)x

)
, (sinx)g3(x),

g′3(x) =
3− λ

2

(
sec2 x

2
− 4λ− 4

3− λ

)
.

To prove the required results, we consider the following four cases.

Case I. If 0 < λ ≤ 7/5, then clearly (4λ− 4)/(3− λ) ≤ 1. We have

g′3(x) =
3− λ

2

(
sec2 x

2
− 4λ− 4

3− λ

)
> 0

for all x ∈ (0, π/2). On the other hand g3(0) = 0, and thus we conclude that
the function g3 is increasing and positive on (0, π/2). Similarly, by using the
functional relationships stated above, we deduce that the functions g2 and g1

are also increasing and positive on (0, π/2). Hence, we have f ′(x) > 0 for all
x ∈ (0, π/2), we thus infer that f is increasing on (0, π/2).

Now, from
lim

x→0+
f(x) = 0,

we deduce that

f(x) = ln
(

1− λ

3
+

λ

3
cos x

)
− ln

(
sin x

x

)λ

> 0

for all x ∈ (0, π/2), which leads to the reverse inequality of (3).
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Case II. When λ < 0. It is easy to see that in this case we also have that
g′3(x) > 0 for all x ∈ (0, π/2). In the same way as in previous case, we can
deduce that the functions g3, g2, g1 are increasing and positive on (0, π/2). Note
that λ < 0, we thus have f ′(x) < 0 for all x ∈ (0, π/2), which implies that
f is decreasing on (0, π/2). Consequently, we have f(x) < f(0+) = 0 for all
x ∈ (0, π/2), i.e.

ln
(

1− λ

3
+

λ

3
cosx

)
− ln

(
sinx

x

)λ

< 0,

which evidently implies the desired inequality (3).

Case III. When λ ≥ λ0 ' 1.420330769.
We first consider the case of λ = λ0. Since the function

x 7→ g′3(x) =
3− λ0

2

(
sec2 x

2
− 4λ0 − 4

3− λ0

)

is increasing on (0, π/2), and g′3(0) < 0, g′3(π/2−) = +∞, we conclude that
there exists x1 ∈ (0, π/2) such that g′3(x) < 0 for all x ∈ (0, x1), g′3(x1) = 0
and g′3(x) > 0 for all x ∈ (x1, π/2). Thus, the function g3 is decreasing from
g3(0) = 0 to g3(x1) < 0 and then increasing to g3(π/2) > 0. Hence, there is
x2 ∈ (x1, π/2) such that g3(x) < 0 for all x ∈ (0, x2), g3(x2) = 0 and g3(x) > 0
for all x ∈ (x2, π/2).

Now, from g′2(x) = (sin x)g3(x), we conclude that the function g2 is decreas-
ing from g2(0) = 0 to g3(x2) < 0 and then increasing to g2(π/2) > 0. Hence,
there is x3 ∈ (x2, π/2) such that g2(x) < 0 for all x ∈ (0, x3), g2(x3) = 0 and
g2(x) > 0 for x ∈ (x3, π/2). Further, from g′1(x) = (sin x)g2(x), we deduce that
the function g1 is decreasing from g1(0) = 0 to g1(x3) < 0 and then increasing to
g1(π/2) > 0. Hence, there is x4 ∈ (x3, π/2) such that g1(x) < 0 for all x ∈ (0, x4),
g1(x4) = 0 and g1(x) > 0 for all x ∈ (x4, π/2).

Finally, from the relation

f ′(x) =
λ0g1(x)

(3− λ0 + λ0 cos x)x sinx
,

we conclude that the function f is decreasing from f(0+) = 0 to f(x4) < 0 and
then increasing to f(π/2) = 0. Therefore, for all x ∈ (0, π/2) we have

f(x) = ln
(

1− λ0

3
+

λ0

3
cosx

)
− ln

(
sin x

x

)λ0

< 0,
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that is,

1− λ0

3
+

λ0

3
cosx <

(
sin x

x

)λ0

. (5)

Next, we prove the validity of inequality (3) for λ > λ0. We shall use the
well-known Bernoulli inequality [12, p. 34], which states that if −1 < u 6= 0 and
0 < α < 1, then

(1 + u)α > 1 + αu for α > 1 or α < 0; (6)

(1 + u)α < 1 + αu for 0 < α < 1. (7)

It is easy to verify that (λ0/3) cos x − λ0/3 > −1 and λ/λ0 > 1. By using the
Bernoulli inequality (6) and the inequality (5), we have

(
sin x

x

)λ

=

((
sinx

x

)λ0
)λ/λ0

>

(
1 +

(
λ0

3
cosx− λ0

3

))λ/λ0

≥ 1 +
λ

λ0

(
λ0

3
cosx− λ0

3

)
= 1− λ

3
+

λ

3
cos x.

This proves the desired inequality (3).

Case IV. When 7/5 < λ < λ0 ' 1.420330769. Via the same discussions as
in the previous case, we can find that the function

f(x) = ln
(

1− λ

3
+

λ

3
cos x

)
− ln

(
sin x

x

)λ

is decreasing from f(0+) = 0 to f(η) < 0 (0 < η < π/2) and then increasing to
f(π/2) > 0, where f(π/2) = ln(1−λ/3)−λ ln(2/π) > ln(1−λ0/3)−λ0 ln(2/π) = 0.

It means that the inequality (3) as well as its reverse version are not true in
general under the assumption that 7/5 < λ < λ0. This proves the validity of the
assertion that the constant λ0 is the minimum positive value of λ for which the
inequality (3) holds, and the constant 7/5 is the maximum value of λ for which
the reverse inequality of (3) holds.

This completes the proof of Theorem 1. ¤

Proof of Theorem 2. Define a function φ : (0,∞) → R by

φ(x) = ln
(

1− λ

3
+

λ

3
cosh x

)
− ln

(
sinhx

x

)λ

,
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where λ is a parameter and λ > 0. Differentiating φ(x) with respect to x gives

φ′(x) =
λ

(
x sinh2 x + (λ− 3)(x cosh x− sinhx)− λx cosh2 x + λ sinhx coshx

)

(3− λ + λ cosh x)x sinh x

, λϕ1(x)
(3− λ + λ coshx)x sinhx

.

Further, we have

ϕ′1(x) = (sinh x)(2x cosh x + sinh x− 3x + λx− 2λx coshx + λ sinhx)

, (sinhx)ϕ2(x),

ϕ′2(x) = (sinh x)
(
(3− λ) tanh

x

2
+ (2− 2λ)x

)

, (sinhx)ϕ3(x),

ϕ′3(x) =
1

2 cosh2 x
2

(
3− λ− (4λ− 4) cosh2 x

2

)
.

Observe that for all x 6= 0 we have

1− λ

3
+

λ

3
cosh(−x)−

[
sinh(−x)

(−x)

]λ

= 1− λ

3
+

λ

3
cosh x−

(
sinhx

x

)λ

,

thus, in order to prove Theorem 2, it is enough to prove that the inequalities
asserted by Theorem 2 hold for all x > 0.

As in the proof of Theorem 1 we consider four cases.

Case I. If λ ≥ 7/5, then (3− λ)/(4λ− 4) ≤ 1. In this case for all x > 0 we
have

ϕ′3(x) =
2λ− 2
cosh2 x

2

(
3− λ

4λ− 4
− cosh2 x

2

)
< 0.

On the other hand ϕ3(0) = 0, and thus we conclude that the function ϕ3 is de-
creasing and negative on (0, +∞). Similarly, by using the functional relationships
stated above, we deduce that the functions ϕ2 and ϕ1 are also decreasing and
negative on (0,+∞). Hence, we infer that φ is decreasing on (0, +∞). Taking
into account that φ(0+) = 0 we obtain that for all x > 0

φ(x) = ln
(

1− λ

3
+

λ

3
cosh x

)
− ln

(
sinhx

x

)λ

< 0,

which leads to the required inequality (4).
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Case II. When 0 < λ ≤ 1. It is easy to see that for all x > 0

ϕ′3(x) =
1

2 cosh2 x
2

(
3− λ + (4− 4λ) cosh2 x

2

)
> 0.

Consequently, as in the previous case we have that the functions ϕ1, ϕ2, ϕ3 are
increasing and positive on (0, +∞). We thus have φ′(x) > 0 for all x > 0, which
implies that φ is increasing on (0, +∞). Consequently, we have φ(x) > φ(0+) = 0
for all x ∈ (0,+∞), which implies the reverse inequality of (4), that is,

1− λ

3
+

λ

3
cosh x >

(
sinhx

x

)λ

.

Case III. When λ < 0. In this case −λ > 0, and by appealing to the result
proved in the previous case, we obtain that for all x > 0

(
sinh x

x

)−λ

< 1− (−λ)
3

+
(−λ)

3
coshx,

that is, (
sinhx

x

)λ

>
1

1 + λ/3− (λ/3) cosh x
.

This in turn implies that

(
sinhx

x

)λ

>
1

1 + λ/3− (λ/3) cosh x

>
1− (λ/3− (λ/3) cosh x)2

1 + λ/3− (λ/3) cosh x
= 1− λ

3
+

λ

3
cosh x,

which is exactly the required inequality (4).

Case IV. When 1 < λ < 7/5. Note that the function

x 7→ ϕ′3(x) =
3− λ

2

(
1

cosh2 x
2

− 4λ− 4
3− λ

)

is decreasing on (0, +∞), and ϕ′3(0) > 0 , ϕ′(+∞) < 0. Consequently, there exists
x1 ∈ (0,+∞) such that ϕ′3(x) > 0 for all x ∈ (0, x1), ϕ′3(x1) = 0 and ϕ′3(x) < 0
for all x > x1. Thus, the function ϕ3 is increasing from ϕ3(0) = 0 to ϕ3(x1) > 0
and then decreasing to ϕ3(+∞) = −∞.
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Similarly, by investigating the monotonicity of functions ϕ2, ϕ1, φ, we deduce
that there exist x2, x3, x4 such that the function ϕ2 is increasing from ϕ2(0) = 0
to ϕ3(x2) > 0 and then decreasing to ϕ2(+∞) = −∞; ϕ1 is increasing from
ϕ1(0) = 0 to ϕ1(x3) > 0 and then decreasing to ϕ1(+∞) = −∞; φ is increasing
from φ(0) = 0 to φ(x4) > 0 and then decreasing to φ(+∞) = −∞. These in
turn imply that the inequality (4) as well as its reverse are not true in general
under the assumption that 1 < λ < 7/5. This proves the validity of the assertion
that the constant 7/5 is the minimum positive value of λ for which the inequality
(4) holds, and the constant 1 is the maximum value of λ for which the reverse
inequality of (4) holds. ¤

4. Some applications

In this section, we show some applications of Theorems 1 and 2. By using
Theorems 1 and 2, and the Bernoulli inequality (6), we get immediately the follow-
ing refinements of Mitrinović–Adamović’s inequality and Lazarević’s inequality.

Corollary 1. Let x ∈ (0, π/2) and λ ∈ [λ0, 3], where λ0 ' 1.420330769 is

the root of the equation λ/3 +
(
2/π

)λ − 1 = 0. Then the following inequality

holds

cos x ≤
(

1− λ

3
+

λ

3
cosx

)3/λ

<

(
sinx

x

)3

.

Corollary 2. Let x 6= 0 and λ ∈ [7/5, 3]. Then the following inequality

holds

cosh x ≤
(

1− λ

3
+

λ

3
cosh x

)3/λ

<

(
sinhx

x

)3

.

The inequality
sinx

x
<

2 + cos x

3
, (8)

which holds for all x ∈ (0, π/2), is known in the literature as Cusa–Huygens’
inequality (see [17]). As a consequence of Theorem 1, by using the Bernoulli in-
equality (7), we obtain that the following refinement of Cusa–Huygens’ inequality.

Corollary 3. If x ∈ (0, π/2) and λ ∈ [1, 7/5], then we have

sin x

x
<

(
1− λ

3
+

λ

3
cosx

)1/λ

≤ 2 + cos x

3
.
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In [14], Qi et al. presented a reversed version of Cusa–Huygens’ inequality,
as follows:

sinx

x
>

1 + cos x

2
, (9)

where x ∈ (0, π/2). The following result, which follows easily from Theorem 1
and Bernoulli’s inequality (6), is a refinement of (9).

Corollary 4. Let x ∈ (0, π/2) and λ ∈ [λ0, 2], where λ0 ' 1.420330769 is

the root of the equation λ/3 +
(
2/π

)λ − 1 = 0. Then the following inequality

holds
sin x

x
>

(
1− λ

3
+

λ

3
cosx

)1/λ

>
1 + cos x

2
.

The inequality (
sinx

x

)2

+
tan x

x
> 2,

which holds for all x ∈ (0, π/2), is known in the literature as Wilker’s inequality
(see [16], [18]). Recently, Zhu [23] gave a hyperbolic analogue of the Wilker
inequality, as follows: (

sinhx

x

)2

+
tanh x

x
> 2,

where x 6= 0. The following result is a generalized and refined version of the above
Wilker-type inequality.

Corollary 5. Let x 6= 0 and p ≥ 1. Then the following inequality holds

(
sinhx

x

)2p

+
(

tanh x

x

)p

>
( x

sinhx

)2p

+
( x

tanh x

)p

> 2.

Proof. From the Lazarević inequality (2), we observe that

( x

sinhx

)2 x

tanh x
= cosh x

( x

sinhx

)3

< 1,

so that

(
sinh x

x

)2p

+
(

tanh x

x

)p

>

[(
sinhx

x

)2p

+
(

tanh x

x

)p
][( x

sinhx

)2 x

tanh x

]p

=
( x

sinhx

)2p

+
( x

tanh x

)p

.
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On the other hand, putting λ = 1 in Theorem 2 gives

cosh x > 3
(

sinhx

x

)
− 2.

By using the power means inequality and the above inequalities, we have

( x

sinhx

)2p

+
( x

tanh x

)p

≥ 21−p

[( x

sinhx

)2

+
x

tanh x

]p

= 21−p

[( x

sinhx

)2

+
( x

sinhx

)
cosh x

]p

> 21−p

[( x

sinhx

)2

+
( x

sinhx

) (
3

(
sinhx

x

)
− 2

)]p

= 21−p

[
2 +

(
1− x

sinh x

)2
]p

> 2,

which completes the proof. ¤

In the same way, as above, one can prove the following generalized and refined
version of the Wilker inequality.

Corollary 6. If x ∈ (0, π/2) and p ≥ 1, then

(
sin x

x

)2p

+
(

tan x

x

)p

>
( x

sin x

)2p

+
( x

tanx

)p

> 2.

We note that new researches, which are concerned with the inequalities (8),
(9), Wilker’s inequality and its hyperbolic analogue, are in active progress. Read-
ers can refer to the papers [2]–[4], [7], [22] and to the references therein. In [2], the
second author extended the inequalities (8) and (9) to generalized Bessel func-
tions of the first kind, while in [4], Baricz and Sándor extended the results
from [20] to Bessel functions of the first kind. The paper [22] contains the full
solution of Oppenheim, and generalizes the inequalities (8) and (9), while the
paper [7] contains the extensions of the results from [22] to Bessel and modified
Bessel functions of the first kind. Moreover, during the course of writing this
paper we have found the paper of Klén et al. [9], where another improvements
of the inequalities (8) and (9) were presented.

Finally, it is worth to mention that the right-hand side of the above inequality
in Corollary 6 is actually a general form of [20, Lemma 3]. Moreover, we note
that the inequality (

sin x

x

)2p

+
(

tan x

x

)p

> 2,
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which holds for all x ∈ (0, π/2) and p ≥ 1, has been discussed in a more general
setting by Wu and Srivastava [20], and actually the above generalized Wilker
inequality holds true for all p > 0 or p ≤ −1, conform [20, Theorem 1].
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