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Quasicompact endomorphisms of Lipschitz algebras
of analytic functions

By HAKIMEH MAHYAR (Tehran) and AMIR H. SANATPOUR (Tehran)

Abstract. We study power compact and quasicompact endomorphisms of certain
subalgebras of analytic Lipschitz algebras. We first give a sufficient condition for a
quasicompact endomorphism of these algebras to be power compact. Then in certain
cases, we show that this condition is also necessary. Using this, by constructing an
example, we show that there exists a quasicompact endomorphism of these algebras
which is not power compact. As a final result, we give a necessary condition for the
quasicompactness of an endomorphism of these algebras.

1. Introduction

Let A be a Banach function algebra on a compact Hausdorff space X with
maximal ideal space M 4. For every z € X, let §, be the evaluation map on
A defined by 6,(f) = f(z) for every f € A. Then the map § : * — §, is a
homeomorphism from X onto a (weak*) compact subset §(X) of My. We will
frequently identify X with its image 6(X) in M4 and use the identification z ~ ¢,
for every © € X. A Banach function algebra A is called natural when the map §
isonto M4, ie., X = Mau.

Let A be a natural Banach function algebra on a compact Hausdorff space X.
Then every unital endomorphism T of A has the form T'f = f o ¢, for some
selfmap ¢ : X — X. In this case we say that T is induced by ¢. Note that if T" is
an endomorphism of A induced by the selfmap ¢, then T" is an endomorphism
of A induced by the selfmap ¢, : X — X for each n € N, where ¢,, denotes
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the n-th iterate of ¢. In this note we consider endomorphisms which are also
quasicompact or power compact. For convenience we give the definition of these
endomorphisms.

Definition 1.1. Let E be an infinite-dimensional Banach space. We denote by
B(FE) and K(E) the Banach algebra of all bounded operators and compact opera-
tors on E, respectively. The essential spectrum o.(T') of T € B(FE) is the spectrum
of T+K(E) in the Calkin algebra B(E)/K(FE). The essential spectral radius r.(T)
of T € B(E) is given by the formula 7 (T) = lim,, . (dist(T™, K(E)))"/". The
operator T' € B(E) is called Riesz or quasicompact if r.(T) = 0 or r.(T) < 1,
respectively. If TV is compact for some positive integer N, then T is called power
compact.

Clearly every power compact operator is Riesz. Also every Riesz operator
is quasicompact. A question one may ask is when a quasicompact (or Riesz) en-
domorphism is power compact. FEINSTEIN and KAMOWITZ in [4, Theorem 2.2]
showed that every quasicompact endomorphism of Dales-Davie algebras D(X, M)
induced by an analytic selfmap of X is power compact when D(X, M) is a nat-
ural Banach function algebra on a connected compact plane set X. They also
considered this problem for endomorphisms of certain uniform algebras and the
Banach algebra C'[0, 1] of continuously differentiable functions on [0, 1]. In this
paper we investigate this question for certain subalgebras of Lipschitz algebras
defined as follows.

Definition 1.2. Let (X,d) be a compact metric space and 0 < o < 1. The
Lipschitz algebra of order «, Lip(X, ), is the algebra of all complex-valued func-
tions f on X for which

|f(z) = f(y)|
d*(z,y)

The subalgebra of those functions f € Lip(X,a) for which % — 0 as
d(x,y) — 0 is denoted by lip(X, ).

pa(f)sup{ :x,yGXandx;éy}<00.

These Lipschitz algebras were first studied by SHERBERT [13], [14]. The
algebras Lip(X,«a) for 0 < a < 1 and lip(X,«a) for 0 < o < 1 are natural
Banach function algebras on X under the norm || f|lo = ||fllx + pa(f), where
Ifllx = sup,ex |£(@)]

It was shown in [7] that if ¢ induces a compact endomorphism of a unital
commutative semi-simple Banach algebra A with connected maximal ideal space
My, then Non(Ma) = {a} for some a € M4. Then in [4, Theorem 1.2], FE-
INSTEIN and KAMOWITZ gave a short proof showing that a stronger result holds
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even for quasicompact endomorphisms, as Theorem 1.1 below. First we give some
notations.

Let A be a unital commutative semi-simple Banach algebra. For each a, b in
My we let |ja — b|| = sup{|f(a) — F(b)| : f € A, ||f|| <1} (the norm of a — b in
the dual space A* of A). Furthermore, we let B*(a,e) = {b € My : ||la — b|| < e}
fore >0and a € My.

Theorem 1.1. [4, Theorem 1.2] Let A be a unital commutative semi-simple
Banach algebra with connected maximal ideal space M 4. Suppose that T is a
unital quasicompact endomorphism of A induced by the selfmap @ of M 4. Then
the following hold:

(i) The operators T™ converge in operator norm to a rank-one unital endomor-

phism S of A, and there exists a € M4 such that Sf = f(a)l for all f € A.
This point a is the unique fixed point of .

(ii) For each € > 0, there exists a positive integer N such that on(Ma) C
B*(a,¢).

(iil) Y on(Ma) = {a}.

2. Sufficient conditions

Let X be a compact plane set with nonempty interior and A(X) denote
the uniform algebra of all continuous complex-valued functions on X which are
analytic on intX. Let 0 < a < 1 and Lip4(X,«a) = Lip(X,a) N A(X). Then
(Lip 4 (X, @), ||-|l) is a Banach function algebra on X, and its maximal ideal
space is X [6]. Therefore every unital endomorphism 7" of Lip 4 (X, a) has the
form T'f = f o ¢ for some selfmap ¢ : X — X. Note that in this case ¢ €
Lip 4 (X, @), since Lip 4 (X, «) contains the coordinate function Z. The compact
endomorphisms of Lip 4 (X, ) have been studied in [1]. Here we investigate the
quasicompact endomorphisms of these algebras.

Let T be a quasicompact endomorphism of Lip 4(X, «) induced by the self-
map ¢ : X — X. When X is connected, by Theorem 1.1(i), ¢ has a unique fixed
point zg € X. In the following theorem we impose a condition on zg which implies
that T' is power compact.

Theorem 2.1. Let X be a connected compact plane set with nonempty
interior and 0 < «a < 1. Suppose that T is a quasicompact endomorphism of
Lip4(X, «) induced by the selfmap ¢ : X — X with the fixed point zqy. If zy €
intX, then T is power compact.
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PROOF. Let B(zg,d) C intX for some positive number §. By Theorem 1.1(ii),
there exists a positive integer N such that

enlX) € B (30,77 ) 1)

for all n > N. Since the algebra Lip 4 (X, «) contains the coordinate function Z,
one has |z — w| < || Z]|a|lz — w|| and therefore B*(z,r) C B(z,r||Z]||) for each
z € X and r > 0. Employing (1), we have ¢,(X) C B(zg,d) for all n > N.
Since T is an endomorphism of Lip 4 (X, a) induced by ¢ and oy (X) C intX,
by [1, Theorem 2.1, it follows that 7%V is compact and therefore T is power
compact. ([l

Now we show that the result of Theorem 2.1 also holds true for certain
subalgebras of Lip 4(X, «), namely lip 4 (X, a) = lip(X,a) N A(X) for 0 < a < 1
and Lipp(X,«) for 0 < a < 1, where Lipp(X, @) is the closed subalgebra of
Lip(X, a) generated by Ry(X), the algebra of rational functions with poles off X.
These are Banach function algebras on X. The maximal ideal space of lip 4 (X, @)
and Lipg(X, o) coincides with X (for more details about these algebras see [5],
[8], [9], [10], [11], and [12]). To prove Theorem 2.1 for these algebras, we need the
following result.

Proposition 2.1. Let A be a natural Banach function algebra on a compact
Hausdorff space X. Suppose that the selfmap ¢ : X — X induces a compact
endomorphism of A. If B is a closed subalgebra of A which is closed under the
composition of ¢, then ¢ induces a compact endomorphism of B.

PROOF. Let T be a compact endomorphism of A induced by ¢. The closed-
ness of B under the composition of ¢ implies that B is invariant under 7. Hence,
the compactness of T': A — A and the completeness of B imply that T is a
compact endomorphism of B. a

Corollary 2.1. Let X be a compact plane set with nonempty interior and
T be an endomorphism of lip4(X,a) (0 < a < 1) or Lipp(X,a) (0 < a < 1)
induced by the selfmap ¢ of X. If o(X) C intX, then T is compact.

PROOF. Let B be any of the algebras lip 4, (X, ) or Lipz(X, ) and T be the
endomorphism of B induced by ¢. Since Z € B, we have ¢ € B C Lip,4(X, a)
and since p(X) C intX, by the Functional Calculus Theorem, f oy € Lip 4 (X, @)
for all f € Lip4(X,a). Therefore, f +— f o ¢ is an endomorphism of Lip 4 (X, @)
which is also compact by [1, Theorem 2.1]. Now Proposition 2.1 implies that T
is a compact endomorphism of B. O
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Using Corollary 2.1 and the same argument of the proof of Theorem 2.1, we
have the following result.

Corollary 2.2. Let X be a connected compact plane set with nonempty
interior. Suppose that T is a quasicompact endomorphism of lip 4,(X,«) (0 <
a < 1) or Lipp(X,a) (0 < a < 1) induced by the selfmap ¢ : X — X with the
fixed point zy. If zy € intX, then T is power compact.

We now give a discussion on isolated points of M4, when A is a closed
function subalgebra of Lip(X,«a) (0 < a < 1). First, in general, let A be a
natural Banach function algebra on a connected compact Hausdorff space X and
T be a quasicompact endomorphism of A induced by the selfmap ¢ : X — X
with the fixed point zg. If zg is isolated in the norm topology of X = May,
then by Theorem 1.1(ii) we have ¢n(X) = {20} for some positive integer N.
This implies that ¢y is constant on X and therefore T is power compact. So,
as [4, Corollary 1.3], we have the following sufficient condition for the power
compactness of T.

Proposition 2.2. Let A be a natural Banach function algebra on a con-
nected compact Hausdorff space X. Let T be a quasicompact endomorphism of
A induced by the selfmap ¢ on X with the fixed point zy. Then T is power
compact if any of the following conditions is satisfied.

(i) zo is an isolated point of X = M4 in the norm topology.

(ii) A has no nonzero point derivation at zy.

However, as the following theorem shows when A is a natural closed function
subalgebra of Lip(X,a) (0 < a < 1) on a connected compact metric space (X, d),
X = M4 cannot have an isolated point in its norm topology. So Proposition 2.2
cannot be useful for this kind of algebra.

Theorem 2.2. Let (X,d) be a compact metric space and A be a closed
function subalgebra of Lip(X,«) (0 < a < 1). Then the metric topology, the
weak® topology, and the norm topology coincide on X (~ §(X)).

PROOF. Since 6(X) C My is the homeomorphic image of X under the map
0 : ¢ — d,, the metric topology d and the weak* topology coincide on §(X). On
the other hand, as we know the weak™ topology is weaker than the norm topology
on A* and hence on §(X). Therefore, all we must show is that the norm topology
is weaker than the metric topology d on §(X).

By the definition of p, for every x,y € X and f € A, we have

[f (@) = f(y)] <palf) d*(z,y) < |[[flla d(2,y).
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Consequently, [lz — y|| = sup{|f(x) — f(y)| : f € A, [|flla < 1} < d*(z,y). This
implies that the norm topology is weaker than the metric topology d on 6(X),
which completes the proof of the theorem. O

As another application of Theorem 2.2, we have the following corollary about
the point derivations of lip(X, «) (0 < a < 1). Before stating this corollary we
recall that by [2, Theorem 1.6.2] if there exists no nonzero point derivation on
a Banach algebra A at a point a € My, then a is an isolated point of M4
in the norm topology. Consequently, if (X,d) is a compact metric space and
A is a natural closed function subalgebra of Lip(X,«a) (0 < a < 1), then by
Theorem 2.2 there exists a nonzero point derivation at each nonisolated point x
of (X,d). SHERBERT in [14] showed that there exists no nonzero bounded point
derivation on lip(X, ) (0 < o < 1) at each point € X. Combining this with the
above arguments, we get the following corollary which has already been proved
in [3, Theorem 4.4.30(iv)] in a different way.

Corollary 2.3. Let (X,d) be a compact metric space and 0 < o < 1. If x is
not an isolated point of (X,d), then there exists an unbounded point derivation
on lip(X, a) at x.

3. Necessary conditions

In this section we first consider the converse of Theorem 2.1, i.e., for a power
compact endomorphism T of Lip 4 (X, «) induced by ¢, does the fixed point of ¢
belong to intX? For the case o = 1 and certain plane sets X we show that the
answer of this question is positive. The type of plane sets which we shall consider
are introduced as follows.

Definition 3.1. A plane set X has an internal circular tangent at ¢ € 0X if
there exists an open disc A contained in X with AN X = {c}. A plane set X is
strongly accessible from the interior if it has an internal circular tangent at each
point of its boundary.

We say that a compact plane set X has peak boundary with respect to B C
C(X) if for each ¢ € OX there exists a nonconstant function h € B such that
Ihllx = h(c) = 1.

For example, if X is a compact plane set such that C\ X is strongly accessible
from the interior, then X has peak boundary with respect to Ry(X) and hence
with respect to every subset of C(X) which contains Rg(X).
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In the next theorem we consider the converse problem for Lip,(X,1) and
those compact plane sets X which are strongly accessible from the interior and
have peak boundary with respect to Lip4(X,1). Such sets include the closed
unit disc D andB(zq,7) \ UR_, B(zk, 1) where closed discs B(zy, i) are mutually
disjoint in B(zg,7) = {2 € C: |z — 29| < 7}.

Theorem 3.1. Let Q be a bounded domain in the plane and X = Q be
strongly accessible from the interior and have peak boundary with respect to
Lip4(X,1). Let T be a nonzero power compact endomorphism of Lip 4(X,1)
induced by the nonconstant selfmap ¢ : X — X. If zy is the fixed point of ¢,
then zg € intX.

PROOF. Let T be power compact, that is TV be compact for a positive
integer V. By the hypothesis, ¢ is nonconstant and € is a domain, therefore ¢n
is nonconstant. Then ¢xn(X) C intX, by [1, Theorem 2.5]. Since zj is the fixed
point of ¢, we have ¢x(20) = 2o and therefore zy € intX. O

Note that a slight modification of [1, Theorem 2.5] shows that Theorem 3.1
also holds true for Lipy(X,1).

In the following example for 0 < a < 1 we construct a quasicompact endo-
morphism of Lip (D, a) induced by a selfmap ¢ with the boundary fixed point
zo = 1. Therefore in the case of @ = 1, using Theorem 3.1, we have a quasicom-
pact endomorphism of Lip 4(ID, 1) which is not power compact.

Example 3.1. Let ¢ > 1. Consider the selfmap ¢ : D — D by p(2) = LEA)

for every z € D. In fact, ¢ takes the closed unit disc D onto the closed disc with

radius % centered at 1 — % and ¢(1) = 1. Let n € N, then by a simple calculation

z+(c"—1)
c

one can show that ¢, (z) = —, taking the closed unit disc onto the closed

disc with radius C% centered at 1 — c%

For each 0 < a < 1 and ¢ > 1, let T, be the endomorphism of Lip 4(D, c)
induced by . We show that r.(7T.) < C% and therefore T, is a quasicom-
pact endomorphism of Lip,(D,«). To this end, let Lf = f(1) -1 for every
f € Lip4(D, ), then L is a compact (rank-one) endomorphism of Lip 4 (D, o) and

for each f € Lip 4 (D, a) we have

Lﬂ%@bfﬂﬂép&ﬁ@&@IPSHfa<2),

CTL

for all z € D. This yields

M?f—LfmSHﬂh<2) | @

C’I’L
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On the other hand, for all z,w € D with z # w we have

o) = ) = onle) =S o, 7y (1) <y, ()"

|z — w|™ e cn

Therefore,

polt s~ 1) <151 (&) 3)

cn

Adding (2) and (3), one has

2\ 1\ 3
2 - 2ila <1l ((2) + (%) ) < 1l

Therefore | T — L|| < ﬁ which implies that dist(77, k)=

K(Lip4(D, @)). Consequently we have r.(T,) < L.

o

Note that the unique fixed point of ¢, zo = 1, does not belong to D. There-

‘:\H

where K =

= o

fore, Theorem 3.1 implies that the quasicompact endomorphisms 7. of Lip 4 (D, 1)
are not power compact.

Example 3.1 shows that in the implications
compact = power compact = quasicompact,
the converse of the second implication is not true for the endomorphisms of

Lip4 (D, 1). By giving the following example, we show that neither the converse
of the first implication is true.

Example 3.2. Consider the selfmap ¢ : D — D by ¢(z) = % for every
zeD. Let 0 < a<1and f € Lip,(D,a), then

[fop(z) = fop(w) _ |flp(z) = flew))] ’@(z) —p(w)

|z — wle T e(z) — p(w)fe Z—w

[e3

Spa(f)( 5 )aépa(f)-

Consequently, f o ¢ € Lip,(D,a) and hence ¢ induces an endomorphism 7' of
Lip4 (D, ). For every z € D we have

3— 244222

3
<77
8 —4

a2 =

50 @2(D) C D. Therefore, by [1, Theorem 2.1], T, is a compact endomorphism of
Lip(D,a) (0 < a < 1). On the other hand, since (i) = 1, it follows from [1,
Theorem 2.5] that T' is not compact when o = 1.
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We conclude by giving a necessary condition for an endomorphism T of
Lip4(X,1) or Lipp(X,1) to be quasicompact, when the inducing selfmap ¢ is
differentiable at its fixed point.

Definition 3.2. Let X be a perfect compact plane set. A complex-valued
function f on X is called differentiable at a point zy € X if

Fo) — tim 1) = 10)
R R

exists.

Theorem 3.2. Let X be a connected compact plane set. Let A be a natural
closed function subalgebra of Lip(X,1) containing the coordinate function Z.
Suppose that T' is a quasicompact endomorphism of A induced by the selfmap
¢ : X — X with the fixed point zy. If ¢ is differentiable at zo, then |¢’(zo)| < 1.

PRrROOF. By the continuity of ¢, differentiability of ¢ at its fixed point zq
implies that ¢, is also differentiable at zp and ¢/, (z9) = (¢'(20))" for all n € N.
Since T is quasicompact, Theorem 1.1(i) yields ||T"f — f(z0) - 1|1 — 0 as n — o
for every f € A. Considering the coordinate function Z, we get

llon — 2011 = 0 asn — oco. (4)
On the other hand,
on(2) — pn(w)

sup ‘zplwn):pl(%—zo-l)s lon — 20 1l
z,weX zZ—w
zF#w
So by (4) we get
sup ‘%(z%%(w)’w N
z,2weX Z—w
zF£w

In particular,

sup <1,
zeX
z#20

‘%(Z)—%%)
P

for some n. Hence

l¢' (20)|™ = |¢,(20)| = lim #n(2) = ¢nl20) <1
X 2
Therefore, |¢'(z0)] < 1. .

It follows from the above proof that we can state the result of Theorem 3.2
without the assumption of differentiability of ¢ as follows. If T is a quasicompact
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endomorphism of A induced by the selfmap ¢ of X then p1(pn) — 0 as n — oo
and in particular, p1(on) < 1 for some positive integer N.

Corollary 3.1. Let X be a connected compact plane set. Suppose that
T is a quasicompact endomorphism of Lip 4,(X, 1) or Lipg(X, 1) induced by the
selfmap ¢ : X — X with the fixed point zy. If ¢ is differentiable at zy, then

l¢"(20)] < 1.

Corollary 3.2. Let X be a connected compact plane set with nonempty inte-
rior. Suppose that T is a quasicompact endomorphism of Lip 4 (X, 1) or Lipr (X, 1)
induced by the selfmap ¢ : X — X. If ¢ has an interior fixed point zg, then

|¥'(20)] < 1.
The following is an immediate consequence of Theorem 3.1 and Corollary 3.2.

Corollary 3.3. Let Q be a bounded domain in the plane and X = Q be
strongly accessible from the interior and have peak boundary with respect to
Lip,4(X,1) (Lipr(X,1)). Let T be a nonzero power compact endomorphism of
Lip4(X,1) (Lipgr(X,1)) induced by the nonconstant selfmap ¢ : X — X with
the fixed point zg. Then |¢'(z)| < 1.
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