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Real hypersurfaces in complex two-plane Grassmannians
with parallel normal Jacobi operator

By IMSOON JEONG (Kyungpook), HEE JIN KIM (Kyungpook) and YOUNG JIN SUH
(Kyungpook)

Abstract. In this paper we give a non-existence theorem for Hopf hypersurfaces in

complex two-plane Grassmannians G2(Cm+2) with parallel normal Jacobi operator R̄N .

1. Introduction

In the geometry of real hypersurfaces in complex space forms or in quater-
nionic space forms there have been many characterizations of homogeneous hy-
persurfaces of type (A1), (A2), (B), (C), (D) and (E) in complex projective space
Pm(C), of type (A0),(A1), (A2) and (B) in complex hyperbolic space Hm(C) or
of type (A1),(A2) and (B) in quaternionic projective space QPm, which are com-
pletely classified by Cecil and Ryan [6], Kimura [9], Kimura and Maeda [10],
Berndt [2], Martinez and Pérez [11] respectively.

On the other hand, Jacobi fields along geodesics of a given Riemannian man-
ifold (M̃, g̃) satisfy an well-known differential equation. This classical differential
equation naturally inspires the so-called Jacobi operator. That is, if R̃ is the
curvature operator of M̃ , and X is any tangent vector field to M̃ , the Jacobi
operator with respect to X at p ∈ M̃ , R̃X ∈ End(TpM̃), is defined by

(R̃XY )(p) = (R̃(Y, X)X)(p)
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for any Y ∈ TpM̃ , becomes a self adjoint endomorphism of the tangent bundle
TM̃ of M̃ . Clearly, each tangent vector field X to M̃ provides a Jacobi operator
with respect to X.

In a complex space form Mn(c), c 6= 0, Ki, Pérez, Santos and Suh [8] have
investigated real hypersurfaces M in Mn(c) under the condition that ∇ξS = 0
and ∇ξRξ = 0, where S and Rξ respectively denote the Ricci tensor and the
structure Jacobi operator of M in Mn(c). The almost contact structure vector
field ξ are defined by ξ = −JN , where N denotes a unit normal to M and J

a Kaehler structure on Mn(c). Moreover, Pérez, Santos and Suh [13] gave a
complete classification of real hypersurfaces in complex projective space whose
structure Jacobi operator Rξ is Lie ξ-parallel, that is, LξRξ = 0.

In a quaternionic projective space QPm Pérez and Suh [12] have classified
real hypersurfaces in QPm with D⊥-parallel curvature tensor ∇ξiR = 0, i =
1, 2, 3, where R denotes the curvature tensor of M in QPm and D⊥ a distribution
defined by D⊥ = Span{ξ1, ξ2, ξ3}. In such a case they are congruent to a tube of
radius π

4 over a totally geodesic QP k in QPm, 2≤k≤m− 2.
The almost contact structure vector fields {ξ1, ξ2, ξ3} are defined by ξi =

−JiN , i = 1, 2, 3, where {J1, J2, J3} denote a quaternionic Kähler structure of
QPm and N a unit normal field of M in QPm. In quaternionic space forms
Berndt [2] has introduced the notion of normal Jacobi operator

R̄N = R̄(X,N)N∈End TxM, x∈M

for real hypersurfaces M in a quaternionic projective space QPm or in a quater-
nionic hyperbolic space QHm, where R̄ denotes the curvature tensor of QPm and
QHm respectively. He [2] has also shown that the curvature adaptedness, that is,
the normal Jacobi operator R̄N commutes with the shape operator A, is equiva-
lent to the fact that the distributions D and D⊥ = Span{ξ1, ξ2, ξ3} are invariant
by the shape operator A of M , where TxM = D⊕D⊥, x∈M .

Now let us consider a complex two-plane Grassmannians G2(Cm+2) which
consists of all complex 2-dimensional linear subspaces in Cm+2. Then the situ-
ation for real hypersurfaces in G2(Cm+1) related to the normal Jacobi operator
R̄N is not so simple and will be quite different from the cases mentioned above. In
a paper [7] due to Jeong, Suh and Pérez we have classified real hypersurfaces
in G2(Cm+2) with commuting normal Jacobi operator, that is, R̄N◦φ = φ◦R̄N or
R̄N◦A = A◦R̄N . The normal Jacobi operator R̄N commutes with the shape oper-
ator A( or the structure tensor φ) of M in G2(Cm+2) means that the eigenspaces of
the normal Jacobi operator is invariant by the shape operator A(or the structure
tensor φ).
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In this paper we consider a real hypersurface M in complex two-plane Grass-
mannians G2(Cm+2) with parallel normal Jacobi operator, that is, ∇XR̄N = 0
for any tangent vector field X on M , where ∇, R̄ and N respectively denotes the
induced Riemannian connection on M , the curvature tensor of the ambient space
G2(Cm+2) and a unit normal vector of M in G2(Cm+2). The normal Jacobi oper-
ator R̄N is parallel on M in G2(Cm+2) means that the eigenspaces of the normal
Jacobi operator R̄N is parallel along any curve γ in M . Here the eigenspaces of
the normal Jacobi operator R̄N are said to be parallel along γ if they are invariant
with respect to any parallel displacement along γ.

The curvature tensor R̄(X, Y )Z for any vector fields X, Y and Z on G2(Cm+2)
is explicitly defined in Section 2. Then the normal Jacobi operator R̄N for the
unit normal vector N can be defined from the curvature tensor R̄(X,N)N by
putting Y = Z = N .

The complex two-plane Grassmannians G2(Cm+2) is known to be the unique
compact irreducible Riemannian symmetric space equipped with both a Kähler
structure J and a quaternionic Kähler structure J not containing J (See Berndt

[3]). So, in G2(Cm+2) we have two natural geometric conditions for real hy-
persurfaces that [ξ] = Span{ξ} or D⊥ = Span{ξ1, ξ2, ξ3} is invariant under the
shape operator. By using such conditions Berndt and Suh [4] have proved the
following:

Theorem 1.1. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.

Then both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1)
in G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic QPn in G2(Cm+2).

The structure vector field ξ of a real hypersurface M in G2(Cm+2) is said
to be a Reeb vector field. If the Reeb vector field ξ of a real hypersurface M in
G2(Cm+2) is invariant by the shape operator, M is said to be a Hopf hypersurface.
In such a case the integral curves of the Reeb vector field ξ are geodesics (See
Berndt and Suh [5]). Moreover, the flow generated by the integral curves of the
structure vector field ξ for Hopf hypersurfaces in G2(Cm+2) is said to be geodesic
Reeb flow. Moreover, the corresponding principal curvature α is non-vanishing
we say M is with non-vanishing geodesic Reeb flow.

Now by putting a unit normal vector N into the curvature tensor R̄ of the
ambient space G2(Cm+2), we calculate the normal Jacobi operator R̄N in such a
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way that

R̄NX = R̄(X,N)N = X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)Jν(φX + η(X)N)− ην(φX)(φνξ + ην(ξ)N)

}

= X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)(φνφX − η(X)ξν)− ην(φX)φνξ

}

for any tangent vector field X on M in G2(Cm+2).

We say that the normal Jacobi operator R̄N is parallel on M if the covari-
ant derivative of the normal Jacobi operator R̄N identically vanishes, that is,
∇XR̄N = 0 for any vector field X on M . Related to such a parallel normal Ja-
cobi operator R̄N of M in G2(Cm+2), in Section 4 we prove an important theorem
for hypersurfaces in G2(Cm+2) as follows:

Theorem 1.2. Let M be a Hopf hypersurface in G2(Cm+2), m≥3, with

parallel normal Jacobi operator. Then ξ belongs to either the distribution D or

the distribution D⊥.

In Sections 5 and 6 we respectively prove a non-existence theorem for real
hypersurfaces in G2(Cm+2), m≥3, when the Reeb vector ξ belongs to the distri-
bution D or the distribution D⊥. Then we assert the following

Theorem 1.3. There do not exist any Hopf hypersurfaces in G2(Cm+2),
m≥3, with parallel normal Jacobi operator.

2. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we
refer to [3], [4] and [5].

By G2(Cm+2) we denote the set of all complex two-dimensional linear sub-
spaces in Cm+2. The special unitary group G = SU(m + 2) acts transitively
on G2(Cm+2) with stabilizer isomorphic to K = S(U(2) × U(m)) ⊂ G. Then
G2(Cm+2) can be identified with the homogeneous space G/K, which we equip
with the unique analytic structure for which the natural action of G on G2(Cm+2)
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becomes analytic. Denote by g and k the Lie algebra of G and K, respectively,
and by m the orthogonal complement of k in g with respect to the Cartan–Killing
form B of g. Then g = k⊕m is an Ad(K)-invariant reductive decomposition of g.

We put o = eK and identify ToG2(Cm+2) with m in the usual manner. Since
B is negative definite on g, its negative restricted to m × m yields a positive
definite inner product on m. By Ad(K)-invariance of B this inner product can
be extended to a G-invariant Riemannian metric g on G2(Cm+2).

In this way G2(Cm+2) becomes a Riemannian homogeneous space, even a
Riemannian symmetric space. For computational reasons we normalize g such
that the maximal sectional curvature of (G2(Cm+2), g) is eight. Since G2(C3)
is isometric to the two-dimensional complex projective space CP 2 with constant
holomorphic sectional curvature eight we will assume m ≥ 2 from now on. Note
that the isomorphism Spin(6) ' SU(4) yields an isometry between G2(C4) and
the real Grassmann manifold G+

2 (R6) of oriented two-dimensional linear subspaces
of R6.

The Lie algebra k has the direct sum decomposition k = su(m)⊕ su(2)⊕R,
where R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2), the
center R induces a Kähler structure J and the su(2)-part a quaternionic Kähler
structure J on G2(Cm+2).

If J1 is any almost Hermitian structure in J, then JJ1 = J1J , and JJ1 is
a symmetric endomorphism with (JJ1)2 = I and tr(JJ1) = 0. This fact will be
used frequently throughout this paper.

A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian
structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index is taken
modulo three. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3 of J three local
one-forms q1, q2, q3 such that

∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1)

for all vector fields X on G2(Cm+2).
The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{g(JνY,Z)JνX − g(JνX, Z)JνY − 2g(JνX, Y )JνZ}

+
3∑

ν=1

{g(JνJY, Z)JνJX − g(JνJX, Z)JνJY }, (2)
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where J1, J2, J3 is any canonical local basis of J.

3. Some fundamental formulas

In this section we derive some basic formulae from the Codazzi equation for
a real hypersurface in G2(Cm+2) (See [4], [5], [14], [15] and [16]).

Let M be a real hypersurface of G2(Cm+2). The induced Riemannian met-
ric on M will also be denoted by g, and ∇ denotes the Riemannian connection
of (M, g). Let N be a local unit normal field of M and A the shape operator
of M with respect to N . The Kähler structure J of G2(Cm+2) induces on M

an almost contact metric structure (φ, ξ, η, g). Furthermore, let J1, J2, J3 be a
canonical local basis of J. Then each Jν induces an almost contact metric struc-
ture (φν , ξν , ην , g) on M . Using the above expression for R̄, the Codazzi equation
becomes

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν .

The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations:

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1. (3)

Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (4)
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for any tangent vector X of a real hypersurface M in G2(Cm+2), where N denotes
a normal vector of M in G2(Cm+2). Then from this and the formulas (1) and (3)
we have that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX, (5)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (6)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν . (7)

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν . (8)

4. Parallel normal Jacobi operator

Now in this section we want to derive the normal Jacobi operator from the
curvature tensor R̄(X,Y )Z of complex two-plane Grassmannian G2(Cm+2) given
in (2).

Now let us consider a real hypersurface M in G2(Cm+2) with parallel normal
Jacobi operator R̄N , that is, ∇XR̄N = 0 for any vector field X on M . Then first
of all, we write the normal Jacobi operator R̄N , which is given by

R̄N (X) = R̄(X, N)N = X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)Jν(φX + η(X)N)− ην(φX)(φνξ + ην(ξ)N)

}

= X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)(φνφX − η(X)ξν)− ην(φX)φνξ

}
,

where we have used the following

g(JνJN, N) = −g(JN, JνN) = −g(ξ, ξν) = −ην(ξ),

g(JνJX, N) = g(X, JJνN) = −g(X,Jξν) = −g(X,φξν + η(ξν)N) = −g(X,φξν)
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and
JνJN = −Jνξ = −φνξ − ην(ξ)N.

Of course, by (8) we know that the normal Jacobi operator R̄N could be symmetric
endomorphism of TxM , x∈M .

Now let us consider a covariant derivative of the normal Jacobi operator R̄N

along the direction X. Then it is given by

(∇XR̄N )Y = 3(∇Xη)(Y )ξ + 3η(Y )∇Xξ + 3
3∑

ν=1

(∇Xην)(Y )ξν

+ 3
3∑

ν=1

ην(Y )∇Xξν −
3∑

ν=1

[
X(ην(ξ))(φνφY − η(Y )ξν)

+ ην(ξ)
{
(∇Xφνφ)Y − (∇Xη)(Y )ξν − η(Y )∇Xξν

}

− (∇Xην)(φY )φνξ − ην((∇Xφ)Y )φνξ − ην(φY )∇X(φνξ)
]
,

where the formula X(ην(ξ)) in the right side is given by

X(ην(ξ)) = g(∇Xξν , ξ) + g(ξν ,∇Xξ)

= qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ) + 2g(φνAX, ξ).

From this, together with the formulas given in Section 3, a real hypersurface M

in G2(Cm+2) with parallel normal Jacobi operator, that is, ∇XR̄N = 0 for any
vector field X on M , satisfies the following

0 = 3g(φAX, Y )ξ + 3η(Y )φAX

+ 3
3∑

ν=1

{
qν+2(X)ην+1(Y )− qν+1(X)ην+2(Y ) + g(φνAX, Y )

}
ξν

+ 3
3∑

ν=1

ην(Y )
{
qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX

}

−
3∑

ν=1

[{
qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ)+ 2ην(φAX)

}
(φνφY− η(Y )ξν)

+ ην(ξ)
{− qν+1(X)φν+2φY + qν+2(X)φν+1φY + ην(φY )AX − g(AX, φY )ξν

+ η(Y )φνAX − g(AX,Y )φνξ − g(φAX, Y )ξν

− η(Y )(qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX)
}

− {
qν+2(X)ην+1(φY )− qν+1(X)ην+2(φY ) + g(φνAX, φY )

}
φνξ
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− {
η(Y )ην(AX)− g(AX, Y )ην(ξ)

}
φνξ

− ην(φY )
{
qν+2(X)φν+1ξ − qν+1(X)φν+2ξ

+ φνφAX − g(AX, ξ)ξν + η(ξν)AX
}]

. (9)

Put Y = ξ in (9), then it follows that

0 = 3φAX + 3
3∑

ν=1

{qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ) + g(φνAX, ξ)}ξν

+ 3
3∑

ν=1

ην(ξ){qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX}

+
3∑

ν=1

{qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ) + 2ην(φAX)}ξν

−
3∑

ν=1

ην(ξ)φνAX +
3∑

ν=1

ην(ξ)η(AX)φνξ

+
3∑

ν=1

ην(ξ){qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX}

+
3∑

ν=1

{ην(AX)− ην(ξ)η(AX)}φνξ.

From this we have

0 = 3φAX + 4
3∑

ν=1

{qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ)}ξν

+ 4
3∑

ν=1

ην(ξ){qν+2(X)ξν+1 − qν+1(X)ξν+2}+ 5
3∑

ν=1

ην(φAX)ξν

+ 3
3∑

ν=1

ην(ξ)φνAX +
3∑

ν=1

ην(AX)φνξ. (10)

On the other hand, we know that

4
3∑

ν=1

{qν+2(X)ην+1(ξ)− qν+1(X)ην+2(ξ)}ξν

+ 4
3∑

ν=1

ην(ξ){qν+2(X)ξν+1 − qν+1(X)ξν+2} = 0.
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Then (10) reduces to

0 = 3φAX + 5
3∑

ν=1

ην(φAX)ξν + 3
3∑

ν=1

ην(ξ)φνAX +
3∑

ν=1

ην(AX)φνξ. (11)

If we assume that M is a Hopf, then by putting X = ξ in (11) we have

4α

3∑
ν=1

ην(ξ)φνξ = 0.

From this it follows that

α = 0 or
3∑

ν=1

ην(ξ)φνξ = 0. (12)

Now without loss of generality we may put the Reeb vector filed ξ in such a way
that

ξ = η(X0)X0 + η(ξ1)ξ1

for some X0∈D and ξ1∈D⊥. Then the latter formula of (12) becomes

0 = η(ξ1)φ1ξ = η(X0)η(ξ1)φ1X0.

This gives that η(X0) = 0 or η(ξ1) = 0, which means ξ∈D⊥ or ξ∈D. Summing
up above facts, we summarize such a situation as follows:

Lemma 4.1. Let M be a Hopf hypersurface in G2(Cm+2), m≥3, with par-

allel normal Jacobi operator. Then the Reeb vector ξ belongs to the distribution

D or the distribution D⊥ unless the geodesic Reeb flow is non-vanishing.

When the geodesic Reeb flow is vanishing, that is α = 0, we can differentiate
Aξ = 0. Then by a theorem due to Berndt and Suh [5] we know that

3∑
ν=1

ην(ξ)φξν = 0.

This also gives ξ∈D or ξ∈D⊥. From this, together with Lemma 4.1, we give a
complete proof of Theorem 1.2 mentioned in the introduction.
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5. Parallel normal Jacobi operator for ξ∈D

In this section we want to prove the following proposition

Proposition 5.1. Let M be a Hopf real hypersurface in G2(Cm+2), m≥3,

with parallel normal Jacobi operator and ξ∈D. Then g(AD, D⊥) = 0.

Proof. By Lemma 4.1, let us consider the case that ξ∈D in (9). Then we
have

0 = 3g(φAX, Y )ξ + 3η(Y )φAX

+ 3
3∑

ν=1

{qν+2(X)ην+1(Y )− qν+1(X)ην+2(Y ) + g(φνAX, Y )}ξν

+ 3
3∑

ν=1

ην(Y ){qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX}

−
3∑

ν=1

[
2ην(φAX)(φνφY − η(Y )ξν)

− {qν+2(X)ην+1(φY )− qν+1(X)ην+2(φY ) + g(φνAX, φY )}φνξ

− η(Y )ην(AX)φνξ − ην(φY ){qν+2(X)φν+1ξ − qν+1(X)φν+2ξ

+ φνφAX − g(AX, ξ)ξν}
]
. (13)

Then, taking an inner product (13) with ξ, we have

0 = 3g(φAX, Y ) + 3
3∑

ν=1

ην(Y )g(φνAX, ξ)

−
3∑

ν=1

[
2ην(φAX)g(φνφY, ξ)− ην(φY )g(φνφAX, ξ)

]

= 3g(φAX, Y ) + 5
3∑

ν=1

ην(Y )g(φνAX, ξ) +
3∑

ν=1

ην(φY )g(φ2AX, ξν)

= 3g(φAX, Y ) + 5
3∑

ν=1

ην(Y )g(φνAX, ξ)−
3∑

ν=1

ην(φY )ην(AX).

From this, by putting Y = φZ for any Z∈D, it follows that for any X∈D⊥ and
ξ∈D

3g(AX,Z) = −5
3∑

ν=1

ην(φZ)g(φνAX, ξ). (14)
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Then by putting Z = φξi in (14), we have

g(AX, φξi) = 0

for any i = 1, 2, 3. From this, together with (14), we assert that g(AX, Z) = 0 for
any X∈D⊥ and Z∈D. This completes the proof of our Proposition. ¤

Then by Proposition 5.1 and Theorem 1.1 in the introduction we assert the
following

Theorem 5.1. Let M be a Hopf hypersurface in G2(Cm+2) with parallel

normal Jacobi operator and ξ∈D. Then M is a tube over a totally real and totally

geodesic quaternionic projective space QPn, n = 2m.

Now let us check whether a real hypersurface of type (B) in G2(Cm+2), that
is, a tube over a totally real and totally geodesic QPn, satisfy (∇XR̄N ) = 0
or not? Corresponding to such a real hypersurface of type (B), we introduce a
proposition in Berndt and Suh [4] as follows:

Proposition 5.2. Let M be a connected real hypersurface of G2(Cm+2).
Suppose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic

dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant

principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,

where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Now let us suppose M is of type (B) with parallel normal Jacobi operator
R̄N and ξ∈D. Then (11) for ξ∈D gives

0 = 3φAX + 5
3∑

ν=1

ην(φAX)ξν +
3∑

ν=1

ην(AX)φνξ.

From this, by putting X = ξµ and using Aφνξ = 0 we have

0 = 4βφξµ.

Then it follows that β = 0. This makes a contradiction. Now, summarizing such
a fact, we conclude the following



Real hypersurfaces in complex two-plane Grassmannians with parallel. . . 215

Theorem 5.2. There do not exist any Hopf hypersurfaces in G2(Cm+2),
m≥3, with parallel normal Jacobi operator and ξ∈D.

6. Parallel normal Jacobi operator for ξ∈D⊥

In this section, we consider Hopf real hypersurfaces in G2(Cm+2), m≥3, with
parallel normal Jacobi operator and ξ∈D⊥. Then (9) gives the following

0 = 3g(φAX, Y )ξ + 3η(Y )φAX

+ 3
3∑

ν=1

{qν+2(X)ην+1(Y )− qν+1(X)ην+2(Y ) + g(φνAX, Y )}ξν

+ 3
3∑

ν=1

ην(Y ){qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX}

− [{q2(X)− 2η2(AX)}(φ3φY − η(Y )ξ3)

+ {−q3(X) + 2η3(AX)}(φ2φY − η(Y )ξ2)

− q2(X)φ3φY + q3(X)φ2φY − g(AX, φY )ξ + η(Y )φ1AX

− g(φAX, Y )ξ − η(Y )(q3(X)ξ2 − q2(X)ξ3 + φ1AX)

− {q1(X)η3(φY )− q3(X)η1(φY ) + g(φ2AX, φY )}φ2ξ

− {q2(X)η1(φY )− q1(X)η2(φY ) + g(φ3AX, φY )}φ3ξ

+ η(Y )η2(AX)ξ3 − η(Y )η3(AX)ξ2

− η3(Y ){q1(X)φ3ξ − q3(X)φ1ξ + φ2φAX − g(AX, ξ)ξ2}
+ η2(Y ){q2(X)φ1ξ − q1(X)φ2ξ + φ3φAX − g(AX, ξ)ξ3}

]
. (15)

Then (15) can be rearranged as follows:

0 = 3g(φAX, Y )ξ + 3η(Y )φAX

+ 3
3∑

ν=1

{qν+2(X)ην+1(Y )− qν+1(X)ην+2(Y ) + g(φνAX,Y )}ξν

+ 3
3∑

ν=1

ην(Y ){qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX}

− [− 2η2(AX)φ3φY + 2η3(AX)φ2φY + g(φ2AX, φY )ξ3

− g(φ3AX, φY )ξ2 + 3η(Y )η2(AX)ξ3 − 3η(Y )η3(AX)ξ2

− η3(Y ){φ2φAX − g(AX, ξ)ξ2}+ η2(Y ){φ3φAX − g(AX, ξ)ξ3}
]
.
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From this, let us take an inner product with ξ, we have

0 = 3g(φAX, Y ) + 3{q3(X)η2(Y )− q2(X)η3(Y ) + g(φ1AX, Y )}
+ 3

{
η3(Y )q2(X)− η2(Y )q3(X) + η2(Y )η3(AX)− η3(Y )η2(AX)

}

− {2η2(AX)η3(Y )− 2η3(AX)η2(Y ) + η3(Y )η2(AX)− η2(Y )η3(AX)}
= 3g(φAX, Y ) + 3g(φ1AX, Y ) + 6η2(Y )η3(AX)− 6η3(Y )η2(AX), (16)

where we have used the following formulas

η(φ3φY ) = −g(φ3ξ, φY ) = g(φξ2, Y ) = −η3(Y ),

η(φ2φY ) = −g(φ2ξ, φY ) = −g(φξ3, Y ) = −η2(Y ),

g(φ2φAX, ξ) = −g(φAX, φ2ξ) = g(φAX, ξ3) = −g(AX, ξ2) = −η2(AX),

g(φ3φAX, ξ) = −g(φAX, φ3ξ) = g(AX, φξ2) = −g(AX, ξ3) = −η3(AX).

Then (16) can be reformed as follows:

0 = g(φAX, Y ) + g(φ1AX, Y ) + 2η2(Y )η3(AX)− 2η3(Y )η2(AX).

From this, by putting Y = ξ2, we have

0 = g(φAX, ξ2) + g(φ1AX, ξ2) + 2η3(AX) = 2η3(AX) (17)

for any vector field X on M . Similarly, we are able to assert η2(AX) = 0. From
this, together with M is Hopf, we assert the following

Proposition 6.1. Let M be a Hopf hypersurface in G2(Cm+2), m≥3, with

parallel normal Jacobi operator and ξ∈D⊥. Then g(AD, D⊥) = 0.

From this proposition and together with Theorem 1.1 in the introduction we
know that any real hypersurfaces in G2(Cm+2) with parallel normal Jacobi oper-
ator R̄N are congruent to a tube over a totally geodesic G2(Cm+1) in G2(Cm+2).

Now let us check whether real hypersurfaces of type (A) satisfy ∇XR̄N = 0
or not? Then we recall a proposition given by Berndt and Suh [4] as follows:

Proposition 6.2. Let M be a connected real hypersurface of G2(Cm+2).
Suppose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1∈J be the almost

Hermitian structure such that JN = J1N . Then M has three (if r = π/2
√

8) or

four (otherwise) distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r), µ = 0
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with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces we have

Tα = Rξ = RJN = Rξ1,

Tβ = C⊥ξ = C⊥N = Rξ2⊕Rξ3,

Tλ = {X | X⊥Hξ, JX = J1X},
Tµ = {X | X⊥Hξ, JX = −J1X},

where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span of

the structure vector ξ and C⊥ξ denotes the orthogonal complement of Cξ in Hξ.

Then, by putting X = ξ3 in (17) and using Proposition 6.2 we have

2η3(Aξ3) = 2
√

2cot(
√

2r) = 0.

But r∈(0, π√
8
), on which we know cot

√
2r 6= 0. This makes a contradiction. Con-

sequently, the normal Jacobi operator R̄N of such a tube over a totally geodesic
G2(Cm+2) can not be parallel. Summing up above facts we conclude the following

Theorem 6.1. There do not exist any Hopf hypersurfaces in G2(Cm+2),
m≥3, with parallel normal Jacobi operator and ξ∈D⊥.

Then by Theorem 1.2, together with Theorems 5.2 and 6.1 in Sections 5
and 6 respectively, we complete the proof of our Theorem 1.3 in the introduction.
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[13] J. D. Pérez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space
whose structure Jacobi operator is Lie ξ-parallel, Diff. Geom. and Its Appl. 22 (2005),
181–188.

[14] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape
operator, Bull. of Austral. Math. Soc. 67 (2003), 493–502.

[15] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape
operator II, J. of Korean Math. Soc. 41 (2004), 535–565.

[16] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with vanishing Lie
derivatives, Canadian Math. Bull. 49 (2006), 134–143.

[17] Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatshefte
für Math. 147 (2006), 337–355.

IMSOON JEONG

DEPARTMENT OF MATHEMATICS

KYUNGPOOK NATIONAL UNIVERSITY

TAEGU 702-701

KOREA

E-mail: imsoon.jeong@gmail.com

HEE JIN KIM

DEPARTMENT OF MATHEMATICS

KYUNGPOOK NATIONAL UNIVERSITY

TAEGU 702-701

KOREA

E-mail: hera1oo4@nate.com

YOUNG JIN SUH

DEPARTMENT OF MATHEMATICS

KYUNGPOOK NATIONAL UNIVERSITY

TAEGU 702-701

KOREA

E-mail: yjsuh@knu.ac.kr

(Received January 30, 2009)


