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SLLN for random fields under conditions on the bivariate

dependence structure
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Dedicated to the 100th anniversary of the birthday of Béla Gyires

Abstract. We find the necessary and sufficient conditions for the strong law of

large numbers for families of dependent random variables. We consider fields of random

variables with some conditions imposed on the dependence structure described in terms

of bivariate copulas.

1. Introduction

The strong law of large numbers (SLLN) is one of the most important theo-

rems of probability theory and mathematical statistics. In its classical version –

the Kolmogorov’s SLLN for independent and identically distributed (i.i.d.) ran-

dom variables states that the necessary and sufficient condition for the almost

sure convergence of arithmetic means of random variables (r.v.’s) is the existence

of the first moment. This theorem was extended and generalized in different di-

rections. Etemadi (cf. [3]) weakened the assumption of independence and proved

that the SLLN holds for pairwise independent random variables. This condition

was further relaxed by Matu la (cf. [11]) to pairwise negatively quadrant depen-

dent sequences and to certain classes of asymptotically quadrant sub-independent

r.v.’s (cf. [12]).
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The other way of generalizations of the classical results, arising from the

applications, is the SLLN for random fields. The first results of this kind were

obtained by Smythe (cf. [16], [17]) and Gut (cf. [5]) in the case of independence.

For r-dimensional random fields of independent r.v.’s the necessary and sufficient

condition for the SLLN is the finiteness of the moment E|X1| logr−1
+ |X1|, while

in the case of the so-called sectorial convergence is the finiteness of E|X1| (cf. [6]).

A more general approach to sectorial convergence has been recently studied by

Indlekofer and Klesov (cf. [8]).

Many authors investigated the sufficient conditions for the SLLN for depen-

dent random fields (cf. [1], [7]), but there are few results under conditions on the

dependence (independence) in pairs (cf. [2], [4], [9]). The aim of this paper is to

find the necessary and sufficient conditions for the SLLN for fields of r.v.’s which

satisfy some conditions on the dependence structure for pairs of r.v.’s.

The convergence of random fields may have different meanings, therefore

we shall begin with introducing some notation. Let Nr, r ≥ 1 be the set of

positive integer r−dimensional lattice points with the usual partial order �, for

m = (m1, . . . , mr) and n = (n1, . . . , nr) we shall write m � n iff mi ≤ ni for

i = 1, . . . , r and m � n iff mi > ni for some i = 1, . . . , r. Further let |n| =
∏r

i=1 ni

and ‖n‖ = max1≤i≤r |ni|. For θ ∈ (0, 1) we define the r−dimensional sector in

the following way

Sr
θ =

{
(i1, . . . , ir) ∈ Nr : θ <

il
ik

<
1

θ
, for all l, k = 1, . . . , r

}
,

we shall also write Sr
0 = Nr. In the case r = 1 we have Sr

θ = N. For n ∈ Sr
θ let us

also introduce the following notation: Sr
θ (n) = Sr

θ ∩ (n), Mθ(n) = Card(Sr
θ (n)),

Sr
θ (k,n) = Sr

θ (n)\(k), k � n and Ŝr
θ (n) = Sr

θ\(n), where (n) = {k ∈ Nr : k � n}.

Moreover let Sr
θ (|n|) = {i ∈ Sr

θ : |i| ≤ |n|}. We are going to study the convergence

of sequences {an,n ∈ Sr
θ} and we shall write

an → a, as n → ∞ in Sr
θ

iff for all ε > 0 there exists n0 ∈ Sr
θ such that for all n � n

0
we have |an − a| < ε.

Therefore n → ∞ means |n| → ∞ or equivalently ‖n‖ → ∞. For the almost

sure convergence of random sequences indexed by the elements of Sr
θ we need to

introduce the event

{An, i.o. n ∈ Sr
θ} =

⋂

n∈Sr
θ

⋃

k∈ bSr
θ
(n)

Ak,
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where {An,n ∈Sr
θ} is a family of events on the same probability space. It is easy

to see that if {ξn,n ∈Sr
θ} is a random field, then ξn → 0 almost surely as n → ∞

in Sr
θ iff P (|ξn| ≥ ε, i.o. n ∈ Sr

θ ) = 0, for every ε > 0. Thus the generalizations

of the Borel–Cantelli lemmas for dependent events with multidimensional indices

will be the main tools in our investigations.

Let {Xn,n ∈ Nr} be a random field, we are going to find the necessary and

sufficient conditions for

1

|n|

∑

k∈Sr
θ
(n)

(Xk − mk) −→ 0, almost surely, as n → ∞ in Sr
θ

where mk = EXkI[|Xk| ≤ |k|], as well as for

1

Mθ(n)

∑

k∈Sr
θ
(n)

Xk −→ c, almost surely, as n → ∞ in Sr
θ ,

where c is some constant. We consider random fields of dependent r.v.’s and we

shall impose some conditions on the bivariate dependence structure.

In recent years the dependence between r.v.’s has been often described in

terms of the so-called copula functions. Copulas are used in stochastic modeling

in financial and actuarial mathematics. Let us recall (cf. [14]) that the bivariate

copula is a function C : [0, 1]2 −→ [0, 1] such that C(u, 0)=C(0, v)= 0, C(u, 1)=u,

C(1, v) = v and C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for 0 ≤ u1 ≤

u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1. For any r.v.’s X and Y with distribution functions

FX(x) and FY (y), there exists a copula CX,Y (u, v) such that

P (X ≤ x, Y ≤ y) = CX,Y (FX(x), FY (y)),

by the Sklar’s theorem (cf. Theorem 2.3.3 in [14]) this function is uniquely deter-

mined for (u, v) ∈ Ran(FX) × Ran(FY ).

In this paper we study fields of random variables {Xn,n ∈Nr} with the bi-

variate copulas satisfying the following condition

CXi,Xj
(u, v) − uv ≤ qi,juv(1 − u)(1 − v) (1)

for (u, v) ∈ Ran(FXi
) × Ran(FYj

) and i 6= j with qi,j ≥ 0. Let us observe that

from (1) it follows that

P (Xi ≤ s, Xj ≤ t) − P (Xi ≤ s)P (Xj ≤ t)

≤ qi,jP (Xi ≤ s)P (X j ≤ t) P (Xi > s)P (Xj > t) . (2)
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Let us observe that for pairwise negatively quadrant dependent (in particular

pairwise independent) r.v.’s the condition (1) holds, with qi,j = 0. The other

examples of copulas satisfying (1) comprise Farlie–Gumbel–Morgerstern (FGM),

Ali–Mikhail–Haq and the Plackett families of copulas (cf. [12]). The random fields

considered in our paper are related to asymptotically quadrant independent (AQI)

and quadrant sub-independent (AQSI) r.v.’s or fields, which were studied in [9],

however in this paper qij depends on ‖i− j‖. Furthermore the results in [9] were

established for bounded or square-integrable random fields and did not provide

necessary conditions. Therefore our results cannot be obtained from the previ-

ously known ones.

2. Main results and proofs

Theorem 2.1. Let {Xn,n ∈Sr
θ} be a family of equidistributed random vari-

ables satisfying condition (1) and such that

∑

j∈Sr
θ

∑

i∈Sr
θ
(|j|),i6=j

|j|
−2

qi,j < ∞ and sup
k,j∈Sr

θ

qk,j < ∞. (3)

Then, the following conditions are equivalent:

1

|n|

∑

k∈Sr
θ
(n)

(Xk − mk) → 0, almost surely as n → ∞ in Sr
θ , (4)

where mk = EXkI[|Xk| ≤ |k|],

E|X1|
(
log+ |X1|

r−1
)

< ∞, if θ = 0

E|X1| < ∞, if θ ∈ (0, 1). (5)

Proof. For a < b let us define ϕa,b(t) = aI[t ≤ a]+ tI[a < t < b]+ bI[t ≥ b].

Let us begin with the sufficient condition (5)=⇒(4). Obviously

∑

j∈Sr
θ

P
(
ϕ−|j|,|j|(Xj) 6= Xj

)
=
∑

j∈Sr
θ

P (|Xj| > |j|) (6)

and the r.h.s. of (6) is finite by (5) according to Lemma 2.1 in [5] and Lemma 2.1

in [6]. Therefore it is enough to prove (4) for truncated random field {ϕ−|j|,|j|(Xj),

j ∈Sr
θ}. To be exact, we shall prove it for X ′

j = ϕ+
−|j|,|j|(Xj) = ϕ0,|j|(Xj) and X ′′

j =

ϕ−
−|j|,|j|(Xj) = −ϕ−|j|,0(Xj). Now, let us observe that the family {X ′

j, j ∈S
r
θ}
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satisfies the assumptions (i)–(iii) of Lemma 3.1. To check (iv), let us at first note,

that by our assumption (1) and Lemma 3.2 we get for j 6= k

Cov(X ′
j, X

′
k) =

∫ |j|

0

∫ |k|

0

[P (Xj ≤ u, Xk ≤ v) − P (Xj ≤ u)P (Xk ≤ v)]dudv

≤ qj,k

∫ |j|

0

P (Xj > u)du

∫ |k|

0

P (Xk > v)dv = qj,kEX ′
jEX ′

k

≤ qj,k(E|X1|)
2.

Thus we get
∑

k∈Sr
θ

∑

j∈Sr
θ
(|k|)

|k|−2 Cov+
(
X ′

jI[X ′
j ≤ |j|], X ′

kI
[
X ′

k ≤ |k|
])

≤
(
E|X1|

)2 ∑

j∈Sr
θ

∑

i∈Sr
θ
(|j|),i6=j

|j|−2qi,j +
∑

j∈Sr
θ

|j|−2 Var(X ′
j) < ∞

by (3) and since
∑

j∈Sr
θ
|j|−2 Var(X ′

j) is bounded by E|X1|(log+ |X1|
r−1), if θ = 0

and by E|X1| in the sectorial case θ ∈ (0, 1) (cf. Lemma 2.2 an its proof in [5]).

Thus, by Lemma 3.1 we have

1

|n|

∑

k∈Sr
θ
(n)

(X ′
k − EX ′

k) → 0, almost surely as n → ∞ in Sr
θ

similar result holds for {X ′′
j , j ∈Sr

θ}, by the moment assumption (5) we have

|n|P (|X1| > |n|) → 0 as n → ∞ and the proof of sufficiency is completed.

To prove necessity (4) ⇒ (5), let us observe that by the standard argu-

ments we get Xn/|n| → 0 almost surely as n → ∞ in Sr
θ . Thus, by Lemma 3.3,∑

k∈Sr
θ

P (|Xk| ≥ |k|) < ∞, what gives (5) (cf. [5], [6]). �

Let us go to the more classical version of the SLLN and prove the following

strong law for pairwise dependent random variables satisfying condition (1).

Theorem 2.2. Let {Xn,n ∈Sr
θ} be a family of equidistributed random vari-

ables satisfying condition (1) and (3). Then the condition (5) is equivalent to

1

Mθ(n)

∑

k∈Sr
θ
(n)

Xk → c, almost surely as n → ∞ in Sr
θ , for some constant c. (7)

If (5) holds then c = EX1.

Proof. From (7) it follows that 1
Mθ(n)

∑
k∈Sr

θ
(n)(Xk− c) → 0 almost surely,

thus 1
|n|

∑
k∈Sr

θ
(n)(Xk − c) → 0 and consequently Xn/|n| → 0 almost surely

as n → ∞ in Sr
θ . Since that (5) follows from Lemma 3.3 as in the proof of
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Theorem 2.1. Conversely from (5), by Theorem 2.1, we get 1
Mθ(n)

∑
k∈Sr

θ
(n)(Xk−

mk) → 0. Furthermore EX1I[|X1| > |n|] → 0, thus the generalization of the

Toeplitz lemma (cf. Lemma 2 in [13]), with w(m,k) = 1
Mθ(m) for k ∈Sr

θ (m) and

w(m,k) = 0 otherwise, implies (7). �

Remark 2.1. Let us observe that in general, the convergence of the series
∑

j∈Sr
θ

∑

i∈Sr
θ
(|j|),i6=j

|j|
−2

qi,j < ∞

does not imply supk,j∈Sr
θ
qk,j < ∞. Even in the case r = 1 the family qk,j may

contain divergent subsequences.

Remark 2.2. Let us point out some special forms of qi,j for which (3) holds:

(1) supi∈Sr
θ
(|j|) qi,j ≤

C

log1+δ
+

|j|
for θ ∈ (0, 1),

(2) supi∈Sr
θ
(|j|) qi,j ≤

C

logr+δ
+

|j|
for θ = 0,

for some constants C, δ > 0 and any j ∈Sr
θ . Applying well known methods of

summation of multiple series in both cases we obtain

∑

j∈Sr
θ

∑

i∈Sr
θ
(|j|),i6=j

|j|−2 qi,j ≤ C
∞∑

k=2

1

k log1+δ
+ k

< ∞.

Remark 2.3. If qi,j = q(||i| − |j||), then by using

dθ(k) = Card {n ∈ Sr
θ : |n| = k} = o(kδ),

we get that
∑∞

k=1 q(kt)/k1−2δ < ∞, for some δ > 0 is a sufficient condition for (3).

Often it is assumed that qi,j depends only on the distance of i and j i.e.

qi,j = q(‖i − j‖). In this case the condition (3) may be written as
∑

j∈Sr
θ

∑

i∈Sr
θ
:|i|≤|j|

|j|
−2

q (‖i − j‖) < ∞. (8)

and in the one-dimensional case we get the following generalization of the main

result in [12].

Corollary 2.1. Let {Xn, n ∈ N} be a sequence of equidistributed random

variables satisfying condition (1) and such that
∑∞

n=1 q(n)/n < ∞. Then the

following conditions are equivalent:

1

n

n∑

k=1

Xk −→ c, almost surely, as n → ∞ for some constant c (9)

E |X1| < ∞. (10)

If E|X1| < ∞, then c = EX1.



SLLN for random fields under conditions. . . 335

Example 1. In a similar way as in [12] we can construct a random field

{Xn,n ∈Nr} of r.v.’s satisfying (1) with the same distribution function F (x) by

introducing a consistent family of finite-dimensional FGM distributions. The joint

distribution of Xi1 , . . . , Xin is given by

Fi1,...,in(x1, . . . , xn)

=

n∏

k=1

F (xk)

(
1 +

∑

1≤j<k≤n

aij ,ik(1 − F (xj))(1 − F (xk))

)

with aij ,ik = ±A−|ij |−|ik|, for some A > 1 chosen in such a way that

∣∣∣∣∣
∑

1≤j<k≤n

aij ,ik

∣∣∣∣∣ ≤

∣∣∣∣∣
∑

i,j∈Nr

1

A|i|+|j|

∣∣∣∣∣ ≤
(
∑

k∈N

d0(k)

Ak

)2

≤ 1

for any choice of i1, . . . , in, here d0(k) = Card{n ∈ Nr : |n| = k} = o(kδ), for

some δ > 0. The bivariate distribution of Xi, Xj is the FGM distribution with

the copula of the following form

CXiXj
(u, v) = uv(1 + aij(1 − u)(1 − v))

so that we may take qij = A−|i|−|j| if aij > 0 and 0 otherwise. It is easy to see

that in this case, the conditions mentioned in Remark 2.2 are satisfied.

3. Auxiliary lemmas

In the first lemma and proofs of our results we shall use the following notation

Cov+(X, Y ) = max(Cov(X, Y ), 0).

Lemma 3.1. Let {Xn,n ∈Sr
θ} be a field of nonnegative random variables

such that:

(i) supk∈Sr
θ
EXk < ∞ ,

(ii)
∑

k∈Sr
θ

P (Xk > |k|) < ∞,

(iii) 1
|n|

∑
k∈Sr

θ
(n) EXkI[Xk > |k|] → 0, as n → ∞ in Sr

θ ,

(iv)
∑

k∈Sr
θ

∑
j∈Sr

θ
(|k|) |k|

−2 Cov+(XjI[Xj ≤ |j|], XkI [Xk ≤ |k|]) < ∞.
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Then

1

|n|

∑

k∈Sr
θ
(n)

(Xk − EXk) → 0, almost surely as n → ∞ in Sr
θ .

Proof. For θ = 0 the lemma was obtained by Ko et al. [9] in the case

min1≤i≤r ni → ∞, but their arguments also work when |n| → ∞. The sectorial

case θ ∈ (0, 1) follows from the already proved part by considering the random

field {Xn,n ∈ Nr}, where Xn = 0 if n ∈ Nr\Sr
θ . �

The next lemma is a version of the Hoeffding lemma (cf. [10]) for continuously

truncated random variables. Let us recall that ϕa,b(t) = aI[t ≤ a] + tI[a < t <

b] + bI[t ≥ b].

Lemma 3.2. Let (X, Y ) be any 2-dimensional random vector then

Cov(ϕa,b(X), ϕa,b(Y )) =

∫ b

a

∫ b

a

[P (X ≤ u, Y ≤ v) − P (X ≤ u)P (Y ≤ v)]dudv,

furthermore

Eϕ0,a(X) =

∫ a

0

P (X ≥ u)du.

Proof. Applying Hoeffding equality

Cov(ξ, η) =

∫ +∞

−∞

∫ +∞

−∞

[P (ξ ≤ u, η ≤ v) − P (ξ ≤ u)P (η ≤ v)] dudv

to the r.v.’s ξ = ϕa,b(X) and η = ϕa,b(Y ) we get the desired conclusion. �

In the following lemma we shall present an extension of the classical Erdös–

Rényi version of the second Borel–Cantelli lemma to families of dependent events

indexed by multidimensional indices.

Lemma 3.3. Let {An ∈ F ,n ∈Sr
θ} be a family of events on some probability

space (Ω,F , P ) and {qi,j, i, j ∈S
r
θ} a family of positive numbers satisfying the

following conditions

(i)
∑

k∈Sr
θ

P (Ak) = ∞,

(ii) there exists n0∈S
r
θ such that for all k, j ∈Ŝr

θ (n0)

P (Ak ∩ Aj) − P (Ak)P (Aj) ≤ qk,jP (Ak) P (Aj) ,

(iii) sup
k,j∈ bSr

θ
(n0)

qk,j < ∞.
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Then for any n � n0

P
(
An, i.o. n ∈ Sr

θ

)
≥

1

1 + sup
k,j∈ bSr

θ
(n) qk,j

.

Proof. By the Chung–Erdös inequality (cf. [15] p. 284), applied to the

finite family of events {Ak,k ∈Sr
θ (n, l)}, we have

P

(
⋃

k∈Sr
θ
(n,l)

Ak

)
≥

(
∑

k∈Sr
θ
(n,l)

P (Ak)

)2

/
∑

k,j∈Sr
θ
(n,l)

P (Ak ∩ Aj).

From our assumption (ii), we get
∑

k,j∈Sr
θ
(n,l)

P (Ak ∩ Aj) ≤
∑

k,j∈Sr
θ
(n,l)

(1 + qk,j)P (Ak)P (Aj)

≤

(
1 + sup

k,j∈Sr
θ
(n,l)

qk,j

)(( ∑

k∈Sr
θ
(n,l)

P (Ak)

)2

+
∑

k∈Sr
θ
(n,l)

P (Ak)

)
.

Now, using the idea of Petrov [15] we derive

P

(
⋃

k∈Sr
θ
(n,l)

Ak

)

≥

(
1 + sup

i,j∈Sr
θ
(n,l)

qi,j

)−1
(∑

k∈Sr
θ
(n,l) P (Ak)

)2
(∑

k∈Sr
θ
(n,l) P (Ak)

)2
+
∑

k∈Sr
θ
(n,l) P (Ak)

and taking the limit over l of the both sides, we obtain

P

(
⋃

k∈ bSr
θ
(n)

Ak

)
≥

1

1 + sup
i,j∈ bSr

θ
(n) qij

.

Now, one can easily see that

⋂

n∈Sr
θ

⋃

k∈ bSr
θ
(n)

Ak =

∞⋂

N=1

⋃

k∈ bSr
θ
(N)

Ak

where N = (N, . . . , N). The sequence of events BN =
⋃

k∈ bSr
θ
(N) Ak is decreasing,

hence

P (An, i.o. n ∈ Sr
θ

)
= lim

N→∞
P

(
⋃

k∈ bSr
θ
(N)

Ak

)
≥

1

1 + sup
i,j∈ bSr

θ
(n0)

qi,j
. �
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Remark 3.1. Under conditions of Lemma 3.3 with (iii) replaced by

(iii’) sup
k,j∈ bSr

θ
(n) qk,j → 0, as n → ∞,

we have P (An, i.o. n ∈ Sr
θ ) = 1
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[13] F. Móricz, Multiparameter strong laws of large numbers. I (second order moment restric-
tions), Acta Sci. Math. 40 (1978), 143–156.

[14] R. B. Nelsen, An introduction to copulas, Springer–Verlag, New York, 1999.

[15] V. V. Petrov, A note on the Borel–Cantelli lemma, Statist. Probab. Lett. 58 (2002),
283–286.

[16] R. Smythe, Strong laws of large numbers for r-dimensional arrays of random variables,
Ann. Probab. 1 (1973), 164–170.



SLLN for random fields under conditions. . . 339

[17] R. Smythe, Sums of independent random variables on partially ordered sets, Ann. Probab.

2 (1974), 906–917.

ZBIGNIEW A. LAGODOWSKI

DEPARTMENT OF MATHEMATICS

LUBLIN UNIVERSITY OF TECHNOLOGY

NADBYSTRZYCKA 38D

20-618 LUBLIN

POLAND

E-mail: z.lagodowski@pollub.pl

PRZEMYS LAW MATU LA

INSTITUTE OF MATHEMATICS

MARIE CURIE-SK LODOWSKA UNIVERSITY

PL.M.C.-SK LODOWSKIEJ 1

20-031 LUBLIN

POLAND

E-mail: matula@hektor.umcs.lublin.pl

(Received June 22, 2009; revised November 9, 2009)


