How short might be the longest run in a dynamical coin tossing sequence

By PÁL RÉVÉSZ

Dedicated to the $100^{\text {th }}$ anniversary of the birthday of Béla Gyires

Abstract

Let X_{1}, X_{2}, \ldots denote i.i.d. random bits each taking the values 1 and 0 with respective probabilities $1 / 2$ and $1 / 2$. A well-known theorem of Erdős and RÉnyi [2] describes the limit distribution of the length of the longest contiguous run of ones in $X_{1}, X_{2}, \ldots, X_{n}$ as $n \rightarrow \infty$. Benjamini et al. ([1] Theorem 1.4) demonstrated the existence of unusual times, provided that the bits undergo equilibrium dynamics in time. In fact they prove that the dynamics produces much longer runs than the original model. In the present paper we study the length of the shortest run in the presence of the dynamics.

1. Introduction

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d.r.v.'s with distribution

Further let

$$
\mathbf{P}\left\{X_{1}=1\right\}=\mathbf{P}\left\{X_{1}=0\right\}=\frac{1}{2}
$$

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}, \quad I(n, a)=\max _{0 \leq k \leq n-a}\left(S_{k+a}-S_{k}\right), \quad(a \leq n)
$$

[^0]and Z_{n} be the largest integer for which $I\left(n, Z_{n}\right)=Z_{n}$, i.e. Z_{n} is the length of the longest run of heads in a Bernoulli trial up to n.

A characterization of the sequence $\left\{Z_{n}\right\}$ was given by Erdős and RÉvÉSZ at 1976 ([3]).

Theorem 1 (RÉVÉSZ [6], Theorem 7.2). Assume that $\sum_{n=1}^{\infty} 2^{-a_{n}}<\infty$. Then

$$
\begin{equation*}
Z_{n} \leq a_{n} \quad \text { a.s. } \tag{1.1}
\end{equation*}
$$

if n is large enough.
Assume that $\sum_{n=1}^{\infty} 2^{-a_{n}}=\infty$. Then

$$
\begin{align*}
& Z_{n} \geq a_{n} \quad \text { a.s. i.o. } \tag{1.2}\\
& Z_{n} \leq \log n-\log _{3} n+\log _{2} e-1+\varepsilon \quad \text { a.s. i.o. } \tag{1.3}\\
& Z_{n}>\log n-\log _{3} n+\log _{2} e-2-\varepsilon \quad \text { a.s. } \tag{1.4}
\end{align*}
$$

if n is large enough where \log is the logarithm with base $2, \log _{p}$ is the p-th iterated $\operatorname{logarithm}, \varepsilon$ is an arbitrary positive number.

Slightly stronger versions of (1.3) and (1.4) are given in [4] and [7]. Note that (1.1) and (1.2) imply

$$
Z_{n} \leq \log n+\log _{2} n+(1+\varepsilon) \log _{3} n \quad \text { a.s. }
$$

if n is large enough and

$$
Z_{n} \geq \log n+\log _{2} n+\log _{3} n \quad \text { a.s. i.o. }
$$

In [3] we also investigated the following question: what is length of the longest run containing at most one (or at most $T(T=1,2, \ldots)) 0$'s. Let $Z_{n}^{(T)}$ be the largest integer for which

$$
I\left(n, Z_{n}^{(T)}\right) \geq Z_{n}^{(T)}-T
$$

A generalization of Theorem 1 is the following:
Theorem 2 (RÉvéSZ [6], Theorem 7.4). Let $\left\{a_{n}\right\}$ be a sequence of positive numbers and let

$$
A_{T}\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} a_{n}^{T} 2^{-a_{n}}
$$

Assume that

$$
A_{T}\left(\left\{a_{n}\right\}\right)<\infty .
$$

Then

$$
Z_{n}^{(T)} \leq a_{n} \quad \text { a.s. }
$$

if n is large enough.
Assume that

$$
A_{T}\left(\left\{a_{n}\right\}\right)=\infty
$$

Then
Further

$$
Z_{n}^{(T)} \geq a_{n} \quad \text { a.s. i.o. }
$$

$$
\begin{array}{ll}
Z_{n}^{(T)} \leq \log n+T \log _{2} n-\log _{3} n-\log T!+\log _{2} e-1+\varepsilon & \text { a.s. i.o. } \\
Z_{n}^{(T)} \geq \log n+T \log _{2} n-\log _{3} n-\log T!+\log _{2} e-2-\varepsilon & \text { a.s. }
\end{array}
$$

Given an array $\left\{X_{n}^{(j)}: j, n=0,1,2, \ldots\right\}$ of i.i.d.r.v.'s with distribution

$$
\mathbf{P}\left\{X_{0}^{(0)}=1\right\}=\mathbf{P}\left\{X_{0}^{(0)}=0\right\}=\frac{1}{2}
$$

and for each n an independent Poisson process $\left\{\psi_{n}^{(j)}\right\}(j \geq 0)$ of rate 1. Define

$$
X_{n}(t)=X_{n}^{(j)} \quad \text { for } \quad \psi_{\mathrm{n}}^{(\mathrm{j}-1)} \leq \mathrm{t}<\psi_{\mathrm{n}}^{(\mathrm{j})} \quad(\mathrm{j}=1,2, \ldots)
$$

where $\psi_{n}^{(0)}=0$ for each n.
Let

$$
S_{n}(t)=\sum_{k=1}^{n} X_{k}(t), \quad I(n, a, t)=\max _{0 \leq k \leq n-a}\left(S_{k+a}(t)-S_{k}(t)\right), \quad(0 \leq a \leq n)
$$

$Z_{n}(t)$ be the largest integer for which $I\left(n, Z_{n}(t), t\right)=Z_{n}(t)$ i.e. $Z_{n}(t)$ is the length of the longest head-run at t up to n.

Similarly let $Z_{n}(t, T)$ be the largest integer for which $I\left(n, Z_{n}(t, T), t\right) \geq$ $Z_{n}(t, T)-T$.

A characterization of $\left\{Z_{n}(t), n=1,2, \ldots, 0 \leq t \leq 1\right\}$ is given by Benjamini et al. (2003 [1]). The properties of $\left\{Z_{n}(t, T), n=1,2, \ldots, 0 \leq t \leq 1, T=\right.$ $1,2, \ldots\}$ were studied by Khoshnevisan et al. (2007 [5]).

Theorem 3 (Benjamini et al. [1] Theorem 1.4). Assume that $\sum_{n=1}^{\infty} a_{n} 2^{-a_{n}}<\infty$. Then

$$
\begin{equation*}
\forall t \in(0,1) \text { we have } Z_{n}(t) \leq a_{n} \quad \text { a.s. if } n \text { is large enough. } \tag{1.5}
\end{equation*}
$$

Assume that $\sum_{n=1}^{\infty} a_{n} 2^{-a_{n}}=\infty$. Then

$$
\begin{equation*}
\exists t \in(0,1) \text { such that } Z_{n}(t) \geq a_{n} \quad \text { a.s. i.o. } \tag{1.6}
\end{equation*}
$$

Note that (1.5) and (1.6) imply

$$
Z_{n}(t) \leq \log n+2 \log _{2} n+(1+\varepsilon) \log _{3} n \quad \text { a.s. }
$$

for any $t \in(0,1)$ if n is large enough and $\exists t \in(0,1)$ such that

$$
Z_{n}(t) \geq \log n+2 \log _{2} n+\log _{3} n \quad \text { a.s. i.o. }
$$

Theorem 4 (Khoshnevisan et al. [5]). Assume that

$$
A_{T+1}\left(\left\{a_{n}\right\}\right)<\infty .
$$

Then

$$
Z_{n}(t, T) \leq a_{n} \quad \text { a.s. }
$$

for any $0 \leq t \leq 1$ if n large enough.
Assume that

$$
A_{T+1}\left(\left\{a_{n}\right\}\right)=\infty .
$$

Then there exists a $t(0 \leq t \leq 1)$ such that

$$
Z_{n}(t, T) \geq a_{n} \quad \text { a.s. i.o. }
$$

The main goal of this paper is to prove the following:
Theorem 5. For any $0 \leq t \leq 1 \leq 1 / 8$ we have

$$
Z_{n}(t) \geq \log n-\log _{3} n-C \quad \text { a.s. }
$$

if n is large enough and

$$
C>6+\log \frac{4}{e-1}
$$

2. Combinatorial lemmas

Let $\nu(2), \nu(3), \ldots, \nu(K)$ be i.i.d.r.v.'s with

$$
\mathbf{P}\{\nu(2)=i\}=\frac{1}{K} \quad(i=1,2, \ldots K) .
$$

Let $X(1,1), X(1,2), \ldots, X(1, K), Y_{2}, Y_{3}, \ldots, Y_{K}$ be i.i.d.r.v.'s with

$$
\mathbf{P}\{X(1,1)=1\}=\mathbf{P}\{X(1,1)=0\}=\frac{1}{2}
$$

being independent on $\nu(2), \nu(3), \ldots, \nu(K)$.
Let

$$
\begin{aligned}
& X(2, i)=\left\{\begin{array}{ll}
X(1, i) & \text { if } \nu(2) \neq i, \\
Y_{2} & \text { if } \nu(2)=i,
\end{array} \quad X(3, i)= \begin{cases}X(2, i) & \text { if } \nu(3) \neq i, \\
Y_{3} & \text { if } \nu(3)=i,\end{cases} \right. \\
& X(k, i)=\left\{\begin{array}{ll}
X(k-1, i) & \text { if } \nu(k) \neq i, \\
Y_{k} & \text { if } \nu(k)=i,
\end{array} \quad \text { where }(i=1,2, \ldots, K, k=4,5, \ldots, K) .\right. \\
& B(k)=\bigcap_{i=1}^{K}\{X(k, i)=1\}, p(K)=\mathbf{P}\left\{\bigcup_{k=1}^{K} B(k)\right\} .
\end{aligned}
$$

Lemma 1.

$$
\begin{equation*}
\frac{(e-1) K}{e 2^{K+1}} \leq p(K) \leq \frac{K}{2^{K}} \tag{2.1}
\end{equation*}
$$

Proof. The upper part of (2.1) is trivial. Now we turn to its lower part. Clearly

$$
\begin{aligned}
p(K)= & \mathbf{P}\{B(1)\}+\mathbf{P}\{\overline{B(1)} B(2)\}+\mathbf{P}\{\overline{B(1)} \overline{B(2)} B(3)\} \\
& +\cdots+\mathbf{P}\{\overline{B(1)} \overline{B(2)} \ldots \overline{B(K-1)} B(K)\}
\end{aligned}
$$

(where \bar{A} is the complement of A),

$$
\begin{gathered}
\mathbf{P}\{B(1)\}=\frac{1}{2^{K}}, \quad b p\{\overline{B(1)} B(2)\}=\frac{1}{2^{K+1}}, \\
\mathbf{P}\{\overline{B(1)} \overline{B(2)} B(3)\}=\mathbf{P}\{\nu(3) \neq \nu(2), X(3, \nu(3))=X(2, \nu(2))=1, \\
X(1, \nu(3))=0, X(1, k)=1 \text { if }\{k \neq \nu(2) \text { and } k \neq \nu(3)\}\}+\mathbf{P}\{\nu(3)=\nu(2), \\
X(3, \nu(3))=1, X(2, \nu(2))=X(1, \nu(2))=0, X(1, k)=1 \text { if } k \neq \nu(2)\} \\
=\mathbf{P}\{\nu(3) \neq \nu(2)\} \frac{1}{2^{K+1}}+\mathbf{P}\{\nu(3)=\nu(2)\} \frac{1}{2^{K+2}} .
\end{gathered}
$$

Since

$$
\mathbf{P}\{\nu(2) \neq \nu(3)\}=1-\mathbf{P}\{\nu(2)=\nu(3)\}=1-\frac{1}{K}
$$

we have

$$
\mathbf{P}\{\overline{B(1)} \overline{B(2)} B(3)\}=\frac{1}{2^{K+1}}\left(1-\frac{1}{2 K}\right)
$$

Observe that

$$
\begin{aligned}
\{X(1, \nu(k))=0, X(k, m) & =1(m=1,2, \ldots, K), \nu(j) \neq \nu(k)(j=2,3, \ldots, k-1)\} \\
& \subset \overline{B(1)} \overline{B(2)} \ldots \overline{B(k-1)} B(k) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\mathbf{P}\{X(1, \nu(k))=0, X(k, m)=1 & (m=1,2, \ldots, K), \nu(j) \neq \nu(k) \\
& (j=2,3, \ldots, k-1)\}=\frac{1}{2^{K+1}}\left(1-\frac{1}{K}\right)^{k-2}
\end{aligned}
$$

we have

$$
\mathbf{P}\{\overline{B(1)} \overline{B(2)} \ldots \overline{B(k-1)} B(k)\} \geq \frac{1}{2^{K+1}}\left(1-\frac{1}{K}\right)^{k-2} \quad(k=2,3, \ldots, K)
$$

and

$$
\begin{gathered}
p(K) \geq \frac{1}{2^{K}}+\sum_{k=2}^{K} \frac{1}{2^{K+1}}\left(1-\frac{1}{K}\right)^{k-2}=\frac{1}{2^{K}}+\frac{K}{2^{K+1}}\left(1-\left(1-\frac{1}{K}\right)^{K-1}\right) \\
\geq \frac{e-1}{e} \frac{K}{2^{K+1}}
\end{gathered}
$$

Hence Lemma 1 is proved.
Let $\mu(2), \mu(3), \ldots, \mu(2 K)$ be i.i.d.r.v.'s with

$$
\mathbf{P}\{\mu(2)=i\}=\frac{1}{2 K} \quad(i=1,2, \ldots, 2 K)
$$

Let $Z(1,1), Z(1,2), \ldots, Z(1,2 K), U_{2}, U_{3}, \ldots, U_{2 K}$ be i.i.d.r.v.'s with

$$
\mathbf{P}\{Z(1,1)=1\}=\mathbf{P}\{Z(1,1)=0\}=\frac{1}{2}
$$

being independent on $\mu(2), \mu(3), \ldots, \mu(2 K)$.
Let

$$
\begin{aligned}
& \quad Z(2, i)=\left\{\begin{array}{ll}
Z(1, i) & \text { if } \mu(2) \neq i, \\
U_{2} & \text { if } \mu(2)=i,
\end{array} \quad Z(k, i)= \begin{cases}Z(k-1, i) & \text { if } \mu(k) \neq i, \\
U_{k} & \text { if } \mu(k)=i\end{cases} \right. \\
& (k=3,4, \ldots, 2 K, i=1,2, \ldots, 2 K) .
\end{aligned}
$$

Lemma 2. Let

$$
\begin{aligned}
q(2 K)=\mathbf{P}\{\exists k, j: 1 \leq k \leq 2 K, 1 \leq j \leq K \text { such that } & Z(k, j)=\ldots \\
= & Z(k, j+K-1)=1\}
\end{aligned}
$$

Then

$$
\begin{equation*}
\Delta \frac{K^{2}}{2^{K}} \leq q(2 K) \leq \frac{K^{2}}{2^{K}} \tag{2.2}
\end{equation*}
$$

where

$$
\Delta=\frac{e-1}{4 e^{2}}=0.0581 \ldots
$$

Proof. The upper part of (2.2) is trivial. Now we turn to its lower part. Let

$$
\begin{aligned}
& A_{j}=\{\exists k: 1 \leq k \leq 2 K, Z(k, j)=Z(k, j+1)=\cdots=Z(k, j+K-1)=1\}, \\
& C_{j}=\{Z(1, j)=Z(2, j)=\cdots=Z(2 K, j)=0\} \quad(j=1,2, \ldots, K)
\end{aligned}
$$

Then

$$
\begin{aligned}
q(2 K) & =\mathbf{P}\left\{\bigcup_{j=1}^{K} A_{j}\right\}=\mathbf{P}\left\{A_{1}\right\}+\mathbf{P}\left\{\overline{A_{1}} A_{2}\right\}+\cdots+\mathbf{P}\left\{\overline{A_{1}} \overline{A_{2}} \ldots \overline{A_{K-1}} A_{K}\right\} \\
& \geq \mathbf{P}\left\{A_{1}\right\}+\mathbf{P}\left\{C_{1} \overline{A_{1}} A_{2}\right\}+\cdots+\mathbf{P}\left\{C_{K-1} \overline{A_{1}} \overline{A_{2}} \ldots \overline{A_{K-1}} A_{K}\right\} \\
& =\mathbf{P}\left\{A_{1}\right\}+\mathbf{P}\left\{C_{1} A_{2}\right\}+\cdots+\mathbf{P}\left\{C_{K-1} A_{K}\right\}=\mathbf{P}\left\{A_{1}\right\}+(K-1) \mathbf{P}\left\{C_{1} A_{2}\right\} .
\end{aligned}
$$

Clearly

$$
\begin{gathered}
\left\{Z(1,1)=0, \mu_{2}>1, \mu_{3}>1, \ldots, \mu_{2 K}>1\right\} \subset C_{1} \\
\mathbf{P}\left\{C_{1}\right\} \geq \frac{1}{2}\left(1-\frac{1}{2 K}\right)^{2 K-1} \geq \frac{1}{2 e}
\end{gathered}
$$

Let

$$
V_{2 K}=\#\left\{k: k \leq 2 K, \mu_{k} \leq K\right\}
$$

Then

$$
V_{2 K} \geq(1-o(1)) K \quad \text { a.s. }
$$

Hence by Lemma 1 we have

$$
\mathbf{P}\left\{A_{1}\right\}=\mathbf{P}\left\{A_{2}\right\} \geq \frac{e-1}{e} \frac{K}{2^{K+1}}
$$

which implies (2.2).

3. Proof of Theorem 5

Let

$$
\Psi(K)=\left\{\psi_{n}^{(j)}, n=1,2, \ldots, 2 K, j=1,2, \ldots\right\}
$$

Let $\tau_{1}<\tau_{2}<\ldots$ be the ordered elements of $\Psi(K)$ i.e. τ_{1} is the smallest element of $\Psi(K), \tau_{2}$ is the second smallest and so on. Note $\tau=\left\{\tau_{1}, \tau_{2}, \ldots\right\}$ is a Poisson process of parameter $2 K$.

Define n_{1} by the equation

$$
\psi_{n_{1}}^{(1)}=\tau_{1} .
$$

Clearly

$$
\mathbf{P}\left\{n_{1}=i\right\}=\frac{1}{2 K} \quad(i=1,2, \ldots, 2 K)
$$

Similarly define $\left(n_{2}, j_{2}\right),\left(n_{3}, j_{3}\right), \ldots$ by the equations

$$
\begin{equation*}
\psi_{n_{2}}^{\left(j_{2}\right)}=\tau_{2}, \quad \psi_{n_{3}}^{\left(j_{3}\right)}=\tau_{3}, \ldots \tag{3.1}
\end{equation*}
$$

Clearly $\left(n_{2}, j_{2}\right),\left(n_{3}, j_{3}\right), \ldots$ are uniquely defined a.s. by (3.1) and we have

$$
\mathbf{P}\left\{n_{\ell}=i\right\}=\frac{1}{2 K} \quad(i=1,2, \ldots, 2 K, \ell=1,2, \ldots, 2 K)
$$

Introduce the following definitions:
(i) Let $J(K)$ be the set of those j 's $(j \leq 2 K)$ for which there exists an $n \in[1, K]$ such that for any $t \in\left[\tau_{j}, \tau_{j+1}\right)$ we have $X_{m}(t)=1$ for each $m \in[n, n+K-1]$.
(ii) Let $F(K)$ be the event that the set $J(K) \neq \emptyset$.
(iii) For any $t>0$ let $j(t)$ be the largest integer for which $\tau_{j} \leq t$.

If $J(K)$ consists of exactly one element then for any $j \leq K$ we have

$$
\begin{equation*}
\mathbf{P}\{j \in J(K)\}=\frac{1}{K}, \tag{3.2}
\end{equation*}
$$

if it consists of more than one element then for any $j \leq K$ we have

$$
\begin{equation*}
\mathbf{P}\{j \in J(K)\} \geq \frac{1}{K} \tag{3.3}
\end{equation*}
$$

Lemma 3. Let $j \leq K$ and $\tau_{j} \leq t<\tau_{j+1}$. Then we have

$$
\begin{gather*}
\mathbf{P}\left\{\tau_{j(t)+1}-\tau_{j(t)} \geq \tau_{j(t)+1}-t \geq \frac{1}{2 K}\right\}=\frac{1}{e} \tag{3.4}\\
\mathbf{P}\left\{Z_{2 K}(t) \geq K \mid F(K)\right\}=\mathbf{P}\{j(t) \in J(K) \mid F(K)\} \geq \frac{1}{K} . \tag{3.5}
\end{gather*}
$$

Consequently

$$
\begin{equation*}
\mathbf{P}\left\{Z_{2 K}(t) \geq K, \left.\tau_{j(t)+1}-t \geq \frac{1}{2 K} \right\rvert\, F(K)\right\} \geq \frac{1}{e K} \tag{3.6}
\end{equation*}
$$

Proof. Since τ is a Poisson process of parameter $1 / 2 K$, we have (3.4). (3.5) follows from (3.2) and (3.3). (3.4) and (3.5) combined imply (3.6).

Lemma 4.

$$
\begin{equation*}
\mathbf{P}\{F(K)\} \geq \Delta K^{2} 2^{-K} \tag{3.7}
\end{equation*}
$$

Proof. It is a trivial consequence of Lemma 2.
Lemma 5. Let $j \leq K$ and $\tau_{j} \leq t<\tau_{j+1}$. Then we have

$$
\begin{equation*}
\mathbf{P}\left\{\tau_{j(t)+1}-t \geq \frac{1}{2 K}, Z_{2 K}(t) \geq K\right\} \geq \frac{\Delta}{e} K 2^{-K} \tag{3.8}
\end{equation*}
$$

Proof. Clearly the r.v.'s $Z_{2 K}(t)$ and $\tau_{j(t)+1}-\tau_{j(t)}$ are independent. Hence

$$
\begin{aligned}
& \mathbf{P}\left\{\tau_{j(t)+1}-t \geq \frac{1}{2 K}, Z_{2 K}(t) \geq K\right\} \\
& \quad=\mathbf{P}\left\{\tau_{j(t)+1}-t \geq \frac{1}{2 K}, Z_{2 K}(t) \geq K, F(K)\right\} \\
& \quad=\mathbf{P}\left\{\tau_{j(t)+1}-t \geq \frac{1}{2 K}\right\} \mathbf{P}\left\{Z_{2 K}(t) \geq K \mid F(K)\right\} \mathbf{P}\{F(K)\}
\end{aligned}
$$

Hence we have (3.8) by (3.4), (3.5) and (3.6).
Introduce two further definitions:
(iv) Let $Z(\ell, K, t)$ be the largest integer for which there exists an integer

$$
b \in[2 \ell K,(2 \ell+1) K)
$$

such that

$$
S_{b+K}(t)-S_{b}(t)=Z(\ell, K, t)
$$

that is $Z(\ell, K, t)$ is the length of the longest head-run at

$$
t \in[2 \ell K,(2 \ell+2) K)
$$

(v) Define $\Psi(\ell, K), \tau_{i}(\ell), F(\ell, K), j(\ell, t)$ just like above using the block

$$
[2 \ell K,(2 \ell+2) K)
$$

instead of the block $(0,2 K)$.
Let

$$
Q:=Q(K, N)=\#\{\ell: \ell \leq[N / 2 K] \text { for which } F(\ell, K) \text { holds true }\}
$$

and let

$$
K=\log N-\log _{3} N-C
$$

Lemma 6.

$$
\begin{equation*}
\mathbf{P}\left\{Q(K, N) \leq \Delta 2^{C-2} \log N \log _{2} N\right\} \leq N^{-O(1) \log _{2} N} \tag{3.9}
\end{equation*}
$$

Proof. Apply the large deviation theorem (Révész [6], Theorem 2.3) with

$$
n=[N / 2 K], \quad p=\frac{\Delta K^{2}}{2^{K}}, \quad \varepsilon=\frac{p}{2} .
$$

Since

$$
\frac{n p}{2}=\Delta 2^{C-2} \log N \log _{2} N, \quad \frac{n \varepsilon^{2}}{2 p q\left(1+\frac{\varepsilon}{2 p q}\right)^{2}}=O(1) \log N \log _{2} N
$$

we have (3.9).
Let $D(t)=D(t, N, K)$ be the event that there exists an $\ell=\ell(t)(0 \leq \ell \leq$ [$N / 2 K]$) for which $Z(\ell, K, t) \geq K$ and $\tau_{j(t)+1}(\ell)-t \geq 1 / 2 K$.

Lemma 7.

$$
\begin{equation*}
\mathbf{P}\{\overline{D(t)}\} \leq \frac{2}{(\log N)^{\Delta 2^{C-2} e^{-1}}} \tag{3.10}
\end{equation*}
$$

Proof. By (3.6) and Lemma 6 we have

$$
\begin{aligned}
& b p\{\overline{D(t)}\}=\mathbf{E P}\{\overline{D(t)} \mid Q\} \geq \mathbf{E}\left(1-\frac{1}{2 K}\right)^{Q} \\
& \quad=\mathbf{E}\left(\left.\left(1-\frac{1}{e K}\right)^{Q} \right\rvert\, Q \leq \Delta 2^{C-2} \log N \log _{2} N\right) \mathbf{P}\left\{Q \leq \Delta 2^{C-2} \log N \log _{2} N\right\} \\
& \quad+\mathbf{E}\left(\left.\left(1-\frac{1}{e K}\right)^{Q} \right\rvert\, Q>\Delta 2^{C-2} \log N \log _{2} N\right) \mathbf{P}\left\{Q>\Delta 2^{C-2} \log N \log _{2} N\right\} \\
& \quad \leq \mathbf{P}\left\{Q \leq \Delta 2^{C-2} \log N \log _{2} N\right\}+\left(1-\frac{1}{e K}\right)^{\Delta 2^{C-2} \log N \log _{2} N} \leq \\
& \quad \leq N^{-O(1) \log _{2} N}+\exp \left(-\frac{\Delta 2^{C-2}}{e} \log _{2} N\right) \leq 2(\log N)^{-\Delta 2^{C-2} e^{-1}}
\end{aligned}
$$

Hence we have (3.10).

Lemma 8.

$$
\begin{equation*}
\mathbf{P}\left\{\tau_{2 K}<\frac{1}{8}\right\} \leq e^{-B K} \tag{3.11}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\mathbf{P}\left\{\min _{\ell \leq[N / 2 K]} \tau_{2 K}(\ell)<\frac{1}{8}\right\} \leq e^{-B K} \tag{3.12}
\end{equation*}
$$

for a $B>0$.

Proof. Since

$$
\frac{d}{d x} \mathbf{P}\left\{2 K \tau_{K}<x\right\}=\frac{x^{K-1} e^{-x}}{(K-1)!}
$$

by an easy calculation we have (3.11).
Lemma 9. The event

$$
\bigcap_{m=1}^{2 K} D\left(\frac{m}{2 K}\right)
$$

implies that for any $m \leq 2 K$ there exists an $\ell \leq[N / 2 K]$ such that

$$
\tau_{j(m / 2 K)+1}(\ell)-\frac{m}{2 K} \geq \frac{1}{2 K}
$$

and

$$
Z(\ell, K, t) \geq K
$$

if

$$
t \leq \min _{\ell \leq[N / 2 K]} \tau_{2 K}(\ell)
$$

Proof. It follows straight from the definition of $D(\cdot)$.
Proof of Theorem 5. By Lemma 7 we have

$$
\begin{aligned}
\mathbf{P}\left\{\bigcap_{j=1}^{2 K} D\left(\frac{j}{2 K}\right)\right\} & =1-\mathbf{P}\left\{\bigcup_{j=1}^{2 K} \overline{D\left(\frac{j}{2 K}\right)}\right\} \geq 1-2 K \mathbf{P}\{\overline{D(t)}\} \\
& \geq 1-2 K 2(\log N)^{\Delta 2^{C-2} e^{-1}} \geq 1-4(\log N)^{-\Delta 2^{C-2} e^{-1}+1}
\end{aligned}
$$

Let

$$
C>3+\log \frac{e}{\Delta}
$$

and

$$
N_{m}=2^{m} \quad(m=1,2, \ldots)
$$

Then

$$
\Delta 2^{C-2} e^{-1}-1>1
$$

and the event

$$
\bigcap_{j=1}^{2 K} D\left(\frac{j}{2 K}\right) \quad\left(K=K_{m}=\log N_{m}-\log _{3} N_{m}-C\right)
$$

occurs with probability 1 if m is large enough. Consequently for any $t \leq 1 / 8$

$$
Z_{N_{m}}(t) \geq \log N_{m}-\log _{3} N_{m}-C
$$

if m is large enough which easily implies Theorem 5 .

References

[1] I. Benjamini, O. Häggström, Y. Peres and J. E. Steif, Which properties of a random sequence are dynamically sensitive, Ann. Probab. 31, 2003, 1-34.
[2] P. Erdős and A. Rényi, On a new law of large numbers, J. Analyse Math. 23, 1970, 103-111.
[3] P. Erdős and P. Révész, On the length of the longest head-run, Topics in Information Theory, Vol. 16, Second Colloq., Keszthely, 1975), pp. 219-228. Colloq. Math. Soc. Janos Bolyai, (Csiszár, I. and Elias, P., eds.), North-Holland, Amsterdam, 1977.
[4] L. J. Guibas and A. M. Odlyzko, Long repetitive patterns in random sequences, Z. Wahrsch. Verw. Gebiete 53, 1980, 241-262.
[5] D. Khoshnevisan, D. A. Levin and P. J. Méndez-hernández, On dynamical bit sequences, arXiv. 0706.1520.
[6] P. Révész, Random Walk in Random and Non-Random Environments, 2-nd Edition, World Scient if ic Publishing Co. Singapore, 2005.
[7] S. S. Samarova, On the length of the longest head-run for a Markov chain with two states, Ann. Probab. 26, 1981, 498-509.

PÁL RÉVÉSZ
INSTITUT FÜR STATISTIK
UND WAHRSCHEINLICHKEITSTHEORIE
TECHNISCHE UNIVERSITÄT WIEN
WIEDNER HAUPTSTRASSE 8-10/107
A-1040 WIEN
AUSTRIA
E-mail: revesz@ci.tuwien.ac.at

[^0]: Mathematics Subject Classification: 60J05, 60F15, 60F17.
 Key words and phrases: dynamical limit theorems, exceptional times, run tests, random walk, strong theorems.
 Research supported by the Hungarian National Foundation for Scientific Research, Grant No. K67961.

