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Lorentzian Para-contact submanifolds

By SHANTESHWAR PRASAD (Varanasi) and RAM HIT OJHA (Varanasi)

Matsumoto and Mihai [1] introduced the idea of Lorentzian Para-
contact structure and studied its several properties. The purpose of the
present paper is to initiate the study of Lorentzian Para-contact subman-
ifolds.

1. Introduction

Let us consider an n-dimensional real differentiable manifold of differ-
entiability class C∞ endowed with a C∞ vector valued linear function ϕ, a
C∞ vector field ξ and a C∞ 1-form η and a Lorentzian metric g satisfying

ϕ2(V ) = V + η(V )ξ(1.1)

η(ξ) = −1(1.2)

g(ϕU,ϕV ) = g(U, V ) + η(U)η(V )(1.3)

g(V, ξ) = η(V )(1.4)

for arbitrary vector fields U and V , then Vn is called a Lorentzian Para-
contact manifold and the structure (ϕ, ξ, η, g) is called a Lorentzian Para-
contact structure.

In a Lorentzian para-contact structure the following hold:

ϕξ = 0, η(ϕV ) = 0(1.5)

rank(ϕ) = n− 1.(1.6)

A Lorentzian para-contact manifold is called Lorentzian Para-Sasakian
manifold if
(1.7) (∇Uϕ)(V ) = g(U, V )ξ + Uη(V ) + 2η(U)η(V )

and
(1.8) ∇Uξ = ϕU
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where ∇U denotes the covariant differentiation with respect to g.
Let us put

(1.9) Φ(U, V ) = g(ϕU, V )

Then the tensor field Φ is symmetric:

(1.10) Φ(U, V ) = Φ(V,U)

and
(1.11) Φ(U, V ) = (∇Uη)(V ).

Definition 1.1. An Lorentzian para-contact manifold will be called an
LP–cosymplectic manifold if

(1.12) ∇Uϕ = 0

Definition 1.2. An Lorentzian Para (LP)-contact manifold will be
called an LP–nearly cosymplectic manifold if

(1.13) (a) (∇Uϕ)(U) = 0 ⇐⇒ (∇Uϕ)(V ) + (∇V ϕ)(U) = 0.

It can be easily seen that on an LP–Cosymplectic manifold ∇Uξ = 0.
Theorem 1.1. The Lorentzian para-contact structure on Vn is not

unique.

Proof. Let (ϕ, ξ, η, g) be a Lorentzian Para-contact structure on Vn.
Let ξ′ be a nonzero vector field nowhere in the ξ-direction, then we have a
non-singular tensor field µ of type (1, 1) such that µξ′ = ξ. If we define a
tensor field ϕ′ and a 1–form η′ by µϕ′U = ϕµU , η′(U) = η(µU), then we
have

µϕ′2U = ϕµϕ′U = ϕ2µU = µU + η(µU) = µ(U + η′(U)ξ)

yielding
ϕ′2U = U + η′(U)ξ′.

Let us define a metric tensor g′ by g′(U, V ) = g(µU, µV ).
Then g′(ϕ′U,ϕ′V ) = g(µϕ′U, µϕ′V ) = g′(U, V ) + η′(U)η′(V ).
Also g′(ξ′, U) = η′(U).

Thus (ϕ′, ξ′, η′, g′) is another Lorentzian Para-contact structure.

Theorem 1.2. On a nearly LP–Cosymplectic manifold ∇Uξ = 0.

Proof. Equation (1.13) (b) is equivalent to

(1.14) (∇UΦ)(V,W ) = (∇V Φ)(U,W ) = 0.

Equations (1.9) and (1.14) give

(1.15) (∇Uη)(ϕV ) + (∇V η)(ϕU) = 0.

Putting ξ for U in (1.14) and using in (1.15) we get ∇Uξ = 0.
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2. Lorentzian Para-contact submanifold

Let V2m−1 be a submanifold of V2m+1 with the inclusion map b :
V2m−1 → V2m+1 such that p ∈ V2m−1 goes to bp ∈ V2m+1. The map b
induces a linear transformation (Jacobian map) b? : T(2m−1) → T(2m+1)

where T2m−1 is the tangent space to V2m−1 at a point p and T2m+1 is the
tangent space to V2m+1 at a point bp such that

(X in V2m−1 at p) → (b?X in V2m+1 at bp)

Agreement 2.1. In what follows the equations containing X, Y , Z
hold for arbitrary vector fields X, Y , Z in V2m−1.

Let M , N be mutually orthogonal unit vectors normal to V2m−1. If g̃
is an induced metric tensor in V2m−1, we have

(2.1)

(a) g(b?X, b?Y )ob = g̃(X, Y ) (b) g(b?X, M)ob = 0

(c) g(b?X, N)ob = 0 (d) g(M, N)ob = 0

(e) g(M, M)ob = g(N, N)ob = 1.

If D is the induced connection on V2m−1, then we have the Gauss
equation

(2.2) Vb?Xb?Y = b?DXY + MH(X, Y ) + NK(X, Y )

where H and K are symmetric bilinear functions in V2m−1. The Wein-
garten equations in V2m−1 are given by

Vb?XM = −b?
′H(X) + l(X)M, g(′H(X), Y ) def= H(X,Y ),

Vb?XN = −b?
′K(X)− l′(X)N, g(′K(X), Y ) def= K(X, Y ).

If the second fundamental forms H and K of V2m−1 are of the form
H(X,Y ) = µ1g̃(X, Y ), K(X, Y ) = µ2, g(X, Y ) where µ1, µ2 = (Tr b?)/n′
then V2m−1 is called totally umbilical. In our case, we take µ1 = µ2 = µ.
If the second fundamental form vanishes identically then V2m−1 is said to
be totally geodetic. (Yano and Kon [3]).

A submanifold V2m−1 of a Lorentzian Para-contact manifold V2m+1

is said to be invariant if the structure vector field ξ of V2m−1 is tangent
to V2m+1 and ϕ(TX(V2m−1) ⊆ TX(V2m−1) where TX(V2m−1) denotes the
tangent space of V2m−1 at X. On the other hand if ϕ(TX(V2m−1) ⊆
TX(V2m−1)⊥ for all X ∈ V2m−1, where TX(V2m−1)⊥ is the normal space
of V2m−1 at X then V2m−1 is said to be antiinvariant in V2m−1.
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Let us put

(2.3)

(a) ϕ(b?X) = b?X + α(X)M + ν(X)N

(b) ξ = b?ξ + ρM + σN

(c) ϕ(M) = −b?p + δN

(d) ϕ(N) = −b?q + θM

Pre-multiplying (2.3) (a) by ϕ and using (1.1), (2.3) (b), (c), (d) we obtain

(2.4)
b?X + η(b?X)(b?ξ + ρM + σN) = b?φ

2X − b?pα(X)

− b?qν(X) + M(α(φ(X)) + θν(X) + N(ν(φ(X)) + δα(X))

Substituting from (2.3) (a) in

g(ϕ(b?X), ϕ(b?Y )) = g(b?X, b?Y ) + η(b?X)η(b?Y )

and using (2.1) we obtain

(2.5)
g(φX, φY ) = g(X, Y ) + (η(b?X)ob)(η(b?Y )ob)

−α(X)α(Y )− ν(X)ν(Y )

Equations (2.4) and (2.5) give

ϕ2X = X + a(X)T

g(ϕX, ϕY ) = g(X, Y ) + a(X)a(Y )

iff

(b?X)ob = a(X), p(α(X)) + q(ν(X)) = 0

ρa(X) = α(ϕ(X)) + θ(ν(X)), σa(X) = ν(ϕX) + δ(α(X))

α(X)α(Y ) + ν(X)ν(Y ) = 0.

The above equations are consistent iff

(2.6) η(b?X)ob = a(X), α(X) = ν(X) = 0, ρ = σ = 0.

Substituting these in (2.3) (a), (b) we obtain

(2.7) (a) ϕ(b?X) = b?ϕX (b) ξ = b?ξ.

Thus we have
Theorem 2.1. The necessary and sufficient conditions for a subman-

ifold of V2m+1 to be a Lorentzian Para-contact submanifold are (2.6) and
(2.7).
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Theorem 2.2. Let us denote the Nijenhuis tensors in V2m+1 and
V2m−1 by N and n, determined by ϕ and φ respectively, then N(b?X, b?Y )=
b?n(X, Y ).

Proof. In consequence of (2.2) and (2.7) (a) we have

ϕ(ϕ[b?X, b?Y ]) = ϕ(ϕ(∇b?Xb?Y −∇b?Y b?X))

= b?φ
2(DXY )− b?φ

2(DY X) = b?φ
2([X, Y ])

hence
N(b?X, b?Y ) = b?n(X, Y ).

Definition 2.1. An Lorentzian Para-contact manifold is said to be
normal if

N(X,Y ) + dη(X, Y )ξ = 0.

Theorem 2.3. If V2m+1 is normal then V2m−1 is also normal.

Proof. We have from Thorem (2.2)

N(b?X, b?Y ) = b?n(X,Y )

N(b?X, b?Y ) + ((∇b?Xη)(b?Y )− (∇b?Y η)(b?X))ξ = 0Now

n(X, Y ) + ((DXa)(Y )− (DY a)(X))ξ − 0.

This shows that if V2m+1 is normal then V2m−1 is also normal.

Theorem 2.4. When V2m−1 is an Lorentzian Para-contact submani-
fold in a Lorentzian Para-contact manifold we have

(2.8)

(i) η(M) = 0, η(N) = 0,

(ii) ϕ(M) = δN, ϕN = θM

(iii) δ = θ and δθ = 1.

Proof. We have g(ϕM, b?X)− g(M, b?ϕX) = 0 which gives

g(−b?p + δN, b?X)− g(M, b?ϕX) = 0.

Using (2.1) (a), (b), (c), (d) we get

g(p,X) = 0 =⇒ p = 0.

Similarly we can get q = 0, putting this value in (2.3) (c) and (d) we get

ϕ(M) = δN, ϕ(N) = θM

Pre-multiplying (2.3) (c), (d) by ϕ and using (1.1) and equating tangential
and normal parts we have

η(M) = 0, η(N) = 0, δθ = 1.
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We also have
g(ϕM, N)− g(M,ϕN) = 0.

Putting the values of M and N as above we get

δ = θ.

Theorem 2.5. Let V2m+1 be an Lorentzian Para-contact cosymplectic
manifold then V2m−1 is also an LP–cosymplectic manifold and

(2.9) H(X, ϕY ) = δK(X, Y ), K(X,ϕY ) = δH(X, Y )

where H and K are symmetric bilinear functions in V2m−1 and δ2 = 1.

Proof. We have

(∇b?Xη)(b?Y ) = 0 =⇒ X(a(Y )− a(DXY ) = 0

=⇒ (DXa)(Y ) = 0.

Also
(∇b?Xϕ)(b?Y ) = 0 =⇒ ∇b?Xb?Y = ϕ(∇b?Xb?Y )

which gives

b?DXϕY + H(X,ϕY )M + K(X, ϕY )N

= b?ϕ(DXY ) + H(X, Y )δN + K(X,Y )δM.

This equation implies that (DXϕ)(Y ) = 0 and (2.9) are satisfied. This
completes the proof.

Theorem 2.6. Let V2m+1 be an LP–nearly cosymplectic manifold.
Then V2m−1 is also an LP–nearly cosymplectic manifold and

H(X, ϕY ) + H(Y, ϕX)− 2δH(X, Y ) = 0

K(X,ϕY ) + K(Y, ϕX)− 2δK(X, Y ) = 0and

where δ2 = 1.

Proof. For an LP–nearly cosymplectic manifold we have

(∇b?Xϕ)(b?Y ) + (∇b?Y ϕ)(b?X) = 0

∇b?Xb?ϕY +∇b?Y b?ϕX = ϕ(∇b?Xb?Y ) + ϕ(∇b?Y b?X)

or

b?DXϕY + H(X,ϕY )M + K(X, ϕY )N + b?DY ϕX

+ H(Y, ϕX)M + K(Y, ϕX)N = b?ϕ(DXY ) + b?ϕ(DY X)

+ H(X,Y )δN + H(Y, X)δN + K(X,Y )δM + K(Y,X)δM.
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This equation implies

(DXϕ)(Y ) + (DY ϕ)(X) = 0

H(X,ϕY ) + H(Y, ϕX)− 2δK(X,Y ) = 0and

K(X, ϕY ) + K(Y, ϕX)− 2δH(X, Y ) = 0.

Theorem 2.7. Let V2m−1 be a submanifold tangent to the sturcture
vector field ξ of an Lorentzian Para-Sasakian manifold V2m+1. If V2m−1 is
totally umbilical then V2m−1 is totally geodesic.

Proof. From Gauss’ equation we have

∇b?Xξ = b?DXξ + H(X, ξ)M + K(X, ξ)N,

or
b?ϕX = b?DXξ + H(X, ξ)M + K(X, ξ)N.

Equating tangential and normal parts we get

ϕX = DXξ and H(X, ξ) = 0, K(X, ξ) = 0.

Thus
H(ξ, ξ) = 0, K(ξ, ξ) = 0.

If V2m−1 is totally umbilical, then H(X,Y ) = µg(X, Y ) = K(X, Y ). Writ-
ing ξ for both X and Y we get

H(ξ, ξ) = K(ξ, ξ) = 0 =⇒ g(ξ, ξ) = 0 =⇒ µ = 0

which implies that
H(X,Y ) = K(X,Y ) = 0.

Thus V2m−1 is totally geodesic.
If V2m−1 is totally geodesic then H(X, ξ) = 0 that is ϕX is tangent

to V2m−1 and hence V2m−1 is an invariant submanifold.

Theorem 2.8. Let V2m−1 be a submanifold of a Lorentzian Para-
Sasakian manifold. V2m+1 is tangent to the structure vector field ξ of
V2m+1. Then vector field ξ is parallel with respect to the induced con-
nection on V2m−1 if and only if V2m−1 is an anti-invariant submanifold in
V2m+1.

Proof. We have for the tangent ξ of V2m−1

(2.10) ∇b?Xξ = b?ϕX = b?DXξ + H(X, ξ)M + K(X, ξ)N.
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Since ξ is parallel with respect to the induced connection we have

DXξ = 0

From (2.10) we have

ϕX = H(X, ξ)M + K(X, ξ)N

Hence ϕX is normal to V2m−1. Thus ϕX ∈ TX(V2m−1)⊥ for every vector
field X on V2m−1. Thus V2m−1 is anti-invariant. Conversely if V2m−1 is
anti-invariant then ϕX = H(X, ξ)M + K(X, ξ)N , hence DXξ = 0. This
completes the proof.

Theorem 2.9. Let V2m−1 be a submanifold of an Lorentzian Para-
Sasakian manifold of V2m+1. If the structure vector field ξ is normal to
V2m−1, then V2m−1 is totally geodesic if and only if V2m−1 is an anti-
invariant submanifold.

Proof. Since ξ is normal to V2m−1 we have

g(b?ϕX, b?Y ) = g(b?∇Xξ, b?Y ) = g(−b?
′H(X), b?Y ) + g(l(X)ξ, b?Y )

= g(−b?
′K(X), b?Y )− g(l′(X)ξ, b?Y ),

or
g(b?ϕX, b?Y ) = −g(′H(X), Y ) = g(′K(X), Y ) for any X

and Y on V2m−1. Hence Φ, H and K are symmetric, hence g(b?ϕX, b?Y ) =
g(′H(X), Y ) = 0 = g(′K(X), Y ). If V2m−1 is totally geodesic then

′K(X) = ′H(X) = 0 =⇒ ϕ(X) ∈ TX(V2m−1).

Hence V2m−1 is anti-invariant.
Conversely if V2m−1 is anti-invariant then

g(′H(X), Y ) = 0 = g(′K(X), Y )
′H(X) = 0 = ′K(X) H(X, Y ) = 0 = K(X, Y )

hence V2m−1 is totally geodesic.
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