On genuine q-Bernstein-Durrmeyer operators

By NAZIM I. MAHMUDOV (Gazimagusa) and PEMBE SABANCIGIL (Gazimagusa)

Abstract

In the present paper, we introduce genuine q-Bernstein-Durrmeyer operators and estimate the rate of convergence for continuous functions in terms of modulus of continuity. Furthermore we study some direct results for the genuine q-BernsteinDurrmeyer operators.

1. Introduction

Let $q>0$. For any $n \in N \cup\{0\}$, the q-integer $[n]=[n]_{q}$ is defined by

$$
[n]:=1+q+\cdots+q^{n-1}, \quad[0]:=0
$$

and the q-factorial $[n]!=[n]_{q}!$ by

$$
[n]!:=[1][2] \ldots[n], \quad[0]!:=1
$$

For integers $0 \leq k \leq n$, the q-binomial is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!} .
$$

Define

$$
(1-x)_{q}^{n}:=\prod_{s=0}^{n-1}\left(1-q^{s} x\right), \quad(1-x)_{q}^{\infty}:=\prod_{s=0}^{\infty}\left(1-q^{s} x\right)
$$

[^0]\[

$$
\begin{aligned}
p_{n, k}(q ; x) & :=\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}(1-x)_{q}^{n-k}, \quad p_{n, n}(q ; x)=x^{n}, \\
p_{\infty, k}(q ; x) & :=\frac{x^{k}}{(1-q)^{k}[k]!}(1-x)_{q}^{\infty}, \\
b_{n, k}(q ; x) & :=\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{q^{\frac{k(k-1)}{2}} x^{k}(1-x)^{n-k}}{(1-x+q x) \ldots\left(1-x+q^{n-1} x\right)} .
\end{aligned}
$$
\]

The q-analogue of integration in the interval $[0, A]$ (see $[10]$) is defined by

$$
\int_{0}^{A} f(t) d_{q} t:=A(1-q) \sum_{n=0}^{\infty} f\left(A q^{n}\right) q^{n}, \quad 0<q<1 .
$$

In the last two decades interesting generalizations of Bernstein polynomials were proposed by LUPAŞ [11]

$$
R_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n, k}(q ; x)
$$

and by Phillips [17]

$$
B_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) p_{n, k}(q ; x) .
$$

The q-Bernstein polynomials quickly gained the popularity, see [6]-[9], [12]-[14], [16]-[24]. A comprehensive review of the results on this class along with extensive bibliography is given in [13]. To approximate continuous functions, V. Gupta and H. Wang [7] defined the q-Durrmeyer type operators as

$$
M_{n, q}(f ; x):=f(0) p_{n, 0}(q ; x)+[n+1] \sum_{k=1}^{n} q^{1-k} p_{n, k}(q ; x) \int_{0}^{1} p_{n, k-1}(q ; q t) f(t) d_{q} t
$$

and studied estimation of the rate of convergence for continuous functions in terms of modulus of continuity. In [8], the authors studied some direct local and global approximation theorems for the q-Durrmeyer operators $M_{n, q}$ for $0<q<1$. Some other analogues of the Bernstein-Durrmeyer operators related to the q Bernstein basis functions $p_{n, k}(q ; x)$ have been studied by M. M. Derriennic [2] and V. Gupta [6].

Motivation for this work are [6]-[8] and in this paper we introduce the following so called genuine q-Phillips-Durrmeyer and genuine q-Lupaş-Durrmeyer operators.

Definition 1. For $f \in C[0,1]$, we define the following q-Phillips-Durrmeyer operator:

$$
\begin{align*}
U_{n, q}(f ; x):= & f(0) p_{n, 0}(q ; x)+f(1) p_{n, n}(q ; x) \\
& +[n-1] \sum_{k=1}^{n-1} q^{1-k} p_{n, k}(q ; x) \int_{0}^{1} p_{n-2, k-1}(q ; q t) f(t) d_{q} t \tag{1}
\end{align*}
$$

where for $n=1$ the sum is empty, i.e., equal to 0 .
Definition 2. For $f \in C[0,1]$, we define the following q-Lupaş-Durrmeyer operator:

$$
\begin{align*}
R_{n, q}^{*}(f ; x):= & f(0) b_{n, 0}(q ; x)+f(1) b_{n, n}(q ; x) \\
& +[n-1] \sum_{k=1}^{n-1} q^{1-k} b_{n, k}(q ; x) \int_{0}^{1} p_{n-2, k-1}(q ; q t) f(t) d_{q} t \tag{2}
\end{align*}
$$

where for $n=1$ the sum is equal to 0 .
Classical genuine Bernstein-Durrmeyer operators were independently introduced by W. Chen [1] in 1987, and by T. N. T. Goodman \& A. Sharma [5] later in 1991 and investigated by many authors, see for example [15], [4]. They possess many interesting properties, in particular they reproduce linear functions and thus interpolates every function $f \in C[0,1]$ at 0 and 1 .

In the present paper, we study some approximation properties of the genuine q-Phillips-Durrmeyer operators $\left\{U_{n, q}(f)\right\}$ and q-Lupaş-Durrmeyer operators $\left\{R_{n, q}^{*}(f ; x)\right\}$ defined by (1) and (2) respectively, for $0<q<1$. We estimate the rate of convergence for these operators and investigate the local and global direct approximation properties of $U_{n, q}$ and $R_{n, q}^{*}$.

2. Estimation of moments for $U_{n, q}$

In this section we obtain explicit formula for $U_{n, q}\left(t^{m} ; x\right)$ for $m=0,1,2$ and $U_{n, q}\left((t-x)^{2} ; x\right)$.

Lemma 3. We have

$$
\begin{aligned}
U_{n, q}(1 ; x) & =1, \quad U_{n, q}(t ; x)=x \\
U_{n, q}\left(t^{2} ; x\right) & =\frac{(1+q) x(1-x)}{[n+1]}+x^{2}, \\
U_{n, q}\left((t-x)^{2} ; x\right) & =\frac{(1+q) x(1-x)}{[n+1]} \leq \frac{2}{[n+1]} x(1-x) .
\end{aligned}
$$

Proof. Note that for $s=0,1, \ldots$, by the definition of q-Beta function (see [10]) we have

$$
\begin{align*}
\int_{0}^{1} t^{s} p_{n-2, k-1}(q ; q t) d_{q} t & =\left[\begin{array}{c}
n-2 \\
k-1
\end{array}\right] q^{k-1} \int_{0}^{1} t^{k+s-1}(1-q t)_{q}^{n-1-k} d_{q} t \\
& =\frac{q^{k-1}[n-2]![k+s-1]!}{[k-1]![n+s-1]!} \tag{3}
\end{align*}
$$

In order to prove the theorem we shall use the following identities (see [16]):

$$
\sum_{k=0}^{n} p_{n, k}(q ; x)=1, \quad \sum_{k=0}^{n} p_{n, k}(q ; x) \frac{[k]}{[n]}=x, \quad \sum_{k=0}^{n} p_{n, k}(q ; x) \frac{[k]^{2}}{[n]^{2}}=x^{2}+\frac{x(1-x)}{[n]} .
$$

Using Definition 1 and (3) it is easily seen that $U_{n, q}(1 ; x)=1$ and using the above identities we have $U_{n, q}(t ; x)=x$ and

$$
\begin{aligned}
U_{n, q}\left(t^{2} ; x\right)= & p_{n, n}(q ; x)+[n-1] \sum_{k=1}^{n-1} q^{1-k} p_{n, k}(q ; x) \int_{0}^{1} t^{2} p_{n-2, k-1}(q ; q t) d_{q} t \\
= & p_{n, n}(q ; x)+\sum_{k=1}^{n-1} p_{n, k}(q ; x) \frac{[k]+q[k]^{2}}{[n][n+1]} \\
= & p_{n, n}(q ; x)+\frac{1}{[n+1]} \sum_{k=0}^{n-1} \frac{[k]}{[n]} p_{n, k}(q ; x)+\frac{q[n]}{[n+1]} \sum_{k=0}^{n-1} \frac{[k]^{2}}{[n]^{2}} p_{n, k}(q ; x) \\
= & p_{n, n}(q ; x)+\frac{1}{[n+1]}\left(x-p_{n, n}(q ; x)\right) \\
& +\frac{q[n]}{[n+1]}\left(x^{2}+\frac{x(1-x)}{[n]}-p_{n, n}(q ; x)\right) \\
= & \frac{(1+q) x(1-x)}{[n+1]}+x^{2} .
\end{aligned}
$$

Lemma is proved.
Lemma 4. $U_{n, q}\left(t^{m} ; x\right)$ is a polynomial of degree less than or equal to $\min (m, n)$.

Proof. Simple calculations shows that

$$
U_{n, q}\left(t^{m} ; x\right)=[n-1] \sum_{k=1}^{n-1} q^{1-k} p_{n, k}(q ; x) \int_{0}^{1} p_{n-2, k-1}(q ; q t) t^{m} d_{q} t+p_{n, n}(q ; x)
$$

$$
\begin{aligned}
& =[n-1] \sum_{k=1}^{n-1} p_{n, k}(q ; x) \frac{[n-2]![k+m-1]!}{[k-1]![n+m-1]!}+p_{n, n}(q ; x) \\
& =\frac{[n-1]!}{[n+m-1]!} \sum_{k=1}^{n-1} p_{n, k}(q ; x) \frac{[k+m-1]!}{[k-1]!}+p_{n, n}(q ; x) \\
& =\frac{[n-1]!}{[n+m-1]!} \sum_{k=1}^{n-1}[k][k+1] \ldots[k+m-1] p_{n, k}(q ; x)+p_{n, n}(q ; x) \\
& =\frac{[n-1]!}{[n+m-1]!} \sum_{k=1}^{n}[k][k+1] \ldots[k+m-1] p_{n, k}(q ; x) .
\end{aligned}
$$

Now using

$$
[k][k+1] \ldots[k+m-1]=\prod_{s=0}^{m-1}\left(q^{s}[k]+[s]\right)=\sum_{s=1}^{m} c_{s}(m)[k]^{s},
$$

where $c_{s}(m)>0, s=1,2, \ldots, m$, are the constants independent of k, we get

$$
\begin{aligned}
U_{n, q}\left(t^{m} ; x\right) & =\frac{[n-1]!}{[n+m-1]!} \sum_{k=1}^{n} \sum_{s=1}^{m} c_{s}(m)[k]^{s} p_{n, k}(q ; x) \\
& =\frac{[n-1]!}{[n+m-1]!} \sum_{s=1}^{m} c_{s}(m)[n]^{s} B_{n, q}\left(t^{s} ; x\right),
\end{aligned}
$$

where $B_{n, q}$ is the q-Bernstein operator. Since $B_{n, q}\left(t^{s} ; x\right)$ is a polynomial of degree less than or equal to $\min (s, n)$ and $c_{s}(m)>0, s=1,2, \ldots, m$, it follows that $U_{n, q}\left(t^{m} ; x\right)$ is a polynomial of degree less than or equal to $\min (m, n)$.

3. Convergence of genuine \boldsymbol{q}-Phillips-Durrmeyer operators

Theorem 5. Let $0<q_{n}<1$. Then the sequence $\left\{U_{n, q_{n}}(f)\right\}$ converges to f uniformly on $[0,1]$ for each $f \in C[0,1]$ if and only if $\lim _{n \rightarrow \infty} q_{n}=1$.

Proof. The proof is standard, see for example [14], [6]. From the definition of $\left\{U_{n, q}(f)\right\}$ and Lemma 3 it follows that the operators $U_{n, q_{n}}$ are positive linear operators on $C[0,1]$ and reproduce linear functions. The well-known Korovkin theorem implies that $U_{n, q_{n}}(f)$ converges to f uniformly on $[0,1]$ as $n \rightarrow \infty$ for any $f \in C[0,1]$ if and only if

$$
\begin{equation*}
U_{n, q_{n}}\left(t^{2} ; x\right) \rightarrow x^{2} \tag{4}
\end{equation*}
$$

uniformly on $[0,1]$ as $n \rightarrow \infty$. If $q_{n} \rightarrow 1$, then $[n]_{q_{n}} \rightarrow \infty$ and hence (4) follows from Lemma 3. On the other hand, if we assume that for any $f \in C[0,1], U_{n, q_{n}}(f)$ converges to f uniformly on $[0,1]$ as $n \rightarrow \infty$, then $q_{n} \rightarrow 1$. In fact, if the sequence $\left\{q_{n}\right\}$ does not tend to 1 , then it must contain a subsequence $\left\{q_{n_{k}}\right\}$ such that $q_{n_{k}} \in(0,1), q_{n_{k}} \rightarrow q_{0} \in[0,1)$ as $k \rightarrow \infty$. Thus,

$$
\frac{1}{\left[n_{k}+1\right]_{q_{n_{k}}}}=\frac{1-q_{n_{k}}}{1-\left(q_{n_{k}}\right)^{n_{k}+1}} \rightarrow 1-q_{0}
$$

as $k \rightarrow \infty$. Taking $n=n_{k}, q=q_{n_{k}}$ in $U_{n, q_{n}}\left(t^{2} ; x\right)$, by Lemma 3 , we obtain

$$
U_{n_{k}, q_{n_{k}}}\left(t^{2} ; x\right) \rightarrow\left(1-q_{0}^{2}\right) x+q_{0}^{2} x^{2} \neq x^{2}
$$

as $k \rightarrow \infty$, which leads to a contradiction. Hence, $q_{n} \rightarrow 1$. This completes the proof of theorem.

Definition 6. Let $q \in(0,1)$ be fixed. We define

$$
U_{\infty, q}(f ; x)= \begin{cases}f(0) \prod_{s=0}^{\infty}\left(1-q^{s} x\right) \\ +\frac{1}{1-q} \sum_{k=1}^{\infty} q^{1-k} p_{\infty, k}(q ; x) \int_{0}^{1} p_{\infty, k-1}(q ; q t) f(t) d_{q} t & \text { if } x \in[0,1) \\ f(1) & \text { if } x=1\end{cases}
$$

Define

$$
\begin{aligned}
& A_{n, k}(f)= \begin{cases}f(0) & \text { if } k=0 \\
{[n-1] q^{1-k} \int_{0}^{1} p_{n-2, k-1}(q ; q t) f(t) d_{q} t} & \text { if } 1 \leq k \leq n-1, \\
f(1) & \text { if } k=n\end{cases} \\
& A_{\infty, k}(f)= \begin{cases}\frac{q^{1-k}}{1-q} \int_{0}^{1} p_{\infty, k-1}(q ; q t) f(t) d_{q} t & \text { if } k \geq 1, \\
f(0) & \text { if } k=0\end{cases}
\end{aligned}
$$

then $U_{n, q}(f ; x)$ and $U_{\infty, q}(f ; x)$ can be rewritten in the following form

$$
\begin{aligned}
U_{n, q}(f ; x) & =\sum_{k=0}^{n} A_{n, k}(f) p_{n, k}(q ; x), \\
& x \in[0,1] \\
U_{\infty, q}(f ; x) & =\sum_{k=0}^{\infty} A_{\infty, k}(f) p_{\infty, k}(q ; x),
\end{aligned} \quad x \in[0,1) .
$$

It is easily seen from

$$
\int_{0}^{1} t^{s} p_{\infty, k-1}(q ; q t) d_{q} t=(1-q)^{s+1} \frac{q^{k-1}[k+s-1]!}{[k-1]!}
$$

that

$$
U_{\infty, q}(1 ; x)=1, \quad U_{\infty, q}(t ; x)=x, \quad U_{\infty, q}\left(t^{2} ; x\right)=\left(1-q^{2}\right) x(1-x)+x^{2}
$$

Lemma 7. For $f \in C[0,1]$, we have $\left\|U_{n, q} f\right\| \leq\|f\|$.
Proof. Using Definition 1 and Lemma 3, we have

$$
\begin{aligned}
\left|U_{n, q}(f ; x)\right| \leq & |f(0)| p_{n, 0}(q ; x)+|f(1)| p_{n, n}(q ; x) \\
& +[n-1] \sum_{k=1}^{n-1} q^{1-k} p_{n, k}(q ; x) \int_{0}^{1} p_{n-2, k-1}(q ; q t)|f(t)| d_{q} t \\
\leq & \|f\| U_{n, q}(1 ; x)=\|f\| .
\end{aligned}
$$

Lemma 8. Let $f \in C[0,1]$. Then we have

$$
\begin{aligned}
\left|A_{n, k}(f-f(1))\right| \leq A_{n, k}(|f-f(1)|) \leq \omega\left(f, q^{n-2}\right)\left(1+q^{k-n+2}\right), \quad 0 \leq k \leq n \\
\left|A_{\infty, k}(f-f(1))\right| \leq A_{\infty, k}(|f-f(1)|) \leq \omega\left(f, q^{n-2}\right)\left(1+q^{k-n+2}\right), \quad k \geq 0, n \geq 0
\end{aligned}
$$

Proof. For $1 \leq k \leq n-1$ we have

$$
\begin{aligned}
& \left|A_{n, k}(f)-A_{n, k}(1) f(1)\right| \leq[n-1] q^{1-k} \int_{0}^{1} p_{n-2, k-1}(q ; q t)|f(t)-f(1)| d_{q} t \\
& \quad \leq[n-1] q^{1-k} \int_{0}^{1} \omega\left(f, q^{n-2}\right)\left(1+\frac{1-t}{q^{n-2}}\right) p_{n-2, k-1}(q ; q t) d_{q} t \\
& \quad=\omega\left(f, q^{n-2}\right)\left(1+q^{-n+2}\left(1-\frac{[k]}{[n]}\right)\right) \\
& \quad=\omega\left(f, q^{n-2}\right)\left(1+\frac{q^{k}\left(1-q^{n-k}\right)}{q^{n-2}\left(1-q^{n}\right)}\right) \leq \omega\left(f, q^{n-2}\right)\left(1+q^{k-n+2}\right) .
\end{aligned}
$$

If $k=0$ or $k=n$ then

$$
\begin{aligned}
\left|A_{n, 0}(f)-A_{n, 0}(1) f(1)\right| & =|f(0)-f(1)| \leq \omega(f, 1)=\omega\left(f, q^{-n+2} q^{n-2}\right) \\
& \leq \omega\left(f, q^{n-2}\right)\left(1+q^{-n+2}\right) \\
\left|A_{n, n}(f)-A_{n, n}(1) f(1)\right| & =0
\end{aligned}
$$

Similarly one can prove the second inequality.

Theorem 9. Let $0<q<1$ and $n \geq 3$. Then for each $f \in C[0,1]$ the sequence $\left\{U_{n, q}(f ; x)\right\}$ converges to $f(x)$ uniformly on $[0,1]$. Furthermore,

$$
\left\|U_{n, q}(f)-U_{\infty, q}(f)\right\| \leq C_{q} \omega\left(f, q^{n-2}\right)
$$

where $C_{q}=\frac{10}{1-q}+4$.
Proof. The proof is similar to the one of Theorem 3 in [7]. For $x \in[0,1)$, by the definitions of $U_{n, q}(f ; x)$ and $U_{\infty, q}(f ; x)$, we know that

$$
\begin{aligned}
& \left|U_{n, q}(f ; x)-U_{\infty, q}(f ; x)\right| \leq \sum_{k=0}^{n}\left|A_{n, k}(f-f(1))-A_{\infty, k}(f-f(1))\right| p_{n k}(q ; x) \\
& \quad+\sum_{k=0}^{n}\left|A_{\infty, k}(f-f(1))\right|\left|p_{n k}(q ; x)-p_{\infty k}(q ; x)\right|+\sum_{k=n+1}^{\infty}\left|A_{\infty, k}(f-f(1))\right| p_{\infty k}(q ; x) \\
& \quad=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

From [7] we have the following estimation

$$
\left|p_{n, k}(q ; x)-p_{\infty, k}(q ; x)\right| \leq \frac{q^{n-k}}{1-q}\left(p_{n, k}(q ; x)+p_{\infty, k}(q ; x)\right)
$$

Using the above inequality and Lemma 8 , for $1 \leq k \leq n-1$ we have

$$
\begin{aligned}
&\left|A_{n, k}(f-f(1))-A_{\infty, k}(f-f(1))\right| \\
& \leq \int_{0}^{1} q^{1-k}|f(t)-f(1)|\left|[n-1] p_{n-2, k-1}(q ; q t)-\frac{1}{1-q} p_{\infty, k-1}(q ; q t)\right| d_{q} t \\
& \leq \int_{0}^{1} q^{1-k}|f(t)-f(1)|\left|[n-1]-\frac{1}{1-q}\right| p_{\infty, k-1}(q ; q t) d_{q} t \\
&+\int_{0}^{1} q^{1-k}|f(t)-f(1)|[n-1]\left|p_{n-2, k-1}(q ; q t)-p_{\infty, k-1}(q ; q t)\right| d_{q} t \\
& \leq q^{n-1} A_{\infty, k}(|f-f(1)|)+\frac{q^{n-k-1}}{1-q} A_{n, k}(|f-f(1)|) \\
&+q^{n-k-1}[n-1] A_{\infty, k}(|f-f(1)|) \\
& \leq q^{n-1} \omega\left(f, q^{n-2}\right)\left(1+q^{k-n+2}\right)+2 \frac{q^{n-k-1}}{1-q} \omega\left(f, q^{n-2}\right)\left(1+q^{k-n+2}\right) \\
& \leq \frac{6}{1-q} \omega\left(f, q^{n-2}\right) .
\end{aligned}
$$

On the other hand if $k=0$ or $k=n$ then

$$
\left|A_{n, 0}(f-f(1))-A_{\infty, 0}(f-f(1))\right|=0,
$$

and

$$
\left|A_{n, n}(f-f(1))-A_{\infty, n}(f-f(1))\right|
$$

$$
=\left|A_{\infty, n}(f-f(1))\right| \leq A_{\infty, n}(|f-f(1)|) \leq\left(1+q^{2}\right) \omega\left(f, q^{n-2}\right) \leq 2 \omega\left(f, q^{n-2}\right) .
$$

We start with estimation of I_{1} and I_{3}. We have

$$
I_{1} \leq\left(\frac{6}{1-q}+2\right) \omega\left(f, q^{n-2}\right) \sum_{k=0}^{n} p_{n, k}(q ; x)=\left(\frac{6}{1-q}+2\right) \omega\left(f, q^{n-2}\right)
$$

and

$$
\begin{aligned}
I_{3} & \leq \omega\left(f, q^{n-2}\right) \sum_{k=n+1}^{\infty}\left(1+q^{k-n+2}\right) p_{\infty, k}(q ; x) \\
& \leq 2 \omega\left(f, q^{n-2}\right) \sum_{k=n+1}^{\infty} p_{\infty, k}(q ; x) \leq 2 \omega\left(f, q^{n-2}\right) .
\end{aligned}
$$

Finally we estimate I_{2} as follows:

$$
\begin{aligned}
I_{2} & \leq \sum_{k=0}^{n} \omega\left(f, q^{n-2}\right)\left(1+q^{k-n+2}\right) \frac{q^{n-k}}{1-q}\left(p_{n, k}(q ; x)+p_{\infty, k}(q ; x)\right) \\
& \leq \frac{2}{1-q} \omega\left(f, q^{n-2}\right) \sum_{k=0}^{n}\left(p_{n, k}(q ; x)+p_{\infty, k}(q ; x)\right) \leq \frac{4}{1-q} \omega\left(f, q^{n-2}\right) .
\end{aligned}
$$

Thus we conclude that for $x \in[0,1]$ (if $x=1$ then $U_{n, q}(f ; 1)-U_{\infty, q}(f ; 1)=0$)

$$
\left|U_{n, q}(f ; x)-U_{\infty, q}(f ; x)\right| \leq C_{q} \omega\left(f, q^{n-2}\right),
$$

where $C_{q}=\frac{10}{1-q}+4$.
Theorem 10. Let $0<q<1$ be fixed and let $f \in C[0,1]$. Then $U_{\infty, q}(f ; x)=$ $f(x)$ for all $x \in[0,1]$ if and only if f is linear.

Proof. It immediately follows from Theorem 9 of [22] and the inequality

$$
U_{\infty, q}\left(t^{2} ; x\right)=\left(1-q^{2}\right) x(1-x)+x^{2}>x^{2}, \quad \text { for all } x \in(0,1)
$$

At last, we discuss the approximating property of the operators $U_{\infty, q}$.
Theorem 11. For any $f \in C[0,1],\left\{U_{\infty, q}(f)\right\}$ converges to f uniformly on $[0,1]$ as $q \uparrow 1$.

Proof. The proof is standard and follows from the Korovkin theorem, since the operators $U_{\infty, q}$ are positive linear operators on $C[0,1]$, reproduce linear functions and

$$
U_{\infty, q}\left(t^{2} ; x\right)=\left(1-q^{2}\right) x(1-x)+x^{2} \rightarrow x^{2}
$$

uniformly on $[0,1]$ as $q \uparrow 1$.

4. Approximation properties of q-Phillips-Durrmeyer operators

We begin by considering the following K-functional:

$$
K_{2}\left(f, \delta^{2}\right):=\inf \left\{\|f-g\|+\delta^{2} \| g^{\prime \prime} \mid: g \in C^{2}[0,1]\right\}, \quad \delta \geq 0
$$

where

$$
C^{2}[0,1]:=\left\{g: g, g^{\prime}, g^{\prime \prime} \in C[0,1]\right\}
$$

Then, in view of a known result [3], there exists an absolute constant $C_{0}>0$ such that

$$
\begin{equation*}
K_{2}\left(f, \delta^{2}\right) \leq C_{0} \omega_{2}(f, \delta) \tag{5}
\end{equation*}
$$

where

$$
\omega_{2}(f, \delta):=\sup _{0<h \leq \delta} \sup _{x, x+2 h \in[0,1]}|f(x+2 h)-2 f(x+h)+f(x)|
$$

is the second modulus of smoothness of $f \in C[0,1]$.
Our first main result in this section is a local approximation property of $U_{n, q}$ stated below.

Theorem 12. There exists an absolute constant $C>0$ such that

$$
\left|U_{n, q}(f ; x)-f(x)\right| \leq C \omega_{2}\left(f, \sqrt{\frac{x(1-x)}{[n+1]}}\right)
$$

where $f \in C[0,1], 0<q<1$ and $x \in[0,1]$.
Proof. Using the Taylor formula

$$
\left.g(t)=g(x)+g^{\prime}(x)\right)(t-x)+\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u, \quad g \in C^{2}[0,1]
$$

we obtain that

$$
U_{n, q}(g ; x)=g(x)+U_{n, q}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right), \quad g \in C^{2}[0,1]
$$

Hence, by Lemma 3

$$
\begin{aligned}
\left|U_{n, q}(g ; x)-g(x)\right| & \leq U_{n, q}\left(\left|\int_{x}^{t}\right| t-u|\cdot| g^{\prime \prime}(u)|d u| ; x\right) \\
& \leq\left\|g^{\prime \prime}\right\| U_{n, q}\left((t-x)^{2} ; x\right) \leq\left\|g^{\prime \prime}\right\| \frac{2}{[n+1]} x(1-x)
\end{aligned}
$$

Now for $f \in C[0,1]$ and $g \in C^{2}[0,1]$ we obtain, in view of Lemma 7 ,

$$
\begin{aligned}
\left|U_{n, q}(f ; x)-f(x)\right| & \leq\left|U_{n, q}(f-g ; x)\right|+\left|U_{n, q}(g ; x)-g(x)\right|+|f(x)-g(x)| \\
& \leq 2\|f-g\|+\left\|g^{\prime \prime}\right\| \frac{2}{[n+1]} x(1-x)
\end{aligned}
$$

Taking the infimum on the right hand side over all $g \in C^{2}[0,1]$, we obtain

$$
\begin{equation*}
\left|U_{n, q}(f ; x)-f(x)\right| \leq 2 K_{2}\left(f, \frac{1}{[n+1]} x(1-x)\right) \tag{6}
\end{equation*}
$$

Now the desired inequality follows from (5) and (6).
We next present the direct global approximation theorem for the operators $U_{n, q}$. In order to state the theorem we need the weighted K-functional of second order for $f \in C[0,1]$ defined by

$$
K_{2, \phi}\left(f, \delta^{2}\right):=\inf \left\{\|f-g\|+\delta^{2}\left\|\phi^{2} g^{\prime \prime}\right\|: g \in W^{2}(\phi)\right\}, \quad \delta \geq 0, \phi^{2}(x)=x(1-x)
$$

where

$$
W^{2}(\phi):=\left\{g \in C[0,1]: g^{\prime} \in A C_{\mathrm{loc}}[0,1], \quad \phi^{2} g^{\prime \prime} \in C[0,1]\right\}
$$

and $g^{\prime} \in A C_{\mathrm{loc}}[0,1]$ means that g is differentiable and g^{\prime} is absolutely continuous in every closed interval $[a, b] \subset[0,1]$. Moreover, the Ditzian-Totik modulus of second order is given by

$$
\omega_{2}^{\phi}(f, \delta):=\sup _{0<h \leq \delta} \sup _{x \pm h \phi(x) \in[0,1]}|f(x-\phi(x) h)-2 f(x)+f(x+\phi(x) h)| .
$$

It is well known that the K-functional $K_{2, \phi}\left(f, \delta^{2}\right)$ and the Ditzian-Totik modulus $\omega_{2}^{\phi}(f, \delta)$ are equivalent (see [3]).

Theorem 13. There exists an absolute constant $C>0$ such that

$$
\left\|U_{n, q}(f)-f\right\| \leq C \omega_{2}^{\phi}\left(f, \frac{1}{\sqrt{[n+1]}}\right)
$$

where $f \in C[0,1], 0<q<1$.
Proof. From the Taylor expansion

$$
g(t)=g(x)+g^{\prime}(x)(t-x)+\int_{x}^{t}(t-s) g^{\prime \prime}(s) d s
$$

and Lemma 3, we see that

$$
\begin{aligned}
\left|U_{n, q}(g ; x)-g(x)\right| & \leq U_{n, q}\left(\left|\int_{x}^{t}\right| t-s| | g^{\prime \prime}(s)|d s| ; x\right) \\
& \leq \| \phi^{2} g^{\prime \prime}| | U_{n, q}\left(\left|\int_{x}^{t} \frac{|t-s|}{\phi^{2}(s)} d s\right| ; x\right)
\end{aligned}
$$

Let $s=t+\tau(x-t), \tau \in[0,1]$. Using the concavity of ϕ^{2} we have

$$
\frac{|t-s|}{\phi^{2}(s)}=\frac{\tau|x-t|}{\phi^{2}(t+\tau(x-t))} \leq \frac{\tau|x-t|}{\phi^{2}(t)+\tau\left(\phi^{2}(x)-\phi^{2}(t)\right)} \leq \frac{|x-t|}{\phi^{2}(x)} \text {. }
$$

Therefore

$$
\left|\int_{x}^{t} \frac{|t-s|}{\phi^{2}(s)} d s\right| \leq\left|\int_{x}^{t} \frac{|x-t|}{\phi^{2}(x)} d s\right|=\frac{(t-x)^{2}}{\phi^{2}(x)}
$$

and

$$
\left|U_{n, q}(g ; x)-g(x)\right| \leq\left\|\phi^{2} g^{\prime \prime}\right\| \frac{1}{\phi^{2}(x)} U_{n, q}\left((t-x)^{2} ; x\right)
$$

Because the operator $U_{n, q}$ is bounded (see Lemma 7) we obtain for $f \in C[0,1]$, by Lemma 3 that

$$
\begin{aligned}
\left|U_{n, q}(f ; x)-f(x)\right| & \leq\left|U_{n, q}(f-g ; x)\right|+\left|U_{n, q}(g ; x)-g(x)\right|+|f(x)-g(x)| \\
& \leq 2\|f-g\|+\left\|\phi^{2} g^{\prime \prime}\right\| \frac{2}{[n+1]}
\end{aligned}
$$

Taking the infimum on the right hand side over all $g \in W^{2}(\phi)$ we obtain

$$
\left\|U_{n, q}(f)-f\right\| \leq 2 K_{2, \phi}\left(f, \frac{1}{[n+1]}\right)
$$

Now, from the fact that $K_{2, \phi}\left(f, \delta^{2}\right)$ and $\omega_{\phi}^{2}(f, \delta)$ are equivalent we obtain the assertion.

Corollary 14. Assume that $q=q_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then the sequence $\left\{U_{n, q}(f)\right\}$ converges to f uniformly on $[0,1]$ for each $f \in C[0,1]$.

Remark 15. In [8] it is proved that for the operator $M_{n, q}(f ; x)$ the following local and global inequalities hold

$$
\begin{gathered}
\left|M_{n, q}(f ; x)-f(x)\right| \leq C \omega_{2}\left(f, \frac{1}{\sqrt{[n+2]}}\left(x(1-x)+\frac{1}{[n+2]}\right)\right)+\omega\left(f, \frac{2 x}{[n+2]}\right) \\
\left\|M_{n, q}(f)-f\right\| \leq C \omega_{2}^{\phi}\left(f, \frac{1}{\sqrt{[n+2]}}\right)+\vec{\omega}_{2 x}\left(f, \frac{1}{[n+2]}\right)
\end{gathered}
$$

where $f \in C[0,1]$ and $0<q<1$.
Since the operator $U_{n, q}(f ; x)$ preserves linear functions, first modulus of continuities do not appear in our estimations.

5. q-Lupaş-Durrmeyer operators

It was proved in [11] and [14] that $R_{n, q}(f, x)$ reproduce linear functions and $R_{n, q}\left(t^{2}, x\right)$ was explicitly evaluated:

$$
R_{n, q}\left(t^{2}, x\right)=\frac{q x^{2}}{1-x+q x}+\frac{x(1-x)}{[n](1-x+q x)}
$$

Lemma 16. Let $0<q<1$. Then for all $x \in[0,1]$ we have

$$
\begin{gathered}
R_{n, q}^{*}(1 ; x)=1, \quad R_{n, q}^{*}(t ; x)=x, \\
R_{n, q}^{*}\left(t^{2} ; x\right)=\frac{x}{[n+1]}+\frac{q^{2}[n] x^{2}}{[n+1](1-x+q x)}+\frac{q x(1-x)}{[n+1](1-x+q x)}, \\
R_{n, q}^{*}\left((t-x)^{2} ; x\right) \leq U_{n, q}\left((t-x)^{2} ; x\right)=\frac{1+q}{[n+1]} x(1-x) .
\end{gathered}
$$

Proof. We prove only the last inequality. It is clear that

$$
\begin{align*}
R_{n, q}\left((t-x)^{2} ; x\right) & =\frac{q x^{2}}{1-x+q x}+\frac{x(1-x)}{[n](1-x+q x)}-x^{2} \\
& =\frac{x(1-x)-(1-q)[n] x^{2}(1-x)}{[n](1-x+q x)} \\
& =\frac{x(1-x)\left(1-x+q^{n} x\right)}{[n](1-x+q x)} \leq \frac{x(1-x)}{[n]}=B_{n, q}\left((t-x)^{2}, x\right) \tag{7}
\end{align*}
$$

Using the inequality (7) we get desired estimation.

$$
\begin{aligned}
R_{n, q}^{*} & \left((t-x)^{2} ; x\right)=R_{n, q}^{*}\left(t^{2} ; x\right)-2 x R_{n, q}^{*}(t ; x)+x^{2} \\
& =\frac{x}{[n+1]}+\frac{q^{2}[n] x^{2}}{[n+1](1-x+q x)}+\frac{q x(1-x)}{[n+1](1-x+q x)}-x^{2} \\
& =\frac{x}{[n+1]}+\frac{q[n]}{[n+1]}\left(\frac{q x^{2}}{1-x+q x}+\frac{x(1-x)}{[n](1-x+q x)}\right)-x^{2} \\
& \leq \frac{x}{[n+1]}+\frac{q[n]}{[n+1]}\left(\frac{x(1-x)}{[n]}+x^{2}\right)-x^{2}=\frac{1+q}{[n+1]} x(1-x)
\end{aligned}
$$

Using Lemma 16 and mimic the proofs of Theorems 12 and 13 we may easily obtain local and global approximation results for $R_{n, q}^{*}(f)$.

Theorem 17. There exists an absolute constant $C>0$ such that

$$
\left|R_{n, q}^{*}(f ; x)-f(x)\right| \leq C \omega_{2}\left(f, \sqrt{\frac{x(1-x)}{[n+1]}}\right)
$$

where $f \in C[0,1], 0<q<1$ and $x \in[0,1]$.

Theorem 18. There exists an absolute constant $C>0$ such that

$$
\left\|R_{n, q}^{*}(f)-f\right\| \leq C \omega_{2}^{\phi}\left(f, \frac{1}{\sqrt{[n+1]}}\right)
$$

where $f \in C[0,1], 0<q<1$.

References

[1] W. Chen, On the modified Bernstein-Durrmeyer operator, In: Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987.
[2] M.-M. Derriennic, Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo (2) Suppl., no. 76 (2005), 269-290.
[3] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[4] H. Gonska, D. Kacsó and I. Raşa, On genuine Bernstein-Durrmeyer operators, Result. Math. 50 (2007), 213-225.
[5] T. N. T. Goodman and A. Sharma, A Bernstein type operator on the simplex, Math. Balkanica 5 (1991), 129-145.
[6] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput. 197 (1) (2008), 172-178.
[7] V. Gupta and W. Heping, The rate of convergence of q-Durrmeyer operators for $0<q<1$, Math. Methods Appl. Sci. 31(16) (2008), 1946-1955.
[8] V. Gupta and Z. Finta, On certain q-Durrmeyer type operators, Appl. Math. Comput. 209 (2009), 415-420.
[9] A. II'inskil and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (1) (2002), 100-112.
[10] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
[11] A. Lupaş, A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), 85-92, Preprint, 87-9, Univ. "Babe-Bolyai", Cluj-Napoca, 1987.
[12] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory $\mathbf{1 2 3}(2)$ (2003), 232-255.
[13] S. Ostrovska, The first decade of the q-Bernstein polynomials: results and perspectives, J. Math. Anal. Approx. Theory 2(1) (2007), 35-51.
[14] S. Ostrovska, On the Lupaş q-analogue of the Bernstein operator, Rocky Mount. J. Math. 36(5) (2006), 1615-1629.
[15] P. E. Parvanov and B. D. Popov, The limit case of Bernstein's operators with Jacobi weights, Math. Balkanica 8, no. 2-3 (1994), 165-177.
[16] G. M. Phillips, Interpolation and Approximation by Polynomials, Vol. 14, CMS Books in Mathematics, Springer, Berlin, 2003.
[17] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511-518.
[18] G. M. Phillips, Interpolation and Approximation by Polynomials, Vol. 14, CMS Books in Mathematics, Springer, Berlin, 2003.
[19] V. S. VidenskiI, On some classes of q-parametric positive operators, Oper. Theory Adv. Appl. 158 (2005), 213-222.
[20] H. Wang, Korovkin-type theorem and application, J. Approx. Theory 132(2) (2005), 258-264, 213-222.
[21] H. WANG, Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for $0<q<1$, J. Approx. Theory 145 (2007), 182-195.
[22] H. Wang, Properties of convergence for ω, q-Bernstein polynomials, J. Math. Anal. Appl. 340(2) (2008), 1096-1108.
[23] H. Wangand F. Meng, J. Approx. Theory 136(2) (2005), 151-158.
[24] H. Wangand X. Wu, Saturation of convergence of q-Bernstein polynomials in the case $q>1$, J. Math. Anal. Appl. 337(1) (2008), 744-750.

NAZIM I. MAHMUDOV
DEPARTMENT OF MATHEMATICS
EASTERN MEDITERRANEAN UNIVERSITY
GAZIMAGUSA, TRNC, MERSIN 10
TURKEY
E-mail: nazim.mahmudov@emu.edu.tr

PEMBE SABANCIGIL
DEPARTMENT OF MATHEMATICS
EASTERN MEDITERRANEAN UNIVERSITY
GAZIMAGUSA, TRNC, MERSIN 10
TURKEY
E-mail: pembe.sabancigil@emu.edu.tr
(Received April 2, 2009; revised October 18, 2009)

[^0]: Mathematics Subject Classification: 41A25, 41A35.
 Key words and phrases: q-Durrmeyer operators; q-Bernstein polynomials; modulus of continuity; local and global approximation.
 The research is supported by the Research Advisory Board of Eastern Mediterranean University under Project BAP-A-08-04.

