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The influence of complemented minimal subgroups
on the structure of finite groups

By JIAKUAN LU (Shanghai), SHIRONG LI (Nanning) and XIUYUN GUO (Shanghai)

Abstract. A subgroup H of a finite group G is said to be complemented in G if

there exists a subgroup K of G such that G = HK and H ∩K = 1. In this paper the

following theorem is proved: Let G be a finite group and let p be the smallest prime

dividing the order of G. Then G is p-nilpotent if and only if every minimal subgroup

of P ∩GN is complemented in NG(P ), where P is a Sylow p-subgroup of G and GN is

the nilpotent residual of G. As some applications, some interesting results related with

complemented minimal subgroups are obtained.

1. Introduction

All groups considered in this paper are finite. A subgroup H of a group G

is said to be complemented in G if there exists a subgroup K of G such that
G = HK and H ∩ K = 1. In this case we call the above subgroup K of G a
complement of H in G. It is quite clear that the existence of complements for
some families of subgroups of a group give a lot of information about its structure.
For instance, Hall proved that a group G is solvable if and only if every Sylow
subgroup is complemented [10]. In particular, Hall in 1937 proved that a group
G is supersolvable with elementary abelian Sylow subgroups if and only if every
subgroup of G is complemented in G [9]. We call such groups H-groups. In 1994,
Guo showed that a group G is an H-group if and only if all normalizers of Sylow
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subgroups of G are H-groups [8]. A minimal subgroup of a group G is a subgroup
of G of prime order. Later, Ballester-Bolinches and Guo showed that a group G is
an H-group if and only if every minimal subgroup of G is complemented in G [1].

In recent years, there has been a lot of interest in investigating the influ-
ence of minimal subgroups on the structure of groups (for example [2], [4], [5],
[11], [12]). In this paper, we shall continue the investigation on the influence of
complemented minimal subgroups on the structure of finite groups. First, we
give some new generalizations of the Hall theorem (Theorem 1.1). Second, we
drop the assumption that every minimal subgroup is complemented. Our aim is
to minimize the number of complemented minimal subgroups to determine the
structure of a group. At the same time, we only assume that minimal subgroups
are complemented in a subgroup of the group.

Recall that a class F of groups is called a formation provided that (i) G ∈ F
and N E G imply G/N ∈ F and (ii) if both G/N and G/M are in F , then
G/(N ∩ M) ∈ F . If, in addition, G/Φ(G) ∈ F implies G ∈ F , then we say
that F is saturated. Let GF be the intersection of all normal subgroups N of G

satisfying G/N ∈ F . The subgroup GF is called F-residual of G. It is clear that
a group G ∈ F if and only if GF = 1 (see [3, Chapter II]). Let N be the class of
the nilpotent groups. It is well-known that

GN =
⋂
p

Op(G),

where Op(G) is the subgroup generated by all p′-elements of G. Let U denote
the saturated formation of all supersolvable groups. The following formations are
also considered:

H: the class of the supersolvable groups with elementary abelian Sylow sub-
groups (not saturated);

H∗: the class of the supersolvable groups with abelian Sylow subgroups (not
saturated).

The main results of this paper are as follows:

Theorem 1.1. Let G be a group. Any two of the following statements are

equivalent:

(1) G is an H-group.

(2) (P. Hall) Every subgroup of G is complemented.

(3) (A. Ballester-Bolinches, X. Guo) Every minimal subgroup of G is comple-

mented.
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(4) (W. Guo) For every Sylow subgroup P of G, NG(P ) is an H-group.

(5) For every Sylow subgroup P of G, every minimal subgroup of P is comple-

mented in NG(P ).

(6) There exists a normal subgroup H of G such that G/H ∈ H, and for every

Sylow subgroup P of H, every minimal subgroup of P is complemented

in NG(P ).

Theorem 1.2. Let p be the smallest prime dividing the order of a group G

and let P be a Sylow p-subgroup of G. The following statements are equivalent:

(1) G is p-nilpotent.

(2) Every subgroup of P ∩GN of order p is complemented in NG(P ).

As some applications of Theorem 1.2, we have the following three results.

Theorem 1.3. Let F be a formation containing U (non necessarily satu-

rated) and let G be a group. The following statements are equivalent:

(1) G ∈ F .

(2) There exists a normal subgroup H of G such that G/H ∈ F , and for every

Sylow subgroup P of H, every minimal subgroup of P ∩GN is complemented

in NG(P ).

Theorem 1.4. Let F be a formation containing H∗(non necessarily satu-

rated) and let G be a group. The following statements are equivalent:

(1) G ∈ F .

(2) There exists a normal subgroup H of G such that G/H ∈ F , and for every

Sylow subgroup P of H, every minimal subgroup of P ∩NG(P )′ is comple-

mented in NG(P ).

Theorem 1.5. Let G ba a group. Any two of the following statements are

equivalent:

(1) G is a supersolvable group with abelian Sylow subgroups.

(2) For every Sylow subgroup P of G, NG(P ) is an H∗-group.

(3) For every Sylow subgroup P of GH
∗
, every minimal subgroup of P ∩NG(P )′

is complemented in NG(P ).

Let H∗∗ be the class of groups G with the property: every minimal subgroup
of the commutator subgroup G′ of G is complemented in G. By Theorem 1.4, the
groups in H∗∗ are supersolvable groups with abelian Sylow subgroups. In fact,
H∗∗ is a proper sub-class of H∗.



484 Jiakuan Lu, Shirong Li and Xiuyun Guo

Corollary 1.6. Let G be a group. The following statements are equivalent:

(1) G is an H∗∗-group.

(2) For every Sylow subgroup P of G, NG(P ) is an H∗∗-group.

Theorem 1.7. Let F be a formation containing U(non necessarily saturated)

and let G be a group. The following statements are equivalent:

(1) G ∈ F .

(2) There exists a normal subgroup H of G such that G/H ∈ F , and for every

Sylow subgroup P of F ∗(H), the generalized Fitting subgroup of H, every

minimal subgroup of P ∩GN is complemented in NG(P ).

2. Lemmas

Lemma 2.1. Let G be a group, H ≤ K ≤ G and N E G. Suppose that H

is complemented in G.

(1) H is complemented in K.

(2) If (|H|, |N |) = 1, then HN/N is complemented in G/N .

(3) There is an example to show that the condition of (2) is necessary.

Proof. (1) and (2) are well-known. In order to prove (3), consider the group
M = A4×〈a〉, where a2 = 1 and A4 is the symmetric group of degree 4. Let b be
an element of order 2 of A4, H = 〈ab〉 and N = 〈a〉. Clearly, A4 is a complement
of H in M , while HN/N is a subgroup of order 2 of M/N . As M/N ∼= A4 and
A4 has no any complemented subgroup of order 2, we can conclude that HN/N

is not complemented in M/N . ¤

Lemma 2.2. Let G be a group and let P be a normal elementary abelian p-

subgroup of G for some prime p. If every subgroup of P of order p is complemented

in G, then P is generated by normal subgroups of G of order p.

Proof. Note that P∩Φ(G) = 1. By [6, Satz 4.5, p. 279], P = R1×R2×· · ·×
Rn, where Ri are all minimal normal subgroups of G. Let X be a subgroup of Ri

of order p. By hypothesis, there exists a subgroup M of G such that G = XM and
X ∩M = 1. Then Ri = X(Ri∩M) and Ri∩M EG. It follows that Ri∩M = Ri

or Ri ∩M = 1. As Ri ∩M = Ri is impossible, we get that Ri ∩M = 1 and hence
Ri = X. The proof is now complete. ¤
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Lemma 2.3. Let P be a p-subgroup of a group G for some prime p. Sup-

pose that every subgroup of P of order p is complemented in G. Then P is an

elementary abelian group.

Proof. Clearly, we may assume that P > 1. If the Frattini subgroup
Φ(P ) > 1, then there exists a subgroup X of Φ(P ) of order p. By hypothesis, X

is complemented in G and it follows from Lemma 2.1(1) that X is complemented
in P , which is impossible. So Φ(P ) = 1 and the lemma follows. ¤

Lemma 2.4. Let G be a group, H E G and P ∈ Sylp(H). Suppose that

N is a normal p′-subgroup of G contained in H and X ≤ P is complemented in

NG(P ). Then NX/N is complemented in NG/N (PN/N).

Proof. Since (|P |, |N |) = 1, we have that NG/N (PN/N) = NG(P )N/N .
By hypothesis, there exists a subgroup K of NG(P ) such that NG(P ) = XK and
X ∩ K = 1. Then the subgroup KN is a complement of X in NG(P )N . The
lemma follows from Lemma 2.1(2). ¤

The generalized Fitting subgroup F ∗(G) of a group G is the product of all
normal quasinilpotent subgroups of G. We gather the following well-known facts
about this subgroup for later use (see [7, Chapter X]).

Lemma 2.5. Let G be a group and M a subgroup of G.

(1) If M is normal in G, then F ∗(M) ≤ F ∗(G);

(2) If G 6= 1, then F ∗(G) 6= 1;

(3) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is soluble, then F ∗(G) = F (G).

Lemma 2.6 ([13]). Let P be a normal p-subgroup of a group G where p is

a prime. Then F ∗(G/Φ(P )) = F ∗(G)/Φ(P ).

3. Proofs of main theorems

Proof of Theorem 1.1. (1) ⇐⇒ (4): see [8]. It is easy to see that (1)
implies (2), (2) implies(3), (3) implies (5) and (5) implies (6). Thus we only need
to prove that (6) implies (1).

Firstly, we claim that H is a Sylow tower group. Fix p to be the smallest
prime dividing |H|. By Lemma 2.3, P is elementary abelian. Thus P is generated
by subgroups Ui of order p which are normal in NH(P ) by Lemma 2.2. Then all
Ui ≤ Z(NH(P )) and hence P ≤ Z(NH(P )). By a theorem of Burnside [6, 2.6
Hauptsatz, p. 279], H is p-nilpotent. By the same arguments and induction, we
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have H is a Sylow tower group. Let q be the largest prime dividing |H| and let Q

be a Sylow q-subgroup of H. Then Q is normal in G. Thus, by hypothesis, every
minimal subgroup of Q is complemented in G.

Now, by Lemma 2.4, we see that G/Q satisfies hypothesis, so G/Q ∈ H by
induction. By Lemma 2.2, we can choose a subgroup U of Q of order q which
is normal in G. Then there exists a subgroup M of G such that G = UM

and U ∩ M = 1. Since G/Q ∼= M/(Q ∩ M) and G/Q ∈ H, it follows that
M/Q∩M ∈ H. By induction, M ∈ H, namely M is supersolvable with elementary
abelian subgroups. Now G = [U ]M and G is supersolvable. Also, let Q1 be a
Sylow q-subgroup of M , then UQ1 is a Sylow q-subgroup of G and Q1 is a
complement of U in UQ1, so U is of index q in UQ1 and hence normal in UQ1.
Consequently, UQ1 = U ×Q1. As Q1 is elementary abelian, it follows that UQ1

is elementary abelian. Thus all Sylow subgroups of G are elementary abelian and
hence G ∈ H. The proof is now complete. ¤

Proof of Theorem 1.2. It is easy to see that (1) implies (2).
We now prove that (2) implies (1). Assume that G satisfies (2) but G is not p-

nilpotent. Let us choose G of minimal order. Write D = GN and set P0 = P ∩D.
Then P0 is a Sylow p-subgroup of D. By Lemma 2.3, P0 is elementary abelian
and P0 E NG(P ).

(1) If P ≤ K < G, then K is p-nilpotent.
Clearly, the nilpotent residual KN of K is contained in D∩K and P ∩KN ≤

P ∩D = P0. By hypothesis, every subgroup of P0 of order p is complemented in
NG(P ), and hence, by Lemma 2.1(1), in NK(P ). So K satisfies hypothesis. By
the choice of G, K is p-nilpotent, as desired.

(2) P0 ≤ Z(NG(P )).
Clearly we may assume that P0 is non-trivial. By Lemma 2.2, P0 is generated

by subgroups of order p which are normal in NG(P ). Let X ≤ P0 be such a
subgroup of order p and set N = NG(P ). Then N/CN (X) is a cyclic group
of order dividing p − 1. Since p is the smallest prime dividing |G|, we have
CN (X) = N , namely X ≤ Z(NG(P )) as desired.

(3) Op′p(G) is a p-group.
By Lemma 1.4, we see that the quotient group G/Op′(G) satisfies hypothesis.

The choice of G forces Op′(G) = 1 and so (3) holds.
(4) P0 E G.
Assume that (4) is not true. As P0 is normal in NG(P ), we have NG(P ) ≤

NG(P0) < G. By (1), NG(P0) is p-nilpotent. Hence ND(P0) is p-nilpotent, which
implies that ND(P0) = P0 × L where L is a Hall p′-subgroup of ND(P0). As
P0 is an elementary abelian Sylow p-subgroup of D, by a theorem of Burnside
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[6, 2.6 Hauptsatz, p. 279], D is p-nilpotent. So D = P0 by (3). Hence P0 E G, a
contradiction.

(5) P E G.
Consider the normal subgroup CG(P0) of G. If CG(P0) = G, then P0 ≤ Z(G).

As P0 is a Sylow p-subgroup of D, we know that D is p-nilpotent. Applying (3)
we see that D = P0 ≤ Z(G), and hence G is nilpotent, contrary to the choice
of G. Assume that CG(P0) < G. Then, by (2), NG(P ) ≤ CG(P0). So CG(P0) is
p-nilpotent by (1). Thus CG(P0) ≤ Fp(G), it follows from (3) that CG(P0) is a
p-group. Now, as P ≤ CG(P0), we have P = CG(P0) E G, as desired.

(6) The final contradiction.
It is clear that (G/P0)/(D/P0) ∼= G/D is nilpotent. Since P0 is central in G,

we have that G is p-nilpotent, which contradicts the choice of G. The proof of
the theorem is now complete. ¤

Corollary 3.1. If, for every Sylow subgroup P of the group G, every minimal

subgroup of P ∩GN is complemented in NG(P ), then G is a Sylow tower group.

Proof. This follows from Theorem 1.2 and induction. ¤

The next corollary is required in the proof of Theorem 1.4.

Corollary 3.2. If, for every Sylow subgroup P of the group G,every minimal

subgroup of P∩NG(P )′ is complemented in NG(P ), then G is a Sylow tower group.

Proof. Let M be a proper Hall subgroup of G and let P be any Sylow
subgroup of M . Then P ∩NM (P )′ ≤ P ∩NG(P )′ and NM (P ) ≤ NG(P ). Thus
every minimal subgroup X of P ∩ NM (P )′ is also a minimal subgroup of P ∩
NG(P )′. Hence X is complemented in NG(P ) by hypothesis, and hence in NM (P )
by Lemma 2.1(1). By induction, M is a Sylow tower group. Let p be the smallest
prime dividing |G| and let P be a Sylow p-subgroup of G. Since P ′ ≤ Φ(P ), it
follows that P ′ = 1, i.e., P is abelian. On the other hand, by Theorem 1.2, we
know that NG(P ) is p-nilpotent. By a theorem of Burnside [6, 2.6 Hauptsatz,
p. 279], G is p-nilpotent. So Op(G) is a Hall p′-subgroup. By the above arguments,
Op(G) is a Sylow tower group and so is G. The proof is now complete. ¤

Proofs of Theorem 1.3 and 1.4. We only need to prove that (2) implies
(1). We use induction on |G|. Consider two cases:

Case 1. G satisfies the condition (2) of Theorem 1.3.

Case 2. G satisfies the condition (2) of Theorem 1.4.
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By Corollaries 3.1 and 3.2, H is a Sylow tower group in both cases. Let q

be the largest prime dividing |H| and let Q be a Sylow q-subgroup of H. Then
Q is normal in G and (G/Q)/(H/Q) ∼= G/H ∈ F . By Lemma 2.4, G/Q satisfies
the hypothesis of Case 1 and Case 2 respectively, so by induction G/Q ∈ F in
both cases. In Case 1, F has been assumed to contain U , we have G/GN ∈ F .
Let Q0 = Q ∩GN . For Case 2, F contains H∗, so G/G′ ∈ F . In this case, write
Q0 = Q ∩G′. In both cases G/Q0 ∈ F .

Clearly, we may assume that Q0 > 1 and let U be a minimal normal subgroup
of G contained in Q0. Then U is elementary abelian. By hypothesis, every mini-
mal subgroup of U is complemented in NG(Q) and hence in G. By Lemma 2.2, U

is generated by some minimal subgroups which are normal in G. Choose such a
subgroup X, namely X ≤ U is cyclic of order q and XEG. Then there exists a sub-
group M of G such that G = XM and X∩M = 1. Thus M/M ∩Q0

∼= G/Q0 ∈ F
and every minimal subgroup of M ∩ Q0 is complemented in G. Therefore, the
pair (M, M ∩ Q0) satisfies the condition of Case 1 and Case 2 respectively. By
induction, M is an F-group. Hence Q0 = X. Consequently, G = [Q0]M with
Q0 ∩M = 1 and |Q0| = q.

Now, as Q0 is a normal subgroup of G of order q, we know that G/CG(Q0) is
cyclic of order dividing q− 1. Of course, G′ ≤ CG(Q0). Write N = CG(Q0)∩M .
Then N is normal in G and G/N is a split extension of the normal subgroup
Q0N/N by M/N , where M/N ∼= G/CG(Q0) is cyclic. So G/N ∈ H∗ and hence F .
Thus G = G/(Q0 ∩N) ∈ F , as desired. The proof is now complete. ¤

Proof of Theorem 1.5. Clearly (1) and (2) are equivalent. It follows from
Theorem 1.4 that (1) and (3) are equivalent. ¤

Proof of Theorem 1.6. It is clear that (1) implies (2). Conversely, by
Theorem 1.4, G is supersolvable. In particular, G is a Sylow tower group. Let Q

be a Sylow q-subgroup of G for the largest prime q dividing |G|. Then Q is normal
in G and so NG(Q) = G. By hypothesis, NG(Q) is an H∗∗-group and hence G is
an H∗∗-group. ¤

Proof of Theorem 1.7. It is clear that (1) implies (2). Conversely, as-
sume that the result is not true and let G be a minimal counterexample. Then
H > 1. By Lemma 2.5(2), F ∗(H) > 1. Clearly, F ∗(H) satisfies the hypothe-
sis of Corollary 3.1, so F ∗(H) is a Sylow tower group and hence is solvable. By
Lemma 2.5(3), we get that F ∗(H) = F (H). Thus every Sylow subgroup of F ∗(H)
is normal in G. We claim

(1) Every minimal subgroup of F (H) ∩GN is complemented in G.
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In fact, for each minimal subgroup X of F (H) ∩ GN , let |X| = p for some
prime p. Then there exists a Sylow p-subgroup P of F (H) such that X ≤ P , so
X ≤ P ∩GN . By hypothesis, X is complemented in NG(P ) = G.

(2) Φ(F (H)) = 1.
Let P be an arbitrary Sylow p-subgroup of F (H) and B = Φ(P ). Assume

that B 6= 1. Consider the pair (G/B,H/B). We have
(i) (G/B)/(H/B) ∈ F as G/H ∈ F and (G/B)/(H/B) ∼= G/H.
(ii) B∩GN = 1. If not, some minimal subgroup of B would be complemented

in G contradicting the fact that B is a subgroup of Φ(G).
(iii) Every minimal subgroup of F ∗(H/B) ∩ (G/B)N is complemented

in G/B.
By Lemma 2.6, F ∗(H/B) = F ∗(H)/B. We hence have F ∗(H/B)∩(G/B)N =

F (H)/B ∩ GNB/B = (F (H) ∩ GN )B/B. Thus every minimal subgroup of
F ∗(H/B) ∩ (G/B)N has the form XB/B, where X is a minimal subgroup of
F (H) ∩ GN . By (1), there exists a subgroup M of G such that G = XM and
X ∩M = 1. Clearly, B ≤ M . Thus M/B is a complement of XB/B in G/B and
(iii) follows.

(iv) By (iii), G/B satisfies hypothesis and therefore G/B belongs to F by
the choice of G. Since F contains U , we have G/GN ∈ F . Therefore G = G/B∩
GN ∈ F , contrary to the choice of G.

Consequently B = 1 and Φ(F (H)) = 1.

(3) F (H) is a direct products of normal subgroups of G of prime order.
As Φ(F (H)) = 1 by (2), F (H) = R1 × R2 × · · · × Rn, where each Ri is a

minimal normal subgroup of G ([6, Satz 4.5, p. 279]). We claim that if Ri 6⊆ GN ,
then Ri is of prime order. In fact, Ri ∩GN = 1, so RiG

N /GN ∼= Ri is a G-chief
factor. As G/GN is nilpotent, RiG

N /GN must be prime order and Ri is of prime
order. Now we suppose that there is a Ri such that Ri ≤ GN . Then we can find
a minimal subgroup X of Ri ∩GN ≤ F (H)∩GN . By (1), X is complemented in
G, and hence G = XM with M ≤ G and X ∩M = 1. Then Ri = X(Ri ∩M).
Thus Ri ∩M is normal in G, which gives Ri ∩M = 1, namely Ri = X is of prime
order. Summing up, all Ri are of prime order and so (3) holds.

(4) Final contradiction.
Now let

F =
n⋂

i=1

CG(Ri) = CG(F (H)).

Then G/F is supersolvable as G/CG(Ri) is cyclic for all Ri. Moreover, F ∩H =
CG(F (H)) ∩H ≤ F (H) by [6, III, 4.2 Satz, p. 277]. By hypothesis, G/H ∈ F so
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that G/F ∩H ∈ F . Thus G/F (H) ∈ F . Consequently, G/F (H) ∩GN ∈ F and
every minimal subgroup of F (H)∩GN is complemented in G. Now, an application
of Theorem 1.3 fields G ∈ F . The proof of the theorem is now complete ¤

4. Examples

Example 4.1 (Theorem 1.4 is false if H∗ is replaced by H). Let F = H and
let G = 〈a, b : a5 = b4 = 1, b−1ab = a2〉. This group satisfies the condition: For
every Sylow subgroup P of G, every minimal subgroup of P ∩G′ is complemented
in G. However, G is not in H.

Example 4.2 (Theorem 1.3 is false if U is replaced by H∗). Let F = H∗,
and let G be a non-abelian nilpotent group. Then GN = 1. So G satisfies the
condition: For every Sylow subgroup P of G, every minimal subgroup of P ∩GN

is complemented in G. But G is not in H∗.
Example 4.3 (Comparison of Theorem 1.3 and Theorem 1.4). Let G = S4, the

symmetric group of degree 4. Then G satisfies the following condition: For every
Sylow subgroup P of G, every minimal subgroup of P ∩NG(P )N is complemented
in NG(P ). However, G is non-supersolvable.
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