Year: 2010 | Vol.: 77 | Fasc.: 1-2

Title: On the distribution mod 1 of $\alpha \sigma(n)$

Author(s): Imre Kátai

The sequence $x_n = F(n) + \alpha \sigma(n) \pmod{1}$ is investigated, where $\sigma(n) = \text{sum of}$ divisors of n, F is an additive arithmetical function. In an earlier paper De Koninck and the author proved that $x_n \mod 1$ is uniformly distributed if the approximation type of α is finite, and formulated the conjecture that it holds for every irrational α . In this paper it is proved that the conjecture is not true in general, and it is true if $\alpha \in \mathcal{K}^*$. \mathcal{K}^* is defined as follows. Let $M_x = \prod_p p^{r_p}$, p runs over the primes and r_p is the integer part of the number stated in the right hand side of (2.7). Let $\mathcal{K} = \mathcal{K}_x$ be the set of those irrational α , for which $\min_{H|M_x} ||H\alpha||x > 1$ holds for every large x, $\mathcal{K}^* = \{\alpha \mid j\alpha \in \mathcal{K}\}$ for every $j = 1, 2, \ldots$.

Address: Imre Kátai Department of Computer Algebra Eötvös Loránd University Pázmány Péter Sétány 1/c H-1117 Budapest Hungary