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Characterizations of Lie-skew multiplicative maps on operator
algebras of indefinite inner product spaces

By RUNLING AN (Taiyuan) and JINCHUAN HOU (Taiyuan)

Abstract. Let H and K be indefinite inner product spaces. In this paper, we show

that a bijective map Φ : B(H) → B(K) satisfies Φ(AB−BA†) = Φ(A)Φ(B)−Φ(B)Φ(A)†

for every pair A, B ∈ B(H) if and only if there exist a unitary or conjugate unitary

operator U ∈ B(H, K) such that Φ(A) = UAU † for all A ∈ B(H).

1. Introduction

Let R and R′ be two rings. Recall that a bijective map Φ : R → R′
is called a Lie multiplicative isomorphism if Φ([A,B]) = [Φ(A), Φ(B)], where
[A,B] = AB −BA. Of course, a Lie multiplicative isomorphism need not always
be linear or additive. So, it is an interesting and challenging task to characterize
all Lie multiplicative isomorphisms of an (operator) algebra without linearity or
additivity assumption. Recently, Bai and Du showed in [1] that, if R, R′ are
prime rings with R being unital and containing a nontrivial idempotent, and if Φ :
R→ R′ is a Lie multiplicative isomorphism, then Φ(T +S) = Φ(T )+Φ(S)+Z ′T,S

for all T, S ∈ R, where Z ′T,S is an element in the center Z ′ of R′ depending on T

and S.
As a kind of new products in a ∗ ring, Lie-skew product AB − BA∗ was

discussed in [3]. Lie skew product is found playing a more and more important
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role in some research topics, and it has attracted many author’s attention recently.
For example, it is related closely to the Jordan ∗-derivation (see [5]). This product
was extensively studied because, by the fundamental theorem of Šemrl in [6],
maps of the form T 7→ TA − AT ∗ naturally arise in the problem of representing
quadratic functionals with sesquilinear functionals (see [6], [7]).

Because the indefinite inner product space may be useful both for the dis-
cussion of physical problems as well as for more genuine mathematical questions
(see instructions in [2]), motivated by a work of Molnár (see [4]), some pre-
server problems were studied and solved for operator algebras on indefinite in-
ner product spaces. Motivated by results in [1] and work of Molnár, In this
paper, we consider lie skew multiplicative maps Φ (that is, Φ(AB − BA†) =
Φ(A)Φ(B) − Φ(B)Φ(A)† for every pair A, B) on operator algebras of indefinite
inner product spaces.

Let us recall some conceptions and fix some notations. Denote by C the
complex field. An indefinite inner product space means a linear space H over C
equipped with a non-degenerate bilinear Hermite functional [ · , · ]. Let (H, [ · , · ])
be an indefinite inner product space. If there exist a positive subspace H+ and a
negative subspace H− which are orthogonal to each other such that

H = H+ ⊕H− (1.1)

and (H+, [ · , · ]) is a Hilbert space when [ · , · ] is restricted to H+; (H−,−[ · , · ])
is a Hilbert space when −[ · , · ] is restricted to H−, then we say that H is a
complete indefinite inner product space and the decomposition (1.1) is called
a regular one of H (see [2] and [8]). In the sequel we always assume that the
indefinite inner product spaces over C are complete with dimension greater than 1.
If H = H+⊕H− is a regular decomposition of an indefinite inner product space H,
then for any x, y ∈ H, x and y can be uniquely represented as x = x+ + x− and
y = y+ + y−, where x±, y± ∈ H±. Define an inner product on H by

〈x, y〉 = [x+, y+]− [x−, y−].

It is obvious that (H, 〈·, ·〉) is a Hilbert space. We call 〈·, ·〉 the inner product
induced by the regular decomposition H = H+ ⊕H− (see [2]). A linear operator
T from an indefinite inner product space H into an indefinite inner product space
K is said to be bounded if T is bounded with respect to the inner products of
H and K induced by some regular decompositions. The boundedness of T does
not depend on the choice of the regular decompositions. We still denote B(H, K)
(B(H) if H = K) the set of all bounded linear operators from H into K. For any
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T ∈ B(H, K), the indefinite conjugate of T with respect to the indefinite inner
products [ · , · ] is an operator T † ∈ B(K, H) defined by the equation [Tx, y] =
[x, T †y] for all x ∈ H and y ∈ K. On the other hand, assume that Hi (i = 1, 2) are
Hilbert spaces with inner product 〈·, ·〉 and Ji ∈ B(Hi) are self-adjoint invertible
operators. Then, for each i = 1, 2, (Hi, [ · , · ]Ji

) is a complete indefinite inner
product space, where [ · , · ]Ji

= 〈Ji(·), ·〉, which is induced by Ji. It is clear that,
with respect to [ · , · ]Ji , the indefinite conjugate T † of an operator T ∈ B(H1,H2)
is of the form T † = J−1

1 T ∗J2, in which T ∗ stands for the usual conjugate of
T related to the inner product 〈·, ·〉. Sometimes we also call T † = J−1

1 T ∗J2 the
(J1, J2)-conjugate of T . If H1 = H2 are the same Hilbert spaces and J1 = J2 = J ,
the (J1, J2)-conjugate of an operator T is often called the J-conjugate of T . Recall
that U ∈ B(H, K) is called a unitary operator if UU † = IK and U †U = IH , where
IH ∈ B(H) and IK ∈ B(K) are identity operators.

We refer the reader to [2] and [8] for more details of indefinite inner product.

2. Results and proofs

In this section, we give a characterization of †-isomorphisms of indefinite
inner product space only by Lie-skew product. The following is our main result.

Theorem 2.1. Let H and K be complex complete indefinite inner product

spaces and let Φ : B(H) → B(K) be a bijective map. Then Φ satisfies

Φ(AB −BA†) = Φ(A)Φ(B)− Φ(B)Φ(A)† (2.1)

for every pair A,B ∈ B(H) if and only if there exists a unitary or conjugate

unitary operator U ∈ B(H,K) such that Φ(A) = UAU † for all A ∈ B(H).

The “if” part is obvious. We only check “only if” part. Now assume that
Φ satisfies the assumptions of Theorem 2.1. We divide the proof into several
lemmas.

Lemma 2.1. Φ(0) = 0.

Proof. Since Φ is surjective, we can find an A ∈ B(H) such that Φ(A) = 0.
Therefore Φ(0) = Φ(A0− 0A†) = Φ(A)Φ(0)− Φ(0)Φ(A)† = 0. ¤

Let H = H+ ⊕H− be a regular decomposition of H. We may assume that
both H+ and H− are nontrivial. We denote P1 ∈ B(H) be the fixed non-trivial
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self-adjoint idempotent operator which has the matrix form

P1 =

(
I 0
0 0

)

according to the regular decomposition, where I is the identity operator on H+

(In the case that H+ or H− is {0}, say H+ = 0, one may take any nonzero
projection P1 in B(H−) with inner product 〈·, ·〉 = −[·, ·], and the proof is almost
the same). Let P2 = I − P1 and set Aij = PiB(H)Pj , i, j = 1, 2. Then we
have B(H) = A11+̇A12+̇A21+̇A22. In what follows, we write Aij , Bij , . . . for the
elements in Aij .

Lemma 2.2. Let S = S11+S12+S21+S22 ∈ B(H). The following statements

are true.

(i) Let 1 ≤ j, k ≤ 2 be fixed. If TijSjk = 0 holds for every Tij ∈ Aij (1 ≤ i ≤ 2),
then Sjk = 0. Dually, let 1 ≤ k, i ≤ 2 be fixed. If SkiTij = 0 for all Tij ∈ Aij

(1 ≤ j ≤ 2), then Ski = 0.

(ii) If TijS − ST †
ij ∈ Aij for every Tij ∈ Aij(1 ≤ i 6= j ≤ 2), then Sjj = 0; if

STij − TijS
† ∈ Aij for every Tij ∈ Aij(1 ≤ i 6= j ≤ 2), then Sij = 0

(iii) If TiiS − ST †
ii ∈ Aij for every Tii ∈ Aii (i = 1, 2), then Sii = 0 and Sji = 0

(1 ≤ i 6= j ≤ 2).

Proof. (i) It is an easy consequence of the fact that B(H) is prime in the
sense that SB(H)T = 0 implies either S = 0 or T = 0.

(ii) Since TijS−ST †
ij ∈ Aij , we have Pj(TijS−ST †

ij) = −SjjT
†

ij = 0. By (i),
we see that Sjj = 0. Similarly, STij − TijS

† ∈ Aij implies (STij − TijS
†)Pi = 0.

Hence TijS
†
ij = 0, by (i) we get Sij = 0.

(iii) Since TiiS − ST †
ii ∈ Aij , we have Pj(TiiS − ST †

ii ) = 0. It follows
SjiT

†
ii = 0 for all Tii ∈ Aii, hence Sji = 0 by (i). Using TiiS − ST †

ii ∈ Aij again,
we see that (TiiS − ST †

ii )Pi = 0, that is TiiSii − SiiT
†

ii = 0 since Sji = 0. Taking
Tii = iPi, we get Sii = 0. ¤

The main technique we will use in Lemmas 2.3–2.9 is the following argument
which will be termed as a “standard argument”. Suppose A,B, S ∈ B(H) are
such that Φ(S) = Φ(A) + Φ(B). Multiplying this equality by Φ(T ) and −Φ(T ) †

(T ∈ B(H)) from the left and from the right, respectively, we get Φ(T )Φ(S) =
Φ(T )Φ(A) + Φ(T )Φ(B) and −Φ(S)Φ(T ) † = −Φ(A)Φ(T ) † − Φ(B)Φ(T ) †. Sum-
ming them, we get

Φ(T )Φ(S)− Φ(S)Φ(T ) † = Φ(T )Φ(A)− Φ(A)Φ(T ) † + Φ(T )Φ(B)− Φ(B)Φ(T ) †.
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It follows from equation (2.1) that

Φ(TS − ST †) = Φ(TA−AT †) + Φ(TB −BT †).

Similarly, by multiplying Φ(S) = Φ(A) + Φ(B) and −Φ(S) † = −Φ(A)† − Φ(B) †

by Φ(T ) from the right and from the left respectively, we get

Φ(ST − TS †) = Φ(AT − TA†) + Φ(BT − TB †).

Lemma 2.3. For every Aii ∈ Aii and Aij ∈ Aij , Φ(Aii + Aij) = Φ(Aii) +
Φ(Aij) (1 ≤ i 6= j ≤ 2).

Proof. Let S = S11 + S12 + S21 + S22 ∈ B(H) be such that

Φ(S) = Φ(Aii) + Φ(Aij). (2.2)

For Tjj , applying standard argument to equation (2.2), we have

Φ(TjjS − ST †
jj) = Φ(−AijT

†
jj),

which implies that
TjjS − ST †

jj = −AijT
†

jj . (2.3)

The lemma 2.2(iii) entails that Sjj = 0 and Sji = 0. Multiplying Pi from the
left in equation (2.3), we have Sij = Aij . For Tii, applying standard argument to
equation (2.2) again, we have

Φ(STii − TiiS
†) = Φ(AiiTii − TiiA

†
ii),

this implies that SiiTii−TiiS
†
ii = AiiTii−TiiA

†
ii ⇔ (Sii−Aii)Tii = Tii(Sii−Aii) †.

So (Sii − Aii) † = Sii − Aii and there exists a real number fPi(A) such that
Sii = Aii + fPi(A)Pi. Thus for any Aii and Aij

Φ(Aii + Aij + fPi(A)Pi) = Φ(Aii) + Φ(Aij). (2.4)

Next we show that fPi(A) = 0. For Tij , applying standard argument to equation
(2.4), and from equation (2.4) there is a scalar α such that

Φ(AiiTij + fPi(A)Tij − TijA
†
ij) = Φ(AiiTij) + Φ(−TijA

†
ij)

= Φ(αPi + AiiTij − TijA
†
ij),

and thus fPi(A) = 0. As desired. ¤
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Lemma 2.4. Φ is additive on A12.

Proof. Note that

A12 + B12 −A †
12 −B12A

†
12 = (A12 + P1)(P2 + B12)− (P2 + B12)(A12 + P1) †.

We have by Lemma 2.3

Φ(A12 + B12 −A †
12 −B12A

†
12)

= Φ[(A12 + P1)(P2 + B12)− (P2 + B12)(A12 + P1) †]

= Φ(A12 + P1)Φ(P2 + B12)− Φ(P2 + B12)Φ(A12 + P1) †

= (Φ(A12) + Φ(P1))(Φ(P2) + Φ(B12))− (Φ(P2) + Φ(B12))(Φ(A12) + Φ(P1)) †

= Φ(A12)Φ(P2)− Φ(P2)Φ(A12) † + Φ(A12)Φ(B12)− Φ(B12)Φ(A12) †

+ Φ(P1)Φ(P2)− Φ(P2)Φ(P1) † + Φ(P1)Φ(B12)− Φ(B12)Φ(P1) †

= Φ(A12 −A †
12) + Φ(B12 −B12A

†
12). (2.5)

Applying standard argument with P2 to equation (2.5), we see that

Φ(A12 + B12 −A †
12 −B †

12)

= Φ((A12 + B12 −A †
12 −B12A

†
12)P2 − P2(A12 + B12 −A †

12 −B12A
†
12)

†)

= Φ((A12 −A †
12)P2 − P2(A12 −A †

12)
†) + Φ(B12P2 − P2B

†
12)

= Φ(A12 −A †
12) + Φ(B12 −B †

12). (2.6)

Let S = S11 + S12 + S21 + S22 ∈ B(H) such that

Φ(S) = Φ(A12) + Φ(B12). (2.7)

For P1, applying standard argument to equation (2.7), we have

Φ(P1S − SP1) = Φ(P1A12 −A12P1) + Φ(P1B12 −B12P1)

= Φ(A12) + Φ(B12) = Φ(S).

Thus S11 = S21 = S22 = 0. For P2, by using standard argument in equation (2.7)
and by equation (2.6), we have

Φ(S12 − S †
12) = Φ(S12P2 − P2S

†
12)

= Φ(A12P2 − P2A
†
12) + Φ(B12P2 − P2B

†
12) = Φ(A12 + B12 −A †

12 −B †
12).

Thus S12−S †
12 = A12 + B12−A †

12−B †
12, by multiplying P1 from the left, we get

S12 = A12 + B12. ¤
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Similarly, we have:

Lemma 2.5. Φ is additive on A21.

Lemma 2.6. For every Aii, Bii ∈ Aii, Φ(Aii + Bii) = Φ(Aii) + Φ(Bii),
i = 1, 2.

Proof. Without loss of generality, assume i = 1. Let S = S11 +S12 +S21 +
S22 ∈ B(H) such that

Φ(S) = Φ(A11) + Φ(B11). (2.8)

For P1, applying standard argument to equation (2.8), we have

Φ(P1S − SP1) = Φ(P1A11 −A11P1) + Φ(P1B11 −B11P1) = 0,

hence S12 = S21 = 0. For any T22 ∈ A22, applying standard argument to equation
(2.8), we have Φ(T22S22 − S22T

†
22) = 0, thus S22 = 0 from Lemma 2.2 (iii). For

any T12 ∈ A12, applying standard argument to equation (2.8) and by Lemma 2.4,
we have

Φ(ST12 − T12S
†) = Φ(A11T12 − T12A

†
11) + Φ(B11T12 − T12B

†
11)

= Φ(A11T12) + Φ(B11T12) = Φ(A11T12 + B11T12).

Thus S11T12 = (A11 + B11)T12 and from Lemma 2.2 (i), we get S11 = A11 + B11.
As desired. ¤

Lemma 2.7. Φ(A11 + A22) = Φ(A11) + Φ(A22).

Proof. Let S = S11 + S12 + S21 + S22 ∈ B(H) be such that

Φ(S) = Φ(A11) + Φ(A22). (2.9)

For T11, by using standard argument in equation (2.9), we have

Φ(T11S − ST †
11) = Φ(T11A11 −A11T

†
11).

This implies that T11S − ST †
11 = T11A11 − A11T

†
11. Multiplying P2 from the left

and the right in the above equality, we get that S12 = S21 = 0 by Lemma 2.2 (i).
Moreover from Lemma 2.2 (iii) T11(S11 − A11) = (S11 − A11)T

†
11 implies that

S11 = A11. Similarly using standard argument with T22, we get S22 = A22. ¤

Lemma 2.8. Φ(A12 + A21) = Φ(A12) + Φ(A21).
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Proof. Let S = S11 + S12 + S21 + S22 ∈ B(H) be such that

Φ(S) = Φ(A12) + Φ(A21). (2.10)

Just like preceding lemmas, we need only to check that S11 = S22 = 0, S12 = A12

and S21 = A21.
Using standard argument in equation (2.10), we have

Φ(P1S − SP1) = Φ(P1A12 −A12P1) + Φ(P1A21 −A21P1) = Φ(A12) + Φ(−A21).

For P1, applying standard argument in the above equality again, we see

Φ(P1S − 2P1SP1 + SP1) = Φ(P1(P1S − SP1)− (P1S − SP1)P1)

= Φ(P1A12 −A12P1) + Φ(P1(−A21)− (−A21)P1) = Φ(A12) + Φ(A21) = Φ(S),

hence P1S − 2P1SP1 + SP1 = S11 + S12 + S21 + S22 and S11 = S22 = 0. Note
that Φ(SP1 − P1S

†) = Φ(A12P1 − P1A
†
12) + Φ(A21P1 − P1A

†
21) = Φ(A21 −A †

21),
thus S21 − S †

21 = A21 − A †
21 and S21 = A21. Using the same argument with P2,

we have S12 = A12. ¤

Lemma 2.9. Φ(A11+A12+A21+A22) = Φ(A11)+Φ(A12)+Φ(A21)+Φ(A22).

Proof. Let S = S11 + S12 + S21 + S22 ∈ B(H) be such that

Φ(S) = Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22). (2.11)

For P1, applying standard argument to equation (2.11), by Lemma 2.3, and we
have Φ(S12 − S21) = Φ(P1S − SP1) = Φ(P1A12 −A12P1) + Φ(P1A21 −A21P1) =
Φ(A12 − A21), thus S12 − S21 = A12 − A21 and S12 = A12, S21 = A21. For any
T12 ∈ A12, applying standard argument to equation (2.11) again, we have

Φ(T12S − ST †
12) = Φ(−A12T

†
12 + T12A21) + Φ(T12A22 −A22T

†
12). (2.12)

For P1, applying standard argument to equation (2.12), we get

Φ(T12S22+ S22T
†

12)=Φ(P1(T12S−ST †
12)− (T12S−ST †

12)P1)=Φ(T12A22+A22T
†

12),

thus S22 = A22. For any T21 ∈ A12 and P2, using similar computations we get
S11 = A11. As desired. ¤

Now by Lemmas 2.4–2.7 and Lemma 2.9, we get the additivity of Φ. Next
we show Φ is multiplicative.
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Lemma 2.10. For any non-trivial self adjoint idempotent P , Φ(P ) is a non-

trivial self adjoint idempotent.

Proof. First we show Φ(I) = I and Φ(iI) = ±iI. Suppose Φ satisfies
equation (2.1), that is Φ(AB −BA†) = Φ(A)Φ(B)− Φ(B)Φ(A)†, thus

AB = BA† ⇔ Φ(A)Φ(B) = Φ(B)Φ(A)†. (2.13)

Taking A = I in equation (2.13), one get Φ(I)Φ(B) = Φ(B)Φ(I) † for all B ∈
B(H) which implies that Φ(I) = aI for some a ∈ R since Φ is surjective. Taking
B = I in equation (2.13), we get A = A† ⇔ Φ(A) = Φ(A)†, that is, Φ preserves
self adjoint operators in both directions. Now for any a ∈ C and self-adjoint
operator A ∈ B(H), Φ(A)Φ(aI) = Φ(aI)Φ(A) implies that there is b ∈ C such
that Φ(aI) = bI. From the equality

Φ(iI) = Φ
(

(iI)
(

1
2
I

)
−

(
1
2
I

)
(iI) †

)
= Φ(iI)Φ

(
1
2
I

)
− Φ

(
1
2
I

)
Φ(iI) †,

we get

Φ(iI) † = −Φ(iI) and Φ
(

1
2
I

)
=

1
2
I (2.14)

Thus by the additivity of Φ, Φ(I) = I and Φ(aI) = aI for every integer number a.
For Φ(iI), from equation (2.14) and

−2I = Φ(−2I) = Φ((iI)(iI)− (iI)(iI) †) = Φ(iI)2 − Φ(iI)Φ(iI) † = 2Φ(iI)2,

we have Φ(iI) = ±iI. Without loss of generality, we assume in the sequel that
Φ(iI) = iI.

For any A ∈ B(H), we have

Φ(2iA) = Φ(iIA−A(iI) †) = Φ(iI)Φ(A)− Φ(A)Φ(iI) † = 2iΦ(A). (2.15)

This implies that
A† = −A ⇔ Φ(A)† = −Φ(A). (2.16)

Thus for A = A†, we get from equation (2.15)–(2.16) and

2iΦ(2A2) = Φ(4iA2) = Φ(2iAA−A(2iA)†)

= Φ(2iA)Φ(A)− Φ(A)Φ(2iA)† = 4iΦ(A)2. (2.17)

Hence we get Φ(P )2 = Φ(P ) for every self adjoint idempotent P in B(H). ¤
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Now we get when A† = −A, then by equation (2.16)

Φ(2A) = Φ(AI − IA†) = Φ(A)Φ(I)− Φ(I)Φ(A)† = 2Φ(A); (2.18)

further for any B ∈ B(H),

Φ(AB + BA) = Φ(AB −BA†) = Φ(A)Φ(B) + Φ(B)Φ(A). (2.19)

Let P, Q ∈ B(H) be two idempotents, recall that P and Q are orthogonal if
PQ = QP = 0; P ≤ Q if PQ = QP = P .

Lemma 2.11. Φ preserves the order, and the orthogonality of self-adjoint

idempotents in both directions.

Proof. Let P, Q ∈ B(H) be two orthogonal self-adjoint idempotents. Then
from equation (2.15) and equation (2.19) we obtain

0 = Φ(iPQ−Q(iP ) †) = Φ(iP )Φ(Q) + Φ(Q)Φ(iP ) = i(Φ(P )Φ(Q) + Φ(Q)Φ(P ))

which implies that Φ(P )Φ(Q) + Φ(Q)Φ(P ) = 0. Multiplying this equality by
Φ(Q) from the right and from the left respectively, we have Φ(Q)Φ(P )Φ(Q) =
−Φ(P )Φ(Q) and Φ(Q)Φ(P )Φ(Q) = −Φ(Q)Φ(P ). Hence

Φ(P )Φ(Q) = Φ(Q)Φ(P ) = 0

and Φ preserves the orthogonality of self-adjoint idempotents. In the same way
we see that Φ preserves orthogonality also in the other direction. We assert that Φ
preserves the partial order relation ≤ between self-adjoint idempotents. If P, Q ∈
B(H) are self-adjoint idempotents and P ≤ Q, then by equation (2.18-2.19) we
obtain

2iΦ(P ) = Φ(2iP ) = Φ(iPQ−Q(iP ) †) = Φ(iP )Φ(Q) + Φ(Q)Φ(iP )

= iΦ(P )Φ(Q) + iΦ(Q)Φ(P ).

Hence 2Φ(P ) = Φ(P )Φ(Q) + Φ(Q)Φ(P ), multiplying this equality by Φ(Q) from
both sides, we get that Φ(P )Φ(Q) = Φ(Q)Φ(P ) = Φ(P ). Thus Φ preserves the
partial order. Similarly, we get Φ preserves the partial order in the other direction.
As desired. ¤

In the next Lemma, let Φ(Pi) = Qi, i = 1, 2. Set Bij = QiB(K)Qj , i, j = 1, 2.
Then, B(K) = B11 + B12 + B21 + B22.
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Lemma 2.12. Φ(Aij) = Bij , i, j = 1, 2.

Proof. If i 6= j, without loss of generality, assume i = 1, j = 2. Let A12 ∈
A12 and set Φ(A12) = S. Since A12 = P1A12 − A12P

†
1 , we obtain S = Φ(A12) =

Φ(P1A12 − A12P
†

1 ) = Φ(P1)Φ(A12) − Φ(A12)Φ(P1) † = Φ(P1)S − SΦ(P1), thus
S11 + S12 + S21 + S22 = S12 − S21 and S11 = S22 = S21 = 0, Φ(A12) ∈ B12.
Considering Φ−1, we get Φ(A12) = B12.

If i = j, without loss of generality, assume i = j = 1. Let A11 ∈ A11 and set
Φ(A11) = S. Note that 0 = Φ(P2A11 −A11P

†
2 ) = Φ(P2)Φ(A11)−Φ(A11)Φ(P2) †,

hence S21−S12 = 0 and S12 = S21 = 0. For any B12 ∈ A12, from 0 = Φ(B12A11−
A11B

†
12) = Φ(B12)Φ(A11) − Φ(A11)Φ(B12) †, we have Φ(B12)S22 = S22Φ(B12) †

and S22 = 0. Thus Φ(A11) ∈ B11. Considering Φ−1, we get Φ(A11) = B11. As
desired. ¤

Lemma 2.13. Φ(AijBjj) = Φ(Aij)Φ(Bjj) and Φ(AiiBij) = Φ(Aii)Φ(Bij)
i 6= j ∈ {1, 2}.

Proof. Since Φ(AijBjj)− Φ(BjjA
†
ij) = Φ(AijBjj −BjjA

†
ij) =

Φ(Aij)Φ(Bjj) − Φ(Bjj)Φ(Aij) †, we get Φ(AijBjj) = Φ(Aij)Φ(Bjj) from Lem-
ma 2.12. Similarly we get Φ(AiiBij) = Φ(Aii)Φ(Bij) i 6= j ∈ {1, 2}. ¤

Lemma 2.14. Φ(AijBji) = Φ(Aij)Φ(Bji) i 6= j ∈ {1, 2}.
Proof. From Φ(Aij)− Φ(A †

ij) = Φ(Aij −A †
ij) = Φ(AijPj − PjA

†
ij) =

Φ(Aij)Φ(Pj)−Φ(Pj)Φ(Aij) † = Φ(Aij)−Φ(Aij) †, we get Φ(A †
ij) = Φ(Aij) †. For

any Bji there exists Bij ∈ Aij such that B †
ij = Bji. Hence

−Φ(AijBji) = Φ(−AijB
†
ij) = Φ(BijAij −AijB

†
ij)

= Φ(Bij)Φ(Aij)− Φ(Aij)Φ(Bij) † = −Φ(Aij)Φ(Bij) † = −Φ(Aij)Φ(Bji)

implies Φ(AijBji) = Φ(Aij)Φ(Bji). As desired. ¤

Lemma 2.15. Φ(AiiBii) = Φ(Aii)Φ(Bii) i = 1, 2.

Proof. For any Tij ∈ Aij , from Lemma 2.13, we get

Φ(AiiBii)Φ(Tij) = Φ(AiiBiiTij) = Φ(Aii)Φ(BiiTij) = Φ(Aii)Φ(Bii)Φ(Tij).

It follows from Lemma 2.12 and Lemma 2.2 (i) that Φ(AiiBii) = Φ(Aii)Φ(Bii).
¤

Lemma 2.16. Φ(AB) = Φ(A)Φ(B) for all A, B ∈ B(H).
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Proof. Set A = A11 + A12 + A21 + A22 and B = B11 + B12 + B21 + B22.
Then

Φ(AB) = Φ((A11 + A12 + A21 + A22)(B11 + B12 + B21 + B22))

= Φ(A11B11 + A11B12 + A12B21 + A12B22 + A21B11

+ A21B12 + A22B21 + A22B22)

= Φ(A11)Φ(B11) + Φ(A11)Φ(B12) + Φ(A12)Φ(B21) + Φ(A12)Φ(B22)

+ Φ(A21)Φ(B11) + Φ(A21)Φ(B12) + Φ(A22)Φ(B21) + Φ(A22)Φ(B22)

= Φ(A)Φ(B) ¤

.
Proof of Theorem 2.1. From Lemmas 2.3-2.16, It remains to prove that

Φ(A†) = Φ(A)† for all A ∈ B(H) and that Φ is a linear or conjugate linear map.
For B = I ∈ B(H), from Lemmas 2.16–2.17 and the equality Φ(A)Φ(B) −

Φ(B)Φ(A†) = Φ(AB)− Φ(BA†) = Φ(AB − BA†) = Φ(A)Φ(B)− Φ(B)Φ(A)†, it
is easy to check that Φ(A†) = Φ(A)†.

Next we show Φ is a linear or conjugate linear map. From Lemma 2.10, we get
Φ(CI) ⊆ CI, denote Φ(λI) = f(λ)I. It follows that f is a ring homomorphism of
the real numbers and f(r) = r for every rational number r. Since f sends squares
to squares and it preserves order. It follows that for rational number r and real
numbers x, y such that −r < x− y < r, we have −r < f(x)− f(y) < r. Hence, f

is continuous and so must be identity map on the real number. Since f(i) = i or
−i, f must fix all complex number or send each complex number to its conjugate.
So Φ is linear or conjugate linear.

Therefore Φ is a † isomorphism or conjugate † isomorphism. Thus there exists
a linear or conjugate linear bounded invertible operator U ∈ B(H, K) such that
Φ(A) = UAU−1 for all A ∈ B(H) or Φ(A) = UA†U−1 for all A ∈ B(H). Because
Φ preserves the † operation and Φ(I) = I, we see that U †U = IH , UU † = IK

and U is a unitary operator. Therefore, Φ(A) = UAU−1 = UAU † or Φ(A) =
UA†U−1 = UA†U † for all A ∈ B(H). When Φ(A) = UA†U †, it is easy to check
that it dose not satisfy equation (2.1). Thus Φ(A) = UAU † for all A ∈ B(H). As
desired. ¤

In particular, we have:

Corollary 2.2. Let H and K be Hilbert spaces over the the complex field

and let Φ : B(H) → B(K) be a bijective map. Then, Φ satisfies

Φ(AB −BA∗) = Φ(A)Φ(B)− Φ(B)Φ(A)∗



Lie-skew multiplicative maps 113

for every pair A,B ∈ B(H) if and only if there exists a unitary or a conjugate

unitary operator U ∈ B(H,K) such that Φ(A) = UAU∗ for all A ∈ B(H) .
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