Year: 2010 | Vol.: 77 | Fasc.: 1-2

Title: Binary sequences generated by sequences $\{n\alpha\}, n = 1, 2, ...$

Author(s): Štefan Porubský and Oto Strauch

Let α be an irrational number, I be a subinterval of the unit interval (0, 1), and $\{x\}$ denote the fractional part of x. In this paper we shall study arithmetical properties of the set $A = \{n \in \mathbb{N}; \{n\alpha\} \in I\}$ and pseudorandom character of the sequence x_n , $n = 1, 2, \ldots$, where $x_n = 1$ when $\{n\alpha\} \in I$, and $x_n = -1$ otherwise. We prove, among others, that the gaps between successive elements of A are at most of three lengths, a, b and a + b also in the case of an arbitrary interval $I \subset (0, 1)$, thereby extending the known Slater's results for intervals of the type I = (0, t) with t < 1/2. Further we exactly describe the set of positive integers which are not equal to a difference of two arbitrary elements from A and we prove that A contains infinite double-arithmetic progressions. Then we find a new lower estimate of the Mauduit-Sárközy well distribution meaasure of x_n for an arbitrary interval I. We also prove that the sequence x_n is Sturmian for every interval I of length $\{\alpha\}$ or $1 - \{\alpha\}$ in the sense that the number of 1's in any pair of finite subsegments of the same length occurring in x_n can differ by at most one. We prove (Theorem ??) that if $|I| \leq 1/2$ then any subsequence of x_n of the form x_{n+kK} , $k = 1, 2, \ldots$, splits into consecutive blocks of 1's and blocks of -1's whose lengths also differ by at most one. The proofs employ two geometric ideas: (i) a transposition of subintervals (cf. Lemma ??) of I to construct arithmetic progressions of the set A, (ii) properties (cf. Lemma ??) of line segments of the intersection of the graph of the sawtooth function $x + \{k\alpha\}$ with $I \times I$ to answer the question when two elements $\{n\alpha\}$ and $\{(n+k)\alpha\}$ simultaneously fall into I. This technique gives, for instance, a new proof of the mentioned Slater's three gap theorems.

Address:

Štefan Porubský Institute of Computer Science Academy of Sciences of the Czech Republic Pod Vodárenskou věží 2 182 07 Prague 8 Czech Republic

Address:

Oto Strauch Mathematical Institute Slovak Academy of Sciences Štefánikova 49 814 73 Bratislava Slovak Republic *E-mail:* strauch@mat.savba.sk