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Explicit formulas for generators of triangular norms

By MIRKO NAVARA (Prague), MILAN PETRÍK (Prague)
and PETER SARKOCI (Bratislava)

Abstract. Triangular norms are associative operations which represent conjunc-

tions in fuzzy logic. They were also studied in the context of probabilistic metric spaces.

It is known that each continuous Archimedean triangular norm can be determined by

additive and multiplicative generators. However, finding a generator of a given triangu-

lar norm may be a difficult task. The geometry of the generator does not seem to reflect

the properties of the triangular norm in an intuitive way. We show that this need not be

the case for a large class of triangular norms which allow to reconstruct the generators

from partial derivatives of triangular norms. This class is broad enough to cover all

continuous Archimedean triangular norms which we found in the literature.

1. Introduction

A triangular norm (shortly, a t-norm) is a function T : [0, 1]2 → [0, 1] which

is commutative, associative, nondecreasing in both arguments, and which satis-

fies T (x, 1) = x for every x ∈ [0, 1]. T-norms appear in different contexts, e.g., in

probabilistic metric spaces [29] or in aggregation of partial knowledge from differ-

ent sources. In fuzzy logic, they serve as conjunctions of truth values from [0, 1].
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Associativity induces restrictions on possible forms of t-norms. Roughly speak-

ing, a t-norm can be represented as addition or multiplication, up to a change

of scale determined by an isotone function called the (additive or multiplicative)

generator. (Corrections at the boundary of the domain may be necessary.) It is

known that every continuous Archimedean t-norm has a generator [1], [2], [10],

[17], [21]. Although the proof is constructive, it can hardly be applied in practice

– it constructs a sequence of points which is then refined to a dense set and con-

tinuity ends the procedure. Despite some optimization, the proof is complicated

and needs not result in an explicit formula for the generator. There are explicit

formulas for generators ([3], [8], [28], see Theorem 2.2 and Theorem 2.4), but they

use infima over infinite sequences. These might be difficult to compute. Also the

current computer algebraic systems cannot help with this task.

Here we offer an alternative. We show that partial derivatives of t-norms

admit to obtain formulas for generators in a closed form. As the partial deriva-

tives need not exist, our approach cannot be applied to all t-norms, but it seems

sufficiently general for all practical applications. An advantage of our approach is

that it relates (the geometry of) the generator directly to (the geometry of) the

t-norm.

Let us mention that the result of the paper also contributes to the following

question: Which subsets of the domain uniquely determine an Archimedean t-

norm? Sufficiency has been proved for some subsets of the unit square [6], [7], [9],

[15]. Here we give a similar result, yet working with the first partial derivatives

instead of function values.

2. Preliminaries

In this section we present some basic facts about t-norms. More details

can be found e.g. in the books by Alsina, Frank, and Schweizer [5] or by

Klement, Mesiar, and Pap [13].

A continuous t-norm T is

• Archimedean if ∀x ∈ ] 0, 1[ : T (x, x) < x,

• strict if ∀x ∈ ] 0, 1[ : 0 < T (x, x) < x,

• nilpotent if T is Archimedean and not strict.

E.g., the product t-norm TP (x, y) = x · y is strict, the  Lukasiewicz t-norm

TL (x, y) = max {x + y − 1, 0} is nilpotent. Throughout this paper we deal only

with continuous Archimedean t-norms.
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The residuated implication of a t-norm T is the function IT : [0, 1]2 → [0, 1],

IT (x, y) = sup {z ∈ [0, 1] | T (x, z) ≤ y} .

The residuated implication of a t-norm is often called the residuum. For a con-

tinuous Archimedean t-norm T , the supremum can be replaced by the maximum

and the following properties hold for all x, y ∈ [0, 1]:

T (x, 0) = 0, IT (1, y) = y, T (x, IT (x, y)) = min{x, y}.

The fuzzy negation induced by T is NT : [0, 1] → [0, 1],

NT (x) = IT (x, 0) = sup {z ∈ [0, 1] | T (x, z) = 0} .

If T is nilpotent, NT is an involutive fuzzy negation. If T is strict, NT is the

Gödel negation,

NG(x) =

{

0 if x > 0,

1 if x = 0.

For every x ∈ [0, 1] and n ∈ N ∪ {0} we define a natural power x
(n)
T with

respect to the t-norm T by x
(0)
T = 1 and x

(n)
T = T

(

x, x
(n−1)
T

)

for n ∈ N.

The support, Supp T , of a t-norm T is the closure of the set

{

(x, y) ∈ [0, 1]2 | T (x, y) > 0
}

.

If T is strict, Supp T = [0, 1]2. If T is nilpotent,

Supp T =
⋃

y∈[0,1]

[NT (y) , 1] × {y} .

An additive generator of a continuous Archimedean t-norm T is a strictly

decreasing continuous extended real function t : [0, 1] → [0,∞] such that t(1) = 0

and

T (x, y) = t(−1) (t(x) + t (y)) , (1)

where

t(−1)(z) =

{

0 if z > t (0) ,

t−1(z) if z ≤ t (0) .

The value t (0) is ∞ if T is strict, finite if T is nilpotent.
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Remark 2.1. When we speak of a (real) function, we mean that it attains

finite real values. We make an exception for the additive generator which is an

extended (real) function, i.e., it may achieve also ∞ (at 0).

A multiplicative generator of a continuous Archimedean t-norm T is a strictly

increasing continuous function θ : [0, 1] → [0, 1] such that θ(1) = 1 and

T (x, y) = θ[−1] (θ(x) · θ (y)) , (2)

where

θ[−1](z) =

{

0 if z < θ (0) ,

θ−1(z) if z ≥ θ (0) .

For a continuous Archimedean t-norm T , we denote by MT resp. AT , the set

of all its multiplicative resp. additive generators. These sets are infinite; an addi-

tive generator is determined by a t-norm up to a positive multiplicative constant,

a multiplicative generator up to a positive power. If θ is a multiplicative genera-

tor of T , then t = − ln θ is an additive generator. The reverse transformation is

θ = e−t.

In the following sections we are going to derive formulas which allow to obtain

generators directly from the t-norms. For a comparison, let us recall two older

results. The following is by Craigen and Páles [8]:

Theorem 2.2. Let T be a strict t-norm. Fix an arbitrary element c ∈ ]0, 1[.

Then the extended function t : [0, 1] → [0,∞] defined by

t(x) = inf

{

m − n

k

∣

∣

∣
m, n, k ∈ N and c

(m)
T < T

(

x
(k)
T , c

(n)
T

)

}

(3)

is an additive generator of T .

Remark 2.3. The original assumption of Craigen and Páles [8] was that T

is a binary associative, continuous, and cancellative operation on a real interval.

Commutativity and monotonicity are obtained as a consequence. This approach

applies to strict t-norms restricted to the interval ]0, 1] (or strict t-conorms re-

stricted to [0, 1[). Formula (3) was explicitly formulated by Alsina [3], but with

the reverse ordering (valid for t-conorms, not for t-norms). The correct formula-

tion appeared in [13], [14].

The second result is by Pi-Calleja [3], [28]:

Theorem 2.4. Let T : [0, 1]2 → [0, 1] be a binary operation which is asso-

ciative, strictly increasing on ]0, 1]
2
, and has a neutral element 1. Suppose further
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that the function x 7→ T (x, x) is continuous and that there exists α ∈ ]0, 1[ such

that T is continuous on [0, 1]× [α, 1]. For each pair (x, y) ∈ ]0, 1]× ]0, 1[ we define

[x|y] ∈ N ∪ {0} as the unique number such that

y
([x|y]+1)
T < x ≤ y

([x|y])
T .

Fix an arbitrary element c ∈ ]0, 1[. Then T is a strict t-norm and the extended

function t : [0, 1] → [0,∞] defined by

t(x) =







lim
z→1

−

[x|z]

[c|z]
if x > 0,

∞ if x = 0

is an additive generator of T .

Both methods above give explicit formulas for an additive generator of a t-

norm. However, the need of infima, limits, or the operation [.|.] allows us to find

the generator in a closed form only in very special cases.

3. Relations between partial derivatives of t-norms

and their generators

We shall work with derivatives of generators, using the Newton notation for

derivatives of functions of one variable, e.g. t′, θ′. A t-norm T is a function of two

variables; we shall denote by D the operator of the partial derivative with respect

to the first variable,

DT (x, y) = lim
h→0

T (x + h, y) − T (x, y)

h
= lim

z→x

T (z, y) − T (x, y)

z − x
.

(Due to commutativity of T , the partial derivative with respect to the second

variable is unnecessary.)

Assumption 3.1. The partial derivative DT will be considered only in the

support Supp T . In particular,

DT (1, y) = lim
x→1

−

y − T (x, y)

1 − x

is the left partial derivative with respect to the first variable. If T is strict, then

DT (0, y) = lim
x→0+

T (x, y)

x



176 Mirko Navara, Milan Petŕık and Peter Sarkoci

is the right partial derivative. For T nilpotent, we require the second argument

y > 0; then DT (x, y) is defined for all x ∈ [NT (y) , 1], in particular,

DT (NT (y) , y) = lim
z→NT (y)

+

T (z, y)

z − NT (y)
(4)

is the right partial derivative. Since T is nilpotent, the negation NT is involutive.

Therefore, substituting x = NT (y), we can write (4) as

DT (x, NT (x)) = lim
z→x+

T (z, NT (x))

z − x
.

For T nilpotent and y = 0, the line {(x, 0) | x ∈ R} intersects Supp T only at a

single point (1, 0) and DT (x, 0) is undefined for any x.

Notice that for (x, y) ∈ Supp T pseudo-inverses coincide with inverses in (1),

(2) and therefore T (x, y) = t−1 (t(x) + t (y)) = θ−1 (θ(x) · θ (y)).

We shall refer to the following lemma:

Lemma 3.2. Let f be a real function which is differentiable on an interval I.

Let f possess an inverse function g. Each point z ∈ f(I) where g is differentiable

and f ′ (g(z)) 6= 0 satisfies

g′(z) =
1

f ′ (g(z))
.

Assumption 3.3. Throughout the paper, we assume the existence and finite-

ness of all derivatives occurring in formulas. This assumption will be stated explic-

itly in theorems. Unless specified otherwise, we suppose that the denominators

of all fractions are non-zero.

From Lemma 3.2 we obtain the following formulas:

DT (x, y) =
t′(x)

t′ (T (x, y))
, (5)

DT (x, y) =
θ (y) · θ′(x)

θ′ (T (x, y))
. (6)

The properties T (x, 0) = 0 and T (x, 1) = x imply the following equations:

DT (x, 0) = 0 (for T strict), DT (x, 1) = 1. (7)

For a ∈ ]0, 1], the a-level set of a t-norm T is the set

{(x, y) ∈ Supp T | T (x, y) = a} = {(x, IT (x, a)) | x ∈ [a, 1]}.
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For a given t-norm, it is possible to find (all) its additive and multiplicative

generators, but the procedure is rather complex [3], [8], [17], [21], [28]. The proofs

are constructive but the geometry of the generators is not apparently related to

the geometry of the t-norm. We shall show that special instances of formulas (5),

(6) admit to derive the generators in a more straightforward way. We shall obtain

either a generator or its derivative. We are going to present several examples of

substitutions which leave only one expression containing the generator.

Example 3.4 ([22]). Let us substitute x = 0 in (6):

DT (0, y) =
θ (y) · θ′ (0)

θ′ (0)
= θ (y) .

We obtained directly the multiplicative generator. Due to the requirement (x, y) ∈

Supp T , this is applicable only if T is strict. For a correct cancellation, we also

need θ′ (0) ∈ ]0,∞[. Such a multiplicative generator θ exists only for some strict

t-norms. If it exists, it is unique as will be shown in Proposition 4.1.

Remark 3.5. If we substitute x = 0 in (5), we obtain

DT (0, y) =
t′ (0)

t′(0)
,

but the right-hand side is undefined because additive generators of strict t-norms

do not have finite derivatives at 0.

Example 3.6 ([22]). Let us substitute x = 1 in (5):

DT (1, y) =
t′(1)

t′ (y)
=

bt,1

t′ (y)
, t′ (y) =

bt,1

DT (1, y)
.

The constant bt,1 = t′(1) is not known, but it is irrelevant because an additive

generator is determined up to a multiplicative constant. Substituting any finite

negative value for bt,1 gives rise to an additive generator of T (after integration

with initial value t(1) = 0).

Remark 3.7. If we substitute x = 1 in (6), we obtain

DT (1, y) =
θ (y) · θ′(1)

θ′ (y)
, (ln θ)

′
(y) =

θ′ (y)

θ (y)
=

θ′(1)

DT (1, y)
.

This leads to the same results as Example 3.6 for the additive generator t = − ln θ.
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a

Figure 1. Example of a nilpotent t-norm expressed by its system of

level sets. The bold line denotes the set of pairs (a, y) for which the

derivative DT (a, y) is used in Example 3.8.

Example 3.6 gives a relation between the derivative of an additive generator

and the (left) partial derivative of the t-norm on the line {(1, y) | y ∈ [0, 1]}. Now

we shall generalize it to a procedure which reconstructs a part of an additive

generator from the partial derivatives on a line {(a, y) | y ∈ [0, 1]}, a ∈ ]0, 1].

Example 3.8. In (5) we substitute x with a fixed constant a ∈ ]0, 1]. We

obtain

DT (a, y) =
t′(a)

t′ (T (a, y))
.

Using a new variable z = T (a, y) ∈ [0, a], we get y = IT (a, z),

DT (a, IT (a, z)) = DT (a, y) =
t′(a)

t′ (T (a, y))
=

t′(a)

t′(z)
=

bt,a

t′(z)
, (8)

t′(z) =
bt,a

DT (a, IT (a, z))
.

Figure 1 shows for which pairs (a, y) the formula (8) is used. The right-hand side

is determined up to a multiplicative constant bt,a = t′(a). Any finite negative

value of this constant gives a formula for the derivative of some additive generator

at [0, a].

The following example shows a relation between the derivative of an additive

generator and the partial derivative of the t-norm on its level set.
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a

Figure 2. Example of a nilpotent t-norm expressed by its system of

level sets. The bold curve denotes the set of pairs (x, y) for which the

derivative DT (x, y) is used in Example 3.9.

Example 3.9. Let us substitute y = IT (x, a), a ∈ ]0, 1], in (5). For all x ≥ a,

we obtain T (x, y) = a,

DT (x, IT (x, a)) =
t′(x)

t′(a)
=

t′(x)

bt,a

, t′(x) = bt,a · DT (x, IT (x, a)) .

Figure 2 shows all pairs (x, y) = (x, IT (x, a)), x ∈ [a, 1], to which the latter

formula applies. The constant bt,a = t′(a) is irrelevant and can be replaced by any

finite negative number. Due to the requirement T (x, IT (x, a)) = min{x, a} = a,

the formula determines t′(x) only for x ∈ [a, 1].

For a = 0 and t′ (0) ∈ ]−∞, 0[ (which is possible only if T is nilpotent), we

obtain

t′(x) = bt,0 · DT (x, NT (x))

for all x ∈ ]0, 1]. (Recall that DT is the right partial derivative in this case.)

4. Reconstruction of multiplicative generators

The above ideas allow us to reconstruct the generators from partial deriv-

atives of t-norms. Preliminary results towards this direction appeared in the

previous paper [22]. We recall them here (Theorems 4.2 and 5.1) for comparison

with the new results and also as an easier introduction to the new methods.
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Proposition 4.1 ([22]). Let T be a strict t-norm. If T has a multiplicative

generator θ ∈ MT satisfying θ′ (0) ∈ ]0,∞[, then this generator is unique.

Proof. Any multiplicative generator of T is of the form σ = θp for some

p ∈ ]0,∞[ and satisfies

σ′ (0) = (θp)
′
(0) = p · θp−1 (0) · θ′ (0) =















∞ if p < 1,

θ′(0) if p = 1,

0 if p > 1. �

Example 3.4 leads to the following:

Theorem 4.2 ([22]). Let T be a strict t-norm and let θ be a multiplicative

generator of T such that θ′ (0) ∈ ]0,∞[. Then

θ (y) = DT (0, y) = lim
x→0+

T (x, y)

x
for all y ∈ [0, 1].

Proof. The proof has been described in Example 3.4. However, Theo-

rem 4.5 will give a more general result. �

By the symbol D1,2T (0, 0) we denote the mixed derivative of a strict t-norm

T at the point (0, 0):

D1,2T (0, 0) = lim
x→0+

(

1

x

(

lim
y→0+

T (x, y)

y

))

.

Proposition 4.3. Let T be a strict t-norm with a multiplicative generator

θ such that θ′(0) ∈ ]0,∞[. Then

D1,2T (0, 0) ∈ ]0,∞[ .

Proof.

D1,2T (0, 0) = lim
x→0+

(

1

x

(

lim
y→0+

T (x, y)

y

))

= lim
x→0+

θ(x)

x
= θ′ (0) ∈ ]0,∞[ . �

This means that, up to second order terms, T can be approximated by a non-

zero multiple of the product in a neighbourhood of (0, 0). As it has been shown,

the condition presented by Theorem 4.2 is sufficient for a reconstruction of a

multiplicative generator of a strict t-norm T . Proposition 4.3 poses a condition

required by Theorem 4.2. However, we shall show that it is not necessary.
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Lemma 4.4. Let f : [0, 1] → [0, 1] be an increasing bijection. Suppose that

the function g : [0, 1] → [0, 1],

g(y) = lim
x→0+

f(x · y)

f(x)
,

is defined for all y ∈ [0, 1]. Then g(0) = 0, g(1) = 1, and g(y1 · y2) = g(y1) · g(y2)

for all y1, y2 ∈ ]0, 1[. Thus g restricted to ]0, 1[ is either constant 0, constant 1, or

it attains the form g(y) = yp for some p ∈ ]0,∞[.

Proof. For y1, y2 ∈ ]0, 1[ we have

g(y1) · g(y2) = lim
x→0+

f(x · y1)

f(x)
· lim

x→0+

f(x · y2)

f(x)

= lim
x→0+

f(x · y1 · y2)

f(x · y2)
· lim
x→0+

f(x · y2)

f(x)
= lim

x→0+

f(x · y1 · y2)

f(x)
= g(y1 · y2).

(The second equality follows by the substitution x := x ·y2 in the first limit.) The

only nondecreasing multiplicative functions are positive powers, i.e. functions of

the type g(y) = yp for some p ∈ ]0,∞[, and the constants 0, resp. 1, as their limit

cases for p → ∞, resp. p → 0. �

Theorem 4.5. Let T be a strict t-norm. Suppose that the function ξ :

[0, 1] → [0, 1],

ξ(y) = lim
x→0+

T (x, y)

x
,

is defined for all y ∈ [0, 1]. Then ξ(0) = 0, ξ(1) = 1, and the restriction of ξ to

]0, 1[ is of one of the following forms:

(1) the constant 0,

(2) the constant 1,

(3) a bijection on ]0, 1[.

Moreover, in case (3) the function ξ is a multiplicative generator of T .

Proof. Since T is monotonic and upper bounded by min, the function ξ is

nondecreasing and attains values in the unit interval. As T is a strict t-norm, it

has a multiplicative generator; let us denote it by θ. Invoking the definition of ξ

and the invertibility of θ, we obtain

(ξ ◦ θ−1)(y) = ξ(θ−1(y)) = lim
x→0+

θ−1(θ(x) · y)

x
= lim

z→0+

θ−1(z · y)

θ−1(z)

for all y ∈ [0, 1]. Applying Lemma 4.4 to f = θ−1 and g = ξ ◦θ−1 and considering

that θ−1 is an increasing bijection, we obtain that ξ ◦ θ−1, as well as ξ, satisfies
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one of the cases (1)–(3). It remains to prove that in case (3) the mapping ξ is

a multiplicative generator of T . According to Lemma 4.4, there is a p ∈ ]0,∞[

such that ξ(θ−1(z)) = zp for all z ∈ [0, 1]. Using the substitution y := θ−1(z), we

obtain ξ(y) = (θ(y))p, thus ξ = θp is a multiplicative generator of T . �

Theorem 4.5 allows us to reconstruct a multiplicative generator of a strict t-

norm from its first partial derivatives along the “zero border” under the condition

that these derivatives give rise to a bijection. Notice that this theorem shows that,

up to a division by an infinitesimally small constant, the t-norm along the “zero

border” approximates the multiplicative generator.

The t-norms considered by Theorem 4.2 form a special subset of those con-

sidered by Theorem 4.5.

5. Reconstruction of additive generators

Additive generators can be derived from multiplicative generators (constructed

in the latter section). However, we shall present a different technique which nat-

urally leads to additive generators and uses partial derivatives at other points.

By an absolutely continuous function we mean a function which can be ex-

pressed as the integral of its derivative. (The Cantor function [32] is an example

of a function which is not absolutely continuous.) It is worth mentioning that

Theorem 4.5 does not need the assumption of absolute continuity whereas the

following methods do so. Nevertheless, in Section 6 we shall show that the follow-

ing methods are applicable to many t-norms which do not satisfy the assumptions

of Theorem 4.5.

Example 3.6 corresponds to the following result:

Theorem 5.1 ([22]). Let T be a continuous Archimedean t-norm and let t

be an additive generator of T such that t is absolutely continuous at ]0, 1] and

t′(1) = bt,1 ∈ ]−∞, 0[ . Suppose that DT (1, y) ∈ ]0,∞[ for almost all y ∈ ]0, 1].

Then

t′ (y) =
bt,1

DT (1, y)
(almost everywhere in ]0, 1])

and

t (y) =

1
∫

y

−bt,1

DT (1, u)
du (9)

for all y ∈ ]0, 1].

We omit the proof; a more general result will be proved in Theorem 5.5.
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Proposition 5.2. Let T be a continuous Archimedean t-norm. If there exists

an additive generator t ∈ AT such that t′ is continuous at 1 and t′(1) ∈ ]−∞, 0[ ,

then the first partial derivatives of T at the point (1, 1) are continuous.

Proof. From (7) we know that DT (1, 1) = 1. Thus the partial derivative of

T with respect to the first variable is continuous at (1, 1) if and only if

lim
x→1

−
,y→1

−

DT (x, y) = 1.

Expressing the t-norm using its additive generator we get

lim
x→1

−
,y→1

−

DT (x, y) = lim
x→1

−
,y→1

−

t′(x)

t′ (T (x, y))
= lim

y→1
−

t′(1)

t′(y)
= 1.

By commutativity, the same is obtained for the partial derivative of T with respect

to the second variable. �

Remark 5.3. A t-norm satisfying the assumptions of Proposition 5.2 is dif-

ferentiable at the point (1, 1). Up to the first order terms, it can be approximated

by the  Lukasiewicz t-norm in a neighbourhood of (1, 1).

We shall present a more general method using a combination of Examples 3.8

and 3.9. It is based on the following principle:

Lemma 5.4. Let x, y ∈ [0, 1], x ≥ y. Let T be a continuous Archimedean

t-norm. Suppose that T has an additive generator t with finite derivatives at x, y,

and T (x, y). (We take the right, resp. left, derivatives at 0, resp. 1.) Suppose

further that t′(y) 6= 0. Then

DT (x, IT (x, y)) =
t′(x)

t′ (y)
. (10)

Proof. The assumptions of the lemma ensure that (x, IT (x, y)) ∈ Supp T

and T (x, IT (x, y)) = y. Using Lemma 3.2 with f = t, g = t−1, z = t(x) + t (y),

we get

DT (x, IT (x, y)) =
t′(x)

t′ (T (x, IT (x, y)))
=

t′(x)

t′ (y)
.

�

Theorem 5.5. Let T be a continuous Archimedean t-norm. Suppose that T

has an absolutely continuous additive generator with a non-zero finite derivative

at some point a ∈ ]0, 1]. (We take the left derivative at 1.) Let DT be the
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a

Figure 3. Example of a nilpotent t-norm expressed by its system of

level sets. The bold curve denotes the set of pairs (x, y) for which the

derivative DT (x, y) is used in Theorem 5.5.

partial derivative of T with respect to the first variable in the support Supp T (cf.

Assumption 3.1). Suppose that DT (z, IT (z, a)) exists for almost all z ∈ [a, 1].

Suppose further that DT (a, IT (a, z)) exists and is in ]0,∞[ for almost all z ∈

[0, a[. Then T has an additive generator

t∗(x) =

∫ 1

x

v(z) dz,

where

v(z) =











DT (z, IT (z, a)) if z ≥ a,

1

DT (a, IT (a, z))
if z < a

(11)

for almost all z ∈ [0, 1]. Explicitly,

t∗(x) =







∫ 1

x
DT (z, IT (z, a)) dz if x ≥ a,

∫ a

x

1

DT (a, IT (a, z))
dz +

∫ 1

a
DT (z, IT (z, a)) dz if x < a.

(Figure 3 shows in which points of the domain the derivatives DT (z, IT (z, a))

and DT (a, IT (a, z)) are computed.)

Proof. If one additive generator of the t-norm T satisfies the assumptions

of Theorem 5.5 for some a ∈ [0, 1], all additive generators of T satisfy the as-

sumptions as well. Considering that all the additive generators of T differ only

by a real multiplicative constant, there exists an additive generator t of T such
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that t′(a) = −1. For z ≥ a, we use (10) with substitutions x = z, y = a. We

obtain the formulas

DT (z, IT (z, a)) =
t′(z)

t′(a)
= −t′(z), t′(z) = −DT (z, IT (z, a))

(almost everywhere) as in Example 3.9. For z < a, we use (10) with substitutions

x = a, y = z. Almost everywhere we have

DT (a, IT (a, z)) =
t′(a)

t′(z)
=

−1

t′(z)
, t′ (z) =

−1

DT (a, IT (a, z))
(12)

as in Example 3.8, thus

t′(z) =











−DT (z, IT (z, a)) if z ≥ a,

−1

DT (a, IT (a, z))
if z < a

(almost everywhere). Integrating this equality, we obtain an additive generator t

such that t = t∗. �

Corollary 5.6. As a limit case of Theorem 5.5, we obtain the formula de-

scribed in Theorem 5.1:

t′ (y) =
bt,1

DT (1, y)
.

Proof. Let a = 1. For z ∈ [0, 1[, we use (12) of Theorem 5.5, since z < a.

This leads to

DT (1, IT (1, z)) =
t′(1)

t′(z)
, t′(z) =

t′(1)

DT (1, IT (1, z))
=

bt,1

DT (1, z)

for almost all z ∈ [0, 1]. �

Theorem 5.5 allows us to reconstruct an additive generator when a non-ne-

gative constant a ∈ ]0, 1] is given. The following theorem shows that even a = 0

can be used. However, this works for nilpotent t-norms only.

Theorem 5.7. Let T be a nilpotent t-norm. Suppose that T has an ab-

solutely continuous additive generator with a non-zero finite (right) derivative at

the point 0. Let DT be the right partial derivative of T with respect to the first

variable in the support Supp T (cf. Assumption 3.1). Suppose that DT (z, NT (z))

exists for almost all z ∈ [0, 1]. Then T has an additive generator

t∗(x) =

∫ 1

x

DT (z, NT (z)) dz.
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Proof. If one additive generator of the t-norm T satisfies the assumptions

of Theorem 5.7, all additive generators of T satisfy the assumptions as well.

Considering that all the additive generators of T differ only by a positive multi-

plicative constant, there exists an additive generator t of T such that t′ (0) = −1.

According to Lemma 5.4:

DT (z, NT (z)) = DT (z, IT (z, 0)) =
t′(z)

t′ (0)
= −t′(z),

t′(z) = −DT (z, NT (z))

almost everywhere. Integrating this equality, we obtain an additive generator t

such that t = t∗. �

6. Example

In this section we demonstrate the presented methods. We refer to specific

families of t-norms whose definitions can be found in the monographs [5], [13]. All

the methods mentioned here can be applied, e.g., to the Frank family of t-norms.

Both the methods presented in the previous work [22] (Theorems 4.2 and 5.1

here) fail in some cases, while Theorem 5.5 is still applicable. This happens both

for strict t-norms (e.g., the Aczél–Alsina family) and for nilpotent t-norms (e.g.,

the Yager family). All these examples are demonstrated in detail in the thesis of

one of the authors [26].

In such examples, we obtain the same formula from two different expressions

for the additive generator in (11). This is due to the simple form of the additive

generators. The following example shows that this cannot be expected in general.

Example 6.1. Let T : [0, 1]2 → [0, 1] be defined as:

T (x, y) =







































































1
1
x

+ 1
y
− 1

if x ≤ 1/2 and y ≤ 1/2,

1
1
x

+ 4 (1 − y)2
if x ≤ 1/2 and y > 1/2,

1
1
y

+ 4(1 − x)2
if x > 1/2 and y ≤ 1/2,

1 −
√

(1 − x)2 + (1 − y)2 if (1 − x)2 + (1 − y)2 ≤ 1/4,

1

1 + 4(1 − x)2 + 4(1 − y)2
otherwise.

(13)
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(The conditions are not mutually exclusive, but when the ranges overlap, we get

the same results.) The operation T is a strict t-norm. Its partial derivative is

DT (x, y) =















































































1

x2
(

1
x

+ 1
y
− 1

)2 if x ≤ 1/2 and y ≤ 1/2,

1

x2
(

1
x

+ 4(1 − y)2
)2 if x ≤ 1/2 and y > 1/2,

8(1 − x)
(

1
y

+ 4(1 − x)2
)2 if x > 1/2 and y ≤ 1/2,

1 − x
√

(1 − x)2 + (1 − y)2
if (1 − x)

2
+ (1 − y)

2
≤ 1/4,

8(1 − x)

(1 + 4(1 − x)2 + 4(1 − y)2)2
otherwise.

(14)

It is continuous in the interior of its domain (the unit square).

Theorems 4.5 and 5.1 are not applicable to T . Let us now show the applica-

tion of Theorem 5.5 for a = 1/2. To optimize computation, we shall determine

the residuum only in those points which we need. Namely, for each z ∈ ]0, 1[, we

take in mind w = IT (z, 1/2) and q = IT (1/2, z). We distinguish several cases.

Case 1. Assume that z > 1/2. Then the fourth option in (13) applies and

1

2
= T

(

z, IT

(

z,
1

2

))

= T (z, w) = 1 −

√

(1 − z)
2

+ (1 − w)
2
.

From this we derive

IT

(

z,
1

2

)

= w = 1 −

√

1

4
− (1 − z)2.

In order to determine the first partial derivative in (z, w), the fourth option in

(14) applies and

DT

(

z, IT

(

z,
1

2

))

= DT (z, w) =
1 − z

√

(1 − z)2 + (1 − w)2

=
1 − z

√

(1 − z)
2

+ 1
4 − (1 − z)

2
= 2 (1 − z) .
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Case 2. Assume that 0 < z ≤ 1/2 and q ≤ 1/2. Then the first option in (13)

applies and

z = T

(

1

2
, IT

(

1

2
, z

))

= T

(

1

2
, q

)

=
1

2 + 1
q
− 1

=
1

1
q

+ 1
.

We derive

IT

(

1

2
, z

)

= q =
1

1
z
− 1

.

The first option in (14) gives the first partial derivative at (1/2, q):

DT

(

1

2
, IT

(

1

2
, z

))

= DT

(

1

2
, q

)

=
4

(

2 + 1
q
− 1

)2 =
4

(

1
q

+ 1
)2 = 4 z2.

Case 3. Assume finally that 0 < z ≤ 1/2 and q > 1/2. Then the second

option in (13) applies and

z = T

(

1

2
, IT

(

1

2
, z

))

= T

(

1

2
, q

)

=
1

2 + 4 (1 − q)
2 .

We derive

IT

(

1

2
, z

)

= q = 1 −

√

1

4 z
−

1

2
.

The first partial derivative at (1/2, q) is given by the second option in (14):

DT

(

1

2
, IT

(

1

2
, z

))

= DT

(

1

2
, q

)

=
4

(2 + 4 (1 − q)2)
2

=
4

(

2 + 4
(

1
4 z

− 1
2

))2 = 4 z2.

The latter two cases gave the same result, thus we do not need to distinguish

the conditions put on q. Now we apply Theorem 5.5 and obtain

v(z) =







1

4 z2
if z ≤ 1/2,

2 (1 − z) if z > 1/2.

Integration gives an additive generator

u(x) =







1

4 x
−

1

4
if x ≤ 1/2,

(1 − x)2 if x > 1/2.
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7. Discussion

We have found a method which allows to construct generators of contin-

uous Archimedean t-norms in a way much more straightforward than that of

the methods presented so far [3], [8], [17], [21], [28]. Instead of constructing a

dense set of values or computing limits of infinite sequences, we derive the val-

ues of generators from partial derivatives of t-norms (if they exist). Moreover,

we obtain explicit formulas for generators. The method is not applicable to all

continuous Archimedean t-norms, but it is general enough to cover all continuous

Archimedean t-norms which we found in the literature [5], [13], [18].

By duality, these results can also be extended to triangular conorms. Gener-

alization to other fuzzy logical operations (uninorms, triangular subnorms, etc.)

could be also considered. Here we concentrated only on continuous Archimedean

t-norms; further generalizations were left for future research.

The only possible difficulty in application of Theorem 5.5 (when its assump-

tions are satisfied) is the computation of the residuum. It requires to solve the

equation T (x, y) = z with respect to y. It may be impossible to express the exact

solution analytically. Such examples obviously exist, but were not encountered

in the literature on t-norms. Analogous problems apply also to the previous ap-

proaches. They require to solve the equation y
(n)
T = x with respect to y or even

with respect to n. This task also need not be solvable analytically.

It is desirable to find properties of a t-norm which ensure the applicability of

Theorem 5.5. So far, its assumptions refer to the existence of an additive generator

with certain properties (and then an explicit formula for this generator is found).

It would be useful to check in advance whether a given t-norm is of this type. We

derived necessary, but not sufficient conditions.

The results shed light on the open problem which has been studied intensively

in the last years [11], [20], [23], [24], [30], [31] and which has been stated, e.g., in

the list of open problems by Alsina, Frank, and Schweizer [4]:

Problem 7.1. Can the arithmetic mean (or any non-trivial convex combi-

nation) of two distinct t-norms be a t-norm?

We know that this can happen neither for nilpotent t-norms [27] nor for strict

t-norms with smoothly differentiable additive generators satisfying an additional

constraint [30]. For general strict t-norms, the question is still open. However,

a rather restrictive constraint can be given also for strict t-norms satisfying the

assumptions of Theorem 4.5 and Theorem 5.1 [25].

Finally, we remark that the presented methods could be also used as an

“associativity checker” of certain classes of binary operations. The procedure



190 Mirko Navara, Milan Petŕık and Peter Sarkoci

would be based on reconstructing a generator, constructing the binary operation,

and comparing it with the original operation. We postpone a full formulation of

this method for a future paper.
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[26] M. Petŕık, Properties of Fuzzy Logical Operations, PhD Thesis, CTU, Prague, 2009.
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