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Derivations in commutators with power central values in rings

By YI-QIU DU (Changchun) and YU WANG (Shanghai)

Abstract. Let R be a prime ring of characteristic different from 2 and I a nonzero

ideal of R, d a nonzero derivation of R such that [d(xk), xk]n is central, for all x ∈ I

where k, n are fixed positive integers. Then R satisfies s4, the standard identity in 4

variables.

1. Introduction

Throughout this article, R is always a prime ring with center Z. For any
x, y ∈ R, we set [x, y]1 = [x, y] = xy − yx and [x, y]n = [[x, y]n−1, y] where n > 1
is a positive integer. By s4 we denote the standard identity in 4 variables. By d

we denote a nonzero derivation of R.
A well-known result proved by Posner [14] states that R must be commu-

tative if [d(x), x] ∈ Z for all x ∈ R. In [12] Lee and Lee generalized Posner’s
result by showing that if char(R) 6= 2 and [d(x), x] ∈ Z for all x in a noncentral
Lie ideal of R, then R is commutative. As to the case when char(R) = 2, Lanski

obtained the same conclusion except when R satisfies s4 (see [9]). In [2] Carini

and De Filippis studied the situation when [d(x), x]n ∈ Z for all x in a noncom-
mutative Lie ideal of R with char(R) 6= 2. In [16] the second author and You
removed the assumption of char(R) 6= 2.
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In [6] Felzenszwalb proved that R is commutative if d(xk) = 0 for all
x ∈ R, where k is a fixed positive integer. A significant extension of [6] shows
that R is commutative if [d(xk), xk]n = 0 for all x in a nonzero left ideal of R (see
[11, Theorem 1]). In [15] Shiue discussed the situation when a[d(xk), xk]n = 0
for all x in an one-sided ideal of R, where 0 6= a ∈ R.

The purpose of this paper is to investigate the situation when [d(xk), xk]n ∈ Z

for all x in a nonzero ideal of R. The main result is the following

Theorem 1. Let R be a prime ring of characteristic different from 2 with

its center Z, I a nonzero ideal of R, and d a nonzero derivation of R such that

[d(xk), xk]n ∈ Z for all x ∈ I where k, n are fixed positive integers. Then R

satisfies s4, the standard identity in 4 variables.

The following counterexample shows that Theorem 1 is not valid on some
one-sided ideals.

Example 1. Let F be a field and R = Mm(F ), the ring of all m×m matrix
algebra over F with m > 2. Let eij be the matrix unit with 1 in (i, j)-entry and
zero elsewhere. It is easy to check that ([e11, x

k]2)n = 0 for all x ∈ Re22 (or,
e22R), where n > 1.

2. The proof of Theorem 1

By Q we denote the Martindale quotient ring of R and C the extended
centroid R. The definitions and properties of these objects can be found in [1,
Chapter 2].

We begin with the following easy result.

Lemma 1. Let R = M2(F ), the ring of all 2× 2 matrics over a field F with

char(F ) 6= 2. If a is a nonzero element of R such that ([a, xk]2)n = 0 for all x ∈ R,

then a ∈ F · I2.

Proof. Let a =
∑

i,j aijeij with aij ∈ F . We first claim that a is a diagonal
matrix. By assumption we get

0 = ([a, e11]2)2n = (a12a21)ne11 + (a12a21)ne22,

thus a12a21 = 0. Without loss of generality we may assume that a21 = 0. Let
ϕ ∈ AutF (M2(F )) such that ϕ(x) = (1 + e21)x(1− e21). In particular, we have

ϕ(a) = (a11 − a12)e11 + a12e12 + (a11 − a12 − a22)e21 + (a12 + a22)e22.
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Since ([ϕ(a), xk]2)n = 0 for all x ∈ R, as above we can get that a12(a11 − a12 −
a22) = 0. That is, either a12 = 0 or a11 − a12 − a22 = 0. If a11 − a12 − a22 = 0,
then

[a, e11 + e21]2 = −a12e11 + a12e12 − 3a12e21 + a12e22.

By assumption we get

0 = ([a, e11 + e21]2)2n = (−2a2
12)

ne11 + (−2a2
12)

ne22

and so a12 = 0, this implies that a is a diagonal matrix.
Write a =

∑2
i=1 aiieii, we see as above that ϕ(a) =

∑2
i=1 aiieii+(a11−a22)e21

is also a diagonal matrix. Therefore a11 = a22 and so a ∈ F · I2 as desired. ¤

If ([a, xk]2)n ∈ F · I2 for all x ∈ M2(F ), one can not expect to obtain that
a ∈ F · I2. For example, it is easy to check that ([e11, x]2)2 ∈ F · I2 for all
x ∈ M2(F ).

Lemma 2. Let R = Mm(F ), the ring of all m ×m matrices over a field F

with char(F ) 6= 2. If a is a noncentral element of R such that ([a, xk]2)n ∈ F · Im

for all x ∈ R, then m ≤ 2.

Proof. Suppose on the contrary that m > 2. Let a =
∑

aijeij with aij ∈ F .
Write a =

(
a11 A
B C

)
, where A = (a12, . . . , a1m), B = (a21, . . . , am1)T , and C = (aij)

with 2 ≤ i, j ≤ m. Since [a, e11]2 = ( 0 A
B 0 ), by assumption we have

([a, e11]2)2n =

(
(AB)n 0

0 (BA)n

)
∈ F · Im.

Set α = AB ∈ F . Then
(

αn 0
0 αn−1BA

) ∈ F · Im. If α 6= 0, then

(
α 0
0 BA

)
∈ F · Im.

Thus, α = a21a12 = a31a13 and a21a13 = 0. Thus α = 0, a contradiction. Hence
AB = 0.

Let ϕij be an inner automorphism of R given by ϕij(x) = (1 + eij)x(1− eij)
for all x ∈ R. Write 1 + e21 =

(
1 0

E2 Im−1

)
, where E2 = (1, 0, . . . , 0)T and Im−1 is

the (m− 1)-identity matrix. So

ϕ21(a) =

(
a11 − a12 A

a11E2 − a12E2 + B − CE2 E2A + C

)
.
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Since ([ϕ21(a), xk]2)n ∈ F · Im for all x ∈ R, as above we have

A(a11E2 − a12E2 + B + CE2) = 0.

Recalling AB = 0 we get from the last relation that a11a12 − a2
12 −ACE2 = 0.

Since [a, e11 + e21]2 =
(−a12 A

D E2A

)
, where D = B + CE2 − (a11 + 2a12)E2,

we get

([a, e11 + e21]2)2 =

(
a2
12 + AD 0

−a12D + E2AD DA + a12E2A

)
.

Making use of both AB = 0 and a11a12 − a2
12 − ACE2 = 0 we get AD = −3a2

12.
Thus

([a, e11 + e21]2)2 =

(
−2a2

12 0
−a12D − 3a2

12E2 DA + a12E2A

)
,

Therefore

([a, e11 + e21]2)2n =

(
(−2a2

12)
n 0

U (DA + a12E2A)n

)
∈ F · Im

where U is a (m − 1) × 1 matrix. Since rank((DA + a12E2A)n) ≤rank(A) ≤ 1
and m > 2, we infer that (−2a2

12)
n = 0 and so a12 = 0.

Now we claim that a is a diagonal matrix. Since ([ϕj2(a), xk]2)n ∈ F · Im for
all x ∈ R, where j > 2, as above we have that −a1j = ϕj1(a)12 = 0. So a1j = 0
for j > 1. For 1 < j < t ≤ m, as above we get from ([ϕ1j(a), xk]2)n ∈ F · Im for
all x ∈ R, that ajt = ϕ1j(a)1t = 0. This shows that a must be lower triangular.
Since the transpose of a satisfies the same condition, a is indeed diagonal.

We have showed that a =
∑m

i=1 aiieii with aii ∈ F . For 1 ≤ i 6= j ≤ m,
as above we get that ϕij(a) is a diagonal matrix. On the other hand ϕ(a) =
a + (ajj − aii)eij , we infer that ajj = aii and so a is central in R, which is a
contradiction. The proof is thereby complete. ¤

The following result is a special case of Theorem 1, which is of independent
interest.

Lemma 3. Let R be a prime ring with char(R) 6= 2 and I a nonzero ideal

of R, d a nonzero derivation of R such that [d(xk), xk]n = 0 for all x ∈ I where

k, n are fixed positive integers. Then R is commutative.

Proof. By assumption we see that I satisfies the differential identity
[

k−1∑

i=0

xid(x)xk−i−1, xk

]n

= 0.



Derivations in commutators with power central values 197

If d is not Q-inner, by Kharchenko’s theorem [7], I satisfies the polynomial
identity

[ ∑k−1
i=0 xiyxk−i−1, xk

]n = 0 and so for R too. It is well known that there
exists a field F such that R and Fm satisfy the same polynomial identities [8,
p. 57 and p. 89]. Suppose that m ≥ 2. If we choose x = e11, y = e12 + e21, then
we get a contradiction as follows

0 =

[
k−1∑

i=0

ei
11(e12 + e21)ek−i−1

11 , e11

]2n

= [e12 + e21, e11]2n = (−1)n(e11 + e22) 6= 0.

Thus m = 1 and so R is commutative.
Assume next that d is Q-inner, that is, d(x) = [a, x] for all x ∈ R, where

a is a noncentral element in Q. By assumption we get ([a, xk]2)n = 0 for all
x ∈ I. By a theorem of Chuang [4, Theorem 2], ([a, xk]2)n = 0 for all x ∈ Q.
In case C is infinite, we have ([a, xk]2)n = 0 for all x ∈ Q ⊗C C̄, where C̄ is
the algebraic closure of C. Since both Q and Q ⊗C C̄ are centrally closed [5,
Theorems 2.5 and 3.5], we may replace R by Q or Q⊗ C̄ according as C is finite
or infinite. Thus we may assume that R is centrally closed over C which is either
finite or algebraically closed and ([a, xk]2)n = 0 for all x ∈ R. By Martindale’s
theorem [13], R is a primitive ring and so isomorphic to a dense subring of linear
transformations on a vector space V over C.

If V is infinite dimensional over C, for any given v ∈ V we claim that v and
va are C-dependent. Suppose on the contrary that v and va are C-independent.
We choose v1, . . . , v2k−1 such that v, va, v1, . . . , v2k−1 are C-independent. By the
density of R on CV , there exists x ∈ R such that vx = 0, vax = v1, vix = vi+1,
v2k−1x = v, where i = 1, . . . , 2k − 2. Thus

v[a, xk]2 = vax2k = v1x
2k−1 = · · · = v2k−1x = v

and so 0 = v([a, xk]2)n = v, a contradiction. Therefore v and va are C-dependent
for any v ∈ V . A standard argument shows that a ∈ C, a contradiction. So V

must be of finite dimension. That is, R ∼= Ms(C) for some s. In view of both
Lemma 1 and Lemma 2 we get that a ∈ C, a contradiction. The proof is now
complete. ¤

The proof of Theorem 1. Suppose on the contrary that dimCRC > 4.
By assumption we have [d(xk), xk]n ∈ Z for all x ∈ I, that is, I satisfies the
following differential identity

[[
k−1∑

i=0

xid(x)xk−i−1, xk

]n

, y

]
= 0. (1)
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If [d(xk), xk]n = 0 for all x ∈ I, the result follows from Lemma 3. Otherwise, there
exists r ∈ I such that [d(rk), rk]n 6= 0. Thus I satisfies the central differential
identity [d(xk), xk]n. By [3, Theorem 1] we get that R is a PI-prime ring and so
is Q.

If d is not Q-inner, applying Kharchenko’s theorem to (1) we get that I

satisfies the polynomial identity
[[ ∑k−1

i=0 xiyxk−i−1, xk
]n

, r
]

= 0 and so for R

too. It is well known that there exists a field F such that R and Fm satisfy the
same polynomial identities. Thus

[ ∑k−1
i=0 xiyxk−i−1, xk

]n ∈ F · Im. Note that
m > 2. If we choose x = e11, y = e12 + e21, then

[
k−1∑

i=0

ei
11(e12 + e21)ek−i−1

11 , ek
11

]2n

= (−1)n(e11 + e22) ∈ F · Im.

This is a contradiction.
We next assume that d is an Q-inner derivation induced by a noncentral

element b ∈ Q. It follows from (1) that
[[

k−1∑

i=0

xi[b, x]xk−i−1, xk

]n

, y

]
= 0 for all x, y ∈ I. (2)

In view of [4, Theorem 2] we have
[[

k−1∑

i=0

xi[b, x]xk−i−1, xk

]n

, y

]
= 0 for all x, y ∈ Q. (3)

Since there exists r ∈ R such that [d(rk), rk]n 6= 0, we see that (3) is a non
trivial generalized polynomial identity on Q. By Martindale’s theorem [13]
Q is primitive ring. Since Q is a PI-ring, by the famous Kaplanksy’s theorem
[1, Theorem 6.1.10] we see that Q is a finite dimensional central simple algebra
over C. It follows from [10, Lemma 2] that there exists a suitable field F of
char(F ) 6= 2 such that Q ⊆ Mm(F ) and moreover Mm(F ) satisfies the same
generalized polynomial identity (3). Then Lemma 2 tells us that m ≤ 2, which is
a contradiction. The proof is thereby complete. ¤

Acknowledgement. The authors would like to express their sincere thanks
to the referee for mending a gap in the proof of Lemma 2 and pointing out several
misprints.
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