Fibonacci numbers which are sums of three factorials

By MARK BOLLMAN (Albion), SANTOS HERNÁNDEZ HERNÁNDEZ (Zacatecas) and FLORIAN LUCA (Morelia)

Abstract

In this paper, we prove that $F_{7}=13=1!+3!+3$! is the largest Fibonacci number expressible as a sum of three factorials.

1. Introduction

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and $F_{n+2}=$ $F_{n+1}+F_{n}$ for all $n \geq 0$. In [5], it is shown that if $k \geq 1$ is any fixed positive integer, then the Diophantine equation

$$
\begin{equation*}
F_{n}=m_{1}!+m_{2}!+\cdots+m_{k}! \tag{1}
\end{equation*}
$$

has at most finitely many positive integer solutions (n, m_{1}, \ldots, m_{k}) which are all effectively computable. When $k=1$, it is an easy consequence of the Primitive Divisor theorem [3] that the largest such solution is $F_{3}=2$! (see [6] and [8] for more general variants of this Diophantine equation). When $k=2$, the largest such solution is $F_{12}=4!+5!$ (see [5]). Some variants of this problem appear in [1], where for the case $k=3$ it was shown that $n<\mathrm{e}^{53}$. Here, we find all solutions of equation (1) when $k=3$.

Theorem 1. The only solutions of the Diophantine equation

$$
\begin{equation*}
F_{n}=m_{1}!+m_{2}!+m_{3}!, \quad 1 \leq m_{1} \leq m_{2} \leq m_{3} \tag{2}
\end{equation*}
$$

Mathematics Subject Classification: 11D61.
Key words and phrases: Fibonacci numbers, primitive divisors, factorials, applications of linear forms in logarithms.
F. L. was supported in part by Grants SEP-CONACyT 79685 and PAPIIT 100508.
are

$$
F_{4}=1!+1!+1!, \quad F_{5}=1!+2!+2!, \quad F_{6}=1!+1!+3!, \quad F_{7}=1!+3!+3!.
$$

We point out that with the rôles of the Fibonacci numbers and the factorials interchanged, it was shown in [7] that

$$
6!=F_{15}+F_{11}+F_{9}=F_{15}+F_{10}+F_{10}
$$

give the largest positive integer solutions $\left(n, m_{1}, m_{2}, m_{3}\right)$ of the Diophantine equation

$$
n!=F_{m_{1}}+F_{m_{2}}+F_{m_{3}} .
$$

Our argument is based on elementary properties of the Fibonacci sequence combined with some basic facts about biquadratic fields and with a 2-adic linear form in two logarithms due to Bugeaud and Laurent [2]. For technical reasons, we shall split the argument into two parts, according to whether $m_{1}=1,2$, or $m_{1} \geq 3$, where the second case is computationally harder. We start with the 2-adic argument.

Before proceeding to the proofs, we recall a few known facts about the Fibonacci sequence. Binet's formula says that

$$
\begin{equation*}
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{3}
\end{equation*}
$$

holds for all $n \geq 0$, where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$ are the two roots of the characteristic equation $x^{2}-x-1=0$ of the Fibonacci sequence. The sequence of Lucas numbers $\left(L_{n}\right)_{n \geq 0}$ starts with $L_{0}=2, L_{1}=1$, and obeys the same recurrence relation $L_{n+2}=L_{n+1}+L_{n}$ for all $n \geq 0$ as the Fibonacci sequence. Its Binet formula is

$$
\begin{equation*}
L_{n}=\alpha^{n}+\beta^{n} \quad \text { for all } n \geq 0 \tag{4}
\end{equation*}
$$

There are many formulas linking the Fibonacci and Lucas numbers such as $F_{2 n}=$ $F_{n} L_{n}$ and $L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}$ valid for all $n \geq 0$. We shall freely use such formulas throughout the paper whenever needed.

2. A linear form in logarithms to the rescue

The following lemma will be useful in what follows. For a prime ideal π in a number field \mathbb{L} and an algebraic integer m in \mathbb{L} we write $\nu_{\pi}(m)$ for the exact
order of π in the factorization of the principal fractional ideal generated by m in \mathbb{L}. When π is a prime integer, we understand that the underlying field \mathbb{L} is the field \mathbb{Q} of rational numbers.

Lemma 1. Let N be a positive integer not of the form F_{m} for some positive integer m. Then for all positive integers $n \geq 3$ one has

$$
\begin{equation*}
\nu_{2}\left(F_{n}-N\right)<1730 \log \left(6 N^{2}\right) \max \{10, \log n\}^{2} \tag{5}
\end{equation*}
$$

Proof. We use formula (3). Since $\beta=-\alpha^{-1}$, it follows that $\beta^{n}=\varepsilon \alpha^{-n}$, where $\varepsilon=(-1)^{n} \in\{ \pm 1\}$. Then
$F_{n}-N=\frac{\alpha^{n}-\varepsilon \alpha^{-n}}{\sqrt{5}}-N=\frac{\alpha^{-n}}{\sqrt{5}}\left(\left(\alpha^{n}\right)^{2}-\sqrt{5} N \alpha^{n}-\varepsilon\right)=\frac{\alpha^{-n}}{\sqrt{5}}\left(\alpha^{n}-z_{1}\right)\left(\alpha^{n}-z_{2}\right)$,
where

$$
z_{1,2}=\frac{\sqrt{5} N \pm \sqrt{\Delta}}{2} \quad \text { with } \quad \Delta=5 N^{2}+4 \varepsilon
$$

Write $\Delta=d u^{2}$, where d is squarefree. Note that $d>1$, since if not then $5 N^{2}+4 \varepsilon=u^{2}$, therefore $u^{2}-5 N^{2}= \pm 4$. However, it is well-known that all positive integer solutions (u, N) of the above Diophantine equation are of the form $(u, N)=\left(L_{m}, F_{m}\right)$ for some positive integer m, and by hypothesis N is a positive integer which is not a Fibonacci number.

Let $\mathbb{K}_{1}=\mathbb{Q}[\sqrt{5}], \mathbb{K}_{2}=\mathbb{Q}[\sqrt{d}], \mathbb{K}_{3}=\mathbb{Q}[\sqrt{5 d}]$ and $\mathbb{L}=\mathbb{K}_{1} \mathbb{K}_{2}$. Note that $\mathbb{L}=\mathbb{Q}\left[z_{1}, z_{2}\right]=\mathbb{Q}[\sqrt{5}, \sqrt{d}]$. Since $d>1$ is coprime to 5 (because $\Delta \equiv \pm 4$ $(\bmod 5))$, it follows that \mathbb{L} is of degree 4 . The prime 2 is inert in \mathbb{K}_{1}, because the discriminant of \mathbb{K}_{1} is 5 (so, congruent to $5(\bmod 8)$), but it cannot be inert in \mathbb{L} since when d is odd, one of the numbers d or $5 d$ is congruent to $\pm 1(\bmod 8)$. Thus, in \mathbb{L}, we either have $2=\pi_{1} \pi_{2}$, where π_{1} and π_{2} are distinct primes, or $2=\pi^{2}$, according to whether d is odd or even, respectively.

Now we let π be any prime ideal dividing 2 in \mathbb{L}. As we have seen, it has $N_{\mathbb{L} / \mathbb{Q}}(\pi)=4=2^{f}$ (so, $f=2$), and if $\pi^{e} \| 2$, then $e \in\{1,2\}$. Then

$$
\begin{equation*}
\nu_{2}\left(F_{n}-N\right)=\frac{\nu_{\pi}\left(F_{n}-N\right)}{e}=\frac{1}{e}\left(\nu_{\pi}\left(\alpha^{n}-z_{1}\right)+\nu_{\pi}\left(\alpha^{n}-z_{2}\right)\right) \tag{6}
\end{equation*}
$$

Next, let a be maximal such that $\pi^{a} \mid \operatorname{gcd}_{\mathbb{L}}\left(\alpha^{n}-z_{1}, \alpha^{n}-z_{2}\right)$. Then

$$
\begin{equation*}
\pi^{a} \mid\left(z_{1}-z_{2}\right)=\sqrt{\Delta}, \quad \text { so } \quad \pi^{2 a} \mid \Delta \tag{7}
\end{equation*}
$$

Observe that if N is odd, then so is Δ. If $4 \mid N$, then $4 \| \Delta$. Finally, if $N=2 N_{0}$, where N_{0} is odd, then

$$
\Delta=4\left(5 N_{0}^{2} \pm 1\right)
$$

and $5 N_{0}^{2} \pm 1 \equiv 4,6(\bmod 8)$. Hence, in all cases we have that $\nu_{2}(\Delta) \leq 4$. Now, write $\Delta=2^{\nu_{2}(\Delta)} \ell=\pi^{e \nu_{2}(\Delta)} \gamma$, where γ is an ideal in \mathbb{L} coprime to π. Then the divisibility relation (7) implies that $2 a \leq e \nu_{2}(\Delta)$, yielding $2 a \leq 4 e \leq 8$, therefore $a \leq 4$.

Hence, the above arguments show that

$$
\begin{equation*}
\nu_{2}\left(F_{n}-N\right) \leq \frac{1}{e}\left(\max \left\{\nu_{\pi}\left(\alpha^{n}-z_{1}\right), \nu_{\pi}\left(\alpha^{n}-z_{2}\right)\right\}+4\right) . \tag{8}
\end{equation*}
$$

Now let $i=1,2$, and let us find an upper bound on

$$
\nu_{\pi}\left(\alpha^{n}-z_{i}\right)
$$

For this, we apply Corollary 1 on Page 315 in [2]. We take $\alpha_{1}=\alpha, \alpha_{2}=z_{i}, b_{1}=n$, $b_{2}=1, p=2$. To see that α_{1} and α_{2} are multiplicatively independent, assume that this is not so. Then $\alpha_{1}^{u}=\alpha_{2}^{v}$ holds for some integers u and v not both zero. We may assume (by squaring the above relation if necessary), that u and v are both even. But note that $\alpha_{2}^{v}=\left(z_{i}^{2}\right)^{v / 2}$ belongs to $\mathbb{Q}[\sqrt{5 d}]$, while $\alpha_{1}^{u} \in \mathbb{Q}[\sqrt{5}]$. Since they are both units (the inverse of z_{1} is $-\varepsilon z_{2}$), it follows that α_{1}^{u} is a unit which belongs to both $\mathbb{Q}[\sqrt{5}]$ and $\mathbb{Q}[\sqrt{5 d}]$ and since it is positive, we get that $\alpha_{1}^{u}=1$. Hence, $\alpha_{1}^{u}=\alpha_{2}^{v}=1$, leading to $u=v=0$, which is false. With the notations from [2], we have that we can take $f=2, g \leq p^{f}-1=3$, $D=[\mathbb{L}: \mathbb{Q}] / f=2$, and A_{1} and A_{2} to be two positive real numbers such that

$$
\log A_{i} \geq \max \left\{h\left(\alpha_{i}\right), \frac{\log 2}{2}\right\}, \quad \text { for both } i=1,2
$$

Here, $h(\bullet)$ is the logarithmic height. Note that

$$
h\left(\alpha_{1}\right)=h(\alpha)=\frac{\log ((1+\sqrt{5}) / 2)}{2}
$$

so we can take $\log A_{1}=(\log 2) / 2$. Furthermore, note that the conjugates of z_{i} are the four numbers

$$
\frac{ \pm \sqrt{5} N \pm \sqrt{5 N^{2}+4 \varepsilon}}{2}
$$

of which two are of absolute values

$$
\left|\frac{\sqrt{5} N-\sqrt{5 N^{2}+4 \varepsilon}}{2}\right|=\frac{4}{2\left(\sqrt{5} N+\sqrt{5 N^{2}+4 \varepsilon}\right)}<\frac{2}{\sqrt{5} N}<1
$$

while the other two are of absolute values

$$
\left|\frac{\sqrt{5} N+\sqrt{5 N^{2}+4 \varepsilon}}{2}\right|<\sqrt{5 N^{2}+4}<\sqrt{6 N^{2}}
$$

so we can take

$$
\log A_{2}=\frac{2 \log \left(\sqrt{6 N^{2}}\right)}{4}=\frac{\log \left(6 N^{2}\right)}{4}
$$

Finally, we take

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}=\frac{2 n}{\log \left(6 N^{2}\right)}+\frac{1}{\log 2}
$$

Then, Corollary 1 in [2] shows that

$$
\begin{aligned}
\left(\frac{f}{4}\right) \nu_{\pi}\left(\alpha^{n}-z_{i}\right) & \leq \frac{24 \cdot 2 \cdot 3 \cdot 2^{4}}{(\log 2)^{4}} \max \left\{10, \log b^{\prime}+\log \log 2+0.4\right\}^{2} \log A_{1} \log A_{2} \\
& \leq \frac{3^{2} \cdot 2^{5}}{(\log 2)^{3}} \log \left(6 N^{2}\right) \max \left\{10, \log b^{\prime}+0.034\right\}^{2}
\end{aligned}
$$

The factor $f / 4$ above, not present in [2], arises for us because in the statements of [2] all valuations are normalized, so in particular the upper bounds from there apply to the normalized valuation $(f / 4) \nu_{\pi}(\bullet)$. Note that

$$
\begin{aligned}
\log b^{\prime}+0.034 & =\log \left(\frac{2 \mathrm{e}^{0.034} n}{\log \left(6 N^{2}\right)}+\frac{\mathrm{e}^{0.034}}{\log 2}\right)<\log \left(\frac{2.1 n}{\log \left(6 N^{2}\right)}+1.5\right) \\
& <\log \left(\frac{2.1 n}{4.5}+1.5\right)<\log n
\end{aligned}
$$

where the above inequalities hold because $N \geq 4$ (N is not a Fibonacci number), and $n \geq 3$. Since $3^{2} \cdot 2^{5} /(\log 2)^{3}<864.9$ and $f=2$, we get that

$$
\frac{\nu_{\pi}\left(\alpha^{n}-z_{i}\right)}{2}<864.9 \log \left(6 N^{2}\right) \max \{10, \log n\}^{2}
$$

The above inequality together with inequality (8) gives us that
$\nu_{2}\left(F_{n}-N\right) \leq \max \left\{\nu_{\pi}\left(\alpha^{n}-z_{1}\right), \nu_{\pi}\left(\alpha^{n}-z_{2}\right)\right\}+4<1730 \log \left(6 N^{2}\right) \max \{10, \log n\}^{2}$, which is what we wanted.

From now on, we distinguish two cases according to whether $m_{1}=1,2$, or $m_{1} \geq 3$. We first ran a short calculation with Mathematica which shows that if $n \leq 100$, then the only solutions are the ones appearing in the statement of Theorem 1. From now on, we assume that $n>100$ and our goal is to prove that there are no such solutions.

We continue with some elementary considerations about the situation when $m_{1} \in\{3,4\}$.

3. The case $m_{1} \in\{3,4\}$

Assume first that $m_{1} \geq 3$. Then $6 \mid F_{n}$ and in particular $12 \mid n$, therefore $144=F_{12} \mid F_{n}$. This shows, for example, that $m_{1}=3$ and $m_{2} \geq 4$ is impossible, for then 8 divides both F_{n} and $m_{2}!+m_{3}$! but not m_{1} !. Similarly, if $m_{1}=m_{2}=3$, then either $m_{3} \geq 4$, which is impossible since then 8 divides both F_{n} and m_{3} ! but not $m_{1}!+m_{2}!=12$, while if $m_{1}=m_{2}=m_{3}=3$, then the right hand side of equation (2) is 18 which is not a Fibonacci number.

Thus, $m_{1} \geq 4$. The case $m_{1}=4$ and $m_{2} \geq 6$ is impossible since then 9 divides both F_{n} and $m_{2}!+m_{3}!$ but not $m_{1}!=24$. When $m_{1}=m_{2}=4$, then the case $m_{3} \geq 6$ leads again to a contradiction modulo 9 , while when $m_{3}=4,5$, one gets that the right hand side of equation (2) is either 72 or 168 and none of these is a Fibonacci number. When $m_{1}=4, m_{2}=5$, then equation (2) becomes

$$
\begin{equation*}
F_{n}-F_{12}=m_{3}! \tag{9}
\end{equation*}
$$

Since $12 \mid n$, one checks that the left hand side of equation (9) above can be factored as $F_{(n+12) / 2} L_{(n-12) / 2}$. Since $n>100>12$, we have that $(n+12) / 2>12$, therefore the number $F_{(n+12) / 2}$ has a primitive prime factor p. Recall that a primitive prime factor of F_{m} (or L_{m}) is a prime divisor of F_{m} (or L_{m}) which does not divide F_{ℓ} (or L_{ℓ}) for all $1 \leq \ell<m$. For technical reasons, such a prime is taken to be different from 5 . Whenever it exists, it has the property that it is congruent to ± 1 modulo m. The fact that it exists for all $m>12$ is a result of Carmichael [3] of 1913. Returning to our problem, we get that $F_{(n+12) / 2}$ has a prime factor p such that $p \equiv \pm 1(\bmod (n+12) / 2)$. In particular, $p \geq(n+12) / 2-1=(n+10) / 2$. Since $p \mid m_{3}$!, we get that $m_{3} \geq(n+10) / 2$. Thus,

$$
\begin{aligned}
\alpha^{n}>F_{n}> & F_{n}-F_{12}=F_{(n-12) / 2} L_{(n+12) / 2}=m_{3}!\geq p!\geq\left(\frac{p}{\mathrm{e}}\right)^{p} \\
& >\left(\frac{n+10}{2 \mathrm{e}}\right)^{(n+10) / 2}>\left(\frac{n+10}{2 \mathrm{e}}\right)^{n / 2}
\end{aligned}
$$

In the above calculation we used the well-known inequality $m!>(m / e)^{m}$, which holds for all $m \geq 1$. We thus get that

$$
n+10<2 \mathrm{e} \alpha^{2}<15
$$

which is false because $n>100$. Thus, we have just showed that if $m_{1} \geq 3$, then $m_{1} \geq 5$. In particular, $5 \mid F_{n}$, therefore $5 \mid n$. Hence, $60 \mid n$.

4. A bound on n when $m_{1} \geq 3$

Up to now, we have seen that $m_{1} \geq 5$ and that $60 \mid n$. We show that $n<\mathrm{e}^{10}$. Assume, on the contrary, that $n>\mathrm{e}^{10}$.

Let $s=\nu_{2}\left(m_{1}!\right)$. It is known that

$$
\begin{equation*}
s=\left\lfloor\frac{m_{1}}{2}\right\rfloor+\left\lfloor\frac{m_{1}}{4}\right\rfloor+\cdots \geq \frac{m_{1}}{2} \tag{10}
\end{equation*}
$$

since $m_{1} \geq 5$. Since $s \geq 3$ and $2^{s} \mid F_{n}$, we get that $3 \cdot 2^{s-2} \mid n$. Since also $5 \mid n$, we get that

$$
2^{s-2} \leq \frac{n}{15}
$$

therefore

$$
\begin{equation*}
s \leq \frac{\log (4 n / 15)}{\log 2}<\frac{\log n}{\log 2} \tag{11}
\end{equation*}
$$

Comparing estimates (10) and (11), we get that

$$
\begin{equation*}
m_{1} \leq \frac{2 \log n}{\log 2} \tag{12}
\end{equation*}
$$

Next we bound m_{2}. Let $N=m_{1}$!. The largest Fibonacci number which is a factorial is $2!=F_{3}$ (see [6]). Thus, N is not a Fibonacci number. Since $m_{1} \geq 5$, we have

$$
6 N^{2}=6\left(m_{1}!\right)^{2}<\left(3 m_{1}!\right)^{2}=\left(3 \cdot 2 \cdot 3 \cdots m_{1}\right)^{2}<\left(\frac{3 \cdot 2 \cdot 3 \cdot 4}{5^{4}}\right)^{2} m_{1}^{2 m_{1}}<m_{1}^{2 m_{1}}
$$

(because $72 / 625<1$), we get that

$$
\log \left(6 N^{2}\right)<2 m_{1} \log m_{1}<\frac{4}{\log 2} \log n \log \left(\frac{2 \log n}{\log 2}\right)
$$

Lemma 1 (note that $n>\mathrm{e}^{10}$, so $\log n>10$) now shows that

$$
\nu_{2}\left(F_{n}-m_{1}!\right)<\frac{1730 \cdot 4}{\log 2}(\log n)^{3} \log \left(\frac{2 \log n}{\log 2}\right)<10^{4}(\log n)^{3} \log \left(\frac{2 \log n}{\log 2}\right)
$$

Since $\nu_{2}\left(F_{n}-m_{1}!\right)=\nu_{2}\left(m_{2}!\right) \geq m_{2} / 2$, we get that

$$
m_{2} \leq 2 \cdot 10^{4}(\log n)^{3} \log \left(\frac{2 \log n}{\log 2}\right)
$$

Next take $N=m_{1}!+m_{2}!\leq 2 m_{2}$!. The largest Fibonacci number which is a sum of two factorials is $F_{12}=4!+5!$ (see [5]). Since $m_{2} \geq m_{1} \geq 5$, it follows that N is not a Fibonacci number. Furthermore, again as in the previous case,

$$
\begin{gathered}
6 N^{2} \leq 24\left(m_{2}!\right)^{2}<\left(5 m_{2}!\right)^{2}=\left(5 \cdot 2 \cdot 3 \cdots m_{2}\right)^{2} \\
<\left(\frac{2 \cdot 3 \cdot 4}{5^{3}}\right)^{2} m_{2}^{2 m_{2}}<m_{2}^{2 m_{2}}
\end{gathered}
$$

(because $24 / 125<1$), therefore

$$
\log \left(6 N^{2}\right)<2 m_{2} \log m_{2}<4 \cdot 10^{4}(\log n)^{3} \log \left(\frac{2 \log n}{\log 2}\right) \log m_{2}
$$

Let us next observe that $\log m_{2}<8 \log \log n+1$. Indeed, to see why this is so observe that since $\log n>10$, we have that $n \geq 5$ and for such positive integers n we know that $2^{n}>n^{2}$. Thus, it follows that

$$
\log \left(\frac{2 \log n}{\log 2}\right)<\log n
$$

so, in particular,

$$
m_{2}<2 \cdot 10^{4}(\log n)^{4}<2(\log n)^{8}
$$

Hence, indeed

$$
\log m_{2}<8 \log \log n+1
$$

Thus,

$$
\begin{aligned}
\log \left(6 N^{2}\right) & <4 \cdot 10^{4}(\log n)^{3} \log \left(\frac{2 \log n}{\log 2}\right)(8 \log \log n+1) \\
& <32 \cdot 10^{4}(\log n)^{3}(\log \log n+1.1)^{2},
\end{aligned}
$$

where we used the fact that $\log (2 / \log 2)<1.1$. Now Lemma 1 shows that

$$
\begin{gathered}
\nu_{2}\left(F_{n}-m_{1}!-m_{2}!\right) \leq 1730 \cdot 32 \cdot 10^{4} \cdot(\log n)^{5} \cdot(\log \log n+1.1)^{2} \\
<6 \cdot 10^{8}(\log n)^{5}(\log \log n+1.1)^{2} .
\end{gathered}
$$

Clearly,

$$
\nu_{2}\left(F_{n}-m_{1}!-m_{2}!\right)=\nu_{2}\left(m_{3}!\right)=m_{3}-\sigma_{2}\left(m_{3}\right) \geq m_{3}-\frac{\log \left(m_{3}+1\right)}{\log 2}
$$

where we used $\sigma_{2}(m)$ for the sum of the binary digits of m (see, for example, Lemma 2.2 in [4]). Thus,

$$
m_{3}-\frac{\log \left(m_{3}+1\right)}{\log 2}<6 \cdot 10^{8}(\log n)^{5}(\log \log n+1.1)^{2}
$$

On the other hand,

$$
m_{3}^{m_{3}}>m_{3}!\geq \frac{F_{n}}{3}>\alpha^{n-6}
$$

so

$$
m_{3} \log m_{3}>(n-6) \log \alpha
$$

which implies that

$$
\begin{equation*}
m_{3}>\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)} \tag{13}
\end{equation*}
$$

Since the function $x \mapsto x-\log (x+1) / \log 2$ is increasing for $x>1$, we get that

$$
\begin{gathered}
\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)}-\frac{1}{\log 2} \log \left(\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)}+1\right) \\
<6 \cdot 10^{8}(\log n)^{5}(\log \log n+1.1)^{2},
\end{gathered}
$$

giving

$$
n<2 \cdot 10^{29}
$$

We now immediately get that $m_{1} \leq 35$. Indeed, assume that $m_{1} \geq 36$. Since

$$
2^{34} \cdot 3^{17} \cdot 5^{8} \cdot 7^{5} \cdot 11^{3} \cdot 13^{2} \cdot 17^{2} \mid 36!
$$

it follows that

$$
2^{32} \cdot 3^{16} \cdot 5^{8} \cdot 7^{4} \cdot 11^{2} \cdot 13 \cdot 17 \mid n
$$

but this is impossible since the number on the left above is $>2 \cdot 10^{29}$, whereas the number on the right is $<2 \cdot 10^{29}$. Thus, $m_{1} \leq 35$. Next, a quick computation revealed that for each $m_{1} \in[5,35]$ there is a prime $p \in\left[m_{1}+1,61\right]$ such that the congruence

$$
F_{x} \equiv m_{1}!\quad(\bmod p)
$$

has no integer solution x. This shows that $m_{2} \leq 60$. Thus,

$$
N \leq 26!+60!<10^{82}
$$

giving that $\log \left(6 N^{2}\right)<380$. Hence, we get that

$$
\begin{gathered}
m_{3}-\frac{\log \left(m_{3}+1\right)}{\log 2} \leq \nu_{2}\left(m_{3}!\right)=\nu_{2}\left(F_{n}-N\right) \leq 1730 \cdot 380(\log n)^{2} \\
<6.6 \cdot 10^{5}(\log n)^{3}
\end{gathered}
$$

Combining this with the lower bound (13) on m_{3}, we get

$$
\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)}-\frac{1}{\log 2} \log \left(\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)}+1\right)<6.6 \cdot 10^{5}(\log n)^{2}
$$

giving $n<2 \cdot 10^{10}$. We now get that $m_{1} \leq 19$, since if $m_{1} \geq 20$, then since

$$
2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \mid 20!
$$

we get that

$$
2^{16} \cdot 3^{7} \cdot 5^{4} \cdot 7 \mid n
$$

which is impossible since the number on the left above is $>2 \cdot 10^{10}$. Hence, $m_{1} \leq 19$ and also $m_{2} \leq 60$. A quick computation with Mathematica shows that for each $5 \leq m_{1} \leq m_{2}$ with $m_{1} \leq 19$ and $m_{2} \leq 60$, there exists a prime p in the interval $[61,859]$ such that the congruence

$$
F_{x} \equiv m_{1}!+m_{2}!\quad(\bmod p)
$$

has no integer solution x. This shows that $m_{3} \leq 858$, therefore

$$
F_{n} \leq 19!+60!+858!
$$

leading to $n<5000$, which is a contradiction. Hence, $n<\mathrm{e}^{10}$.

5. A bound on n when $m_{1} \in\{1,2\}$

Assume first that $m_{1}=m_{2}=1$. Since $n>100$, we have that m_{3} is very large and in particular $F_{n} \equiv 2(\bmod 8)$, which implies that $n \equiv \pm 3(\bmod 12)$. We now rewrite our equation (2) as

$$
\begin{equation*}
F_{n}-F_{3}=m_{3}! \tag{14}
\end{equation*}
$$

Since n is odd, we get that the left hand side above is $F_{(n \pm 3) / 2} L_{(n \mp 3) / 2}$ according to whether $n \equiv 1,3(\bmod 4)($ see Lemma 2 in [9]). Since $n>100$ is large, it follows that $(n \pm 3) / 2>12$, therefore both $F_{(n \pm 3) / 2}$ and $L_{(n \mp 3) / 2}$ have primitive prime factors. Thus, there is a prime $p \equiv \pm 1(\bmod (n+3) / 2)$ which divides the left hand side of equation (14) leading to the fact that $m_{3} \geq p \geq(n+3) / 2-1=(n+1) / 2$. Hence, we get that

$$
\alpha^{n}>F_{n}>F_{n}-F_{3}=m_{3}!\geq p!\geq\left(\frac{p}{\mathrm{e}}\right)^{p}>\left(\frac{n+1}{2 \mathrm{e}}\right)^{n / 2},
$$

leading to $n+1<2 \mathrm{e} \alpha^{2}<15$, contradicting the fact that $n>100$. This shows that in our range for n it is not possible that $m_{1}=m_{2}=1$.

Assume still that $m_{1}=1$ but that $m_{2}=2$. Then, since $m_{3}>3$, we get that
$3 \mid F_{n}$, therefore $4 \mid n$. Hence, equation (2) is

$$
\begin{equation*}
F_{n}-F_{4}=m_{3}! \tag{15}
\end{equation*}
$$

Since $4 \mid n$, the left hand side above factors as $F_{(n-4) / 2} L_{(n+4) / 2}$. Since $(n+4) / 2>12$, it follows that the left hand side of equation (15) has a prime factor $p \equiv \pm 1(\bmod (n+4) / 2)$. Hence, $m_{3} \geq p \geq(n+4) / 2-1=(n+2) / 2$. We thus get that

$$
\alpha^{n}>F_{n}>F_{n}-F_{4}=m_{3}!\geq p!\geq\left(\frac{p}{\mathrm{e}}\right)^{p} \geq\left(\frac{n+2}{2 \mathrm{e}}\right)^{n / 2}
$$

leading to $n+2<2 \mathrm{e} \alpha^{2}<15$, which is again a contradiction.
If $m_{1}=1$ and $m_{2}=3$, then since m_{3} is large, we get that $F_{n} \equiv 4(\bmod 8)$, which is a contradiction. From now on, we assume that $m_{2} \geq 4$ whenever $m_{1}=1$.

If $m_{1}=m_{2}=2$, then since $m_{3}>4$, we get that $F_{n} \equiv 4(\bmod 8)$, which is impossible. If $m_{1}=2$ and $m_{2}=3$, then since $m_{3} \geq 4$, we get that $8 \mid F_{n}$, therefore $6 \mid n$. We thus get that equation (2) is

$$
\begin{equation*}
F_{n}-F_{6}=m_{3}! \tag{16}
\end{equation*}
$$

where n is even. In particular, the left hand side of equation (16) above is of the form $F_{(n \pm 6) / 2} L_{(n \mp 6) / 2}$ according to whether $n \equiv 0,2(\bmod 4)$. Since $n>100$ is large, we have that $(n+6) / 2>12$, therefore the left hand side of equation (16) is divisible by a prime $p \equiv \pm 1(\bmod (n+6) / 2)$. Hence, $m_{3} \geq p \geq(n+6) / 2-1 \geq$ $(n+4) / 2$, and, as before, we reach the contradiction $n+4<2 \mathrm{e} \alpha^{2}$. From now on, we assume that $m_{2} \geq 4$ when $m_{1}=2$.

Next we shall show that $n<\mathrm{e}^{10}$. Assume that this is not so.
Since $m_{1}=1,2$, we get that $m_{1}!=F_{t}$ for some $t \in\{1,2,3\}$. Furthermore, when $m_{2}=2$, then $F_{n} \equiv 2(\bmod 8)$, therefore $n \equiv \pm 3(\bmod 12)$, and, in particular, n is odd, so $n \equiv t(\bmod 2)$ in this case. Thus, in all these cases we have that

$$
F_{n}-m_{1}!=F_{n}-F_{t}=F_{(n \pm t) / 2} L_{(n \pm t) / 2}, \quad n \equiv \pm t \quad(\bmod 4) \text { and } t \in\{1,2,3\}
$$

We now bound m_{2}. Since $m_{2} \geq 4$, it follows that by putting $s=\nu_{2}\left(m_{2}\right.$!), we have $s \geq m_{2} / 2$. Note also that $s \geq 3$. Thus,

$$
\frac{m_{2}}{2} \leq s=\nu_{2}\left(m_{2}!\right) \leq \nu_{2}\left(F_{n}-m_{1}!\right)=\nu_{2}\left(F_{(n \pm t) / 2} L_{(n \pm t) / 2}\right)
$$

It is known that L_{m} is never a multiple of 8 . Thus, $2^{s-2} \mid F_{(n \pm t) / 2}$, leading to the conclusion that either $s=3,4$, or

$$
3 \cdot 2^{s-4} \mid(n \pm t) / 2
$$

Hence,

$$
s \leq \frac{\log (8(n+3) / 3)}{\log 2}<\frac{\log (3 n)}{\log 2}
$$

therefore

$$
\begin{equation*}
m_{2}<\frac{2 \log (3 n)}{\log 2} \tag{17}
\end{equation*}
$$

Put $N=m_{1}!+m_{2}!\leq 2+m_{2}!$. Then

$$
6 N^{2} \leq 6\left(m_{2}!+2\right)^{2}<\left(3 m_{2}!\right)^{2}=\left(3 \cdot 2 \cdot 3 \cdots m_{2}\right)^{2}<\left(\frac{3 \cdot 2 \cdot 3}{4^{3}}\right)^{2} m_{2}^{2 m_{2}}<m_{2}^{2 m_{2}}
$$

(here, we used the fact that $m_{2} \geq 4$ and $18 / 64<1$), so

$$
\log \left(6 N^{2}\right)<2 m_{2} \log m_{2}<\frac{4 \log (3 n)}{\log 2} \log \left(\frac{2 \log (3 n)}{\log 2}\right)
$$

We are now ready to apply again Lemma 1 observing that for $m_{1}=1,2$ and $m_{2} \geq 4$, the number N is not a Fibonacci number by the results from [5]. Thus, by Lemma 1 , we get that

$$
\begin{equation*}
\nu_{2}\left(m_{3}!\right)=\nu_{2}\left(F_{n}-N\right)<\frac{1730 \cdot 4}{\log 2}(\log n)^{2} \log (3 n) \log \left(\frac{2 \log (3 n)}{\log 2}\right) \tag{18}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\nu_{2}\left(m_{3}!\right) & \geq m_{3}-\frac{\log \left(m_{3}+1\right)}{\log 2} \geq \frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)} \\
& -\frac{1}{\log 2} \log \left(\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)}+1\right) \tag{19}
\end{align*}
$$

(see inequality (13), for example). Combining inequalities (18) and (19) and using the fact that $1730 \cdot(4 / \log 2)<10^{4}$, we get

$$
\begin{gathered}
\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)}-\frac{1}{\log 2} \log \left(\frac{(n-6) \log \alpha}{\log ((n-6) \log \alpha)}+1\right) \\
\leq 10^{4}(\log n)^{2} \log (3 n) \log \left(\frac{2 \log (3 n)}{\log 2}\right)
\end{gathered}
$$

yielding $n<4 \cdot 10^{10}$. Combining this with (17), we get that $m_{2} \leq 73$. A short computation with Mathematica showed that for each $m_{1} \in\{1,2\}$ and $m_{2} \in[4,73]$, there exists a prime $p \in[79,863]$ such that the congruence

$$
F_{x} \equiv m_{1}!+m_{2}!\quad(\bmod p)
$$

has no positive integer solution x. Thus, $m_{3} \leq 863$, therefore $F_{n} \leq 2!+73!+863$!, so $n<11000$, contradicting the fact that $n>\mathrm{e}^{10}$. Hence, $n<\mathrm{e}^{10}$.

6. The final calculation

Let us assume that $n<\mathrm{e}^{10}$. If $m_{1} \geq 10$, then

$$
2^{8} \cdot 3^{4} \cdot 5^{2}|10!| F_{n}
$$

leading to

$$
2^{6} \cdot 3^{3} \cdot 5^{2} \mid n
$$

which is impossible because the number on the left above is $43200>\mathrm{e}^{10}$. Thus, $m_{1} \leq 9$. When $m_{1}=1$, or 2 , inequality (17) shows that $m_{2} \leq 32$. When $m_{1} \in[3,9]$, a short computation with Mathematica revealed that for each $m_{1} \in$ $[3,9]$, there is a prime $p \in[11,37]$ such that the congruence $F_{x} \equiv m_{1}!(\bmod p)$ has no positive integer solution x. Thus, $m_{2} \leq 36$. A short computation with Mathematica revealed that for all pairs $\left(m_{1}, m_{2}\right)$ with $m_{1} \in[1,9]$ and $m_{2} \in$ [$\left.m_{1}, 36\right]$ except for $\left(m_{1}, m_{2}\right)=(1,1),(1,2),(2,3),(4,5)$, there is a prime $p \in$ $[41,523]$, such that the congruence $F_{x} \equiv m_{1}!+m_{2}!(\bmod p)$ has no positive integer solution x. Since the cases $\left(m_{1}, m_{2}\right)=(1,1),(1,2),(2,3),(4,5)$ have already been treated, it follows that $m_{3} \leq 522$, therefore $F_{n} \leq 9!+36!+522$!, leading to $n<6000$. A short computation with Mathematica revealed that there are no numbers which are both of the form F_{n} for some $100<n<6000$ and $m_{1}!+m_{2}!+m_{3}!$ with $m_{1} \leq 9, m_{1} \leq m_{2} \leq 36$ and $m_{2} \leq m_{3} \leq 522$, which finishes the proof of Theorem 1 .

References

[1] M. Bollman and G. Grossman, Sums of consecutive factorials in the Fibonacci sequence, Cong. Num. 194 (2009), 77-85.
[2] Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342.
[3] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. Math. (2) $\mathbf{1 5}$ (1913), 30-70.
[4] M. Cipu, F. Luca and M. Mignotte, Solutions of the Diophantine equation $x^{y}+y^{z}+$ $z^{x}=n!$, Glasgow Math. J. 50 (2008), 217-232.
[5] G. Grossman and F. Luca, Sums of factorials in binary recurrence sequences, J. Number Theory 93 (2002), 87-107.
[6] F. Luca, Products of factorials in binary recurrence sequences, Rocky Mountain J. Math. 29 (1999), 1387-1411.
[7] F. Luca and S. Siksek, On factorials expressible as a sum of at most three Fibonacci numbers, Proceedings of the Edinburgh Math. Soc (to appear).
[8] F. Luca and P. StĂnică, $F_{1} F_{2} F_{3} F_{4} F_{5} F_{6} F_{8} F_{10} F_{12}=11$!, Port. Math. (N.S.) 63 (2006), 251-260.

224 M. Bollman, S. H. Hernández and F. Luca : Fibonacci numbers which...
[9] F. Luca and L. Szalay, Fibonacci numbers of the form $p^{a} \pm p^{b}+1$, Fibonacci Quart. 45 (2007), 98-103.

MARK BOLLMAN
DEPARTMENT OF MATHEMATICS
AND COMPUTER SCIENCE
ALBION COLLEGE
ALBION, MI 49224
USA
E-mail: mbollman@albion.edu
SANTOS HERNÁNDEZ HERNÁNDEZ
UNIDAD ACADÉMICA DE MATEMÁTICAS
UAZ, AP. POSTAL 612
C.P. 98000 , ZACATECAS, ZACATECAS

MEXICO
E-mail: shh@mate.reduaz.mx

FLORIAN LUCA
INSTITUTO DE MATEMÁTICAS
UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO
C.P. 58089, MORELIA, MICHOACÁN

MEXICO
E-mail: fluca@matmor.unam.mx

