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Fibonacci numbers which are sums of three factorials

By MARK BOLLMAN (Albion), SANTOS HERNÁNDEZ HERNÁNDEZ (Zacatecas)
and FLORIAN LUCA (Morelia)

Abstract. In this paper, we prove that F7 = 13 = 1! + 3! + 3! is the largest

Fibonacci number expressible as a sum of three factorials.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for all n ≥ 0. In [5], it is shown that if k ≥ 1 is any fixed positive
integer, then the Diophantine equation

Fn = m1! + m2! + · · ·+ mk! (1)

has at most finitely many positive integer solutions (n,m1, . . . , mk) which are all
effectively computable. When k = 1, it is an easy consequence of the Primitive
Divisor theorem [3] that the largest such solution is F3 = 2! (see [6] and [8] for
more general variants of this Diophantine equation). When k = 2, the largest
such solution is F12 = 4! + 5! (see [5]). Some variants of this problem appear
in [1], where for the case k = 3 it was shown that n < e53. Here, we find all
solutions of equation (1) when k = 3.

Theorem 1. The only solutions of the Diophantine equation

Fn = m1! + m2! + m3!, 1 ≤ m1 ≤ m2 ≤ m3, (2)
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are

F4 = 1! + 1! + 1!, F5 = 1! + 2! + 2!, F6 = 1! + 1! + 3!, F7 = 1! + 3! + 3!.

We point out that with the rôles of the Fibonacci numbers and the factorials
interchanged, it was shown in [7] that

6! = F15 + F11 + F9 = F15 + F10 + F10

give the largest positive integer solutions (n,m1,m2,m3) of the Diophantine equa-
tion

n! = Fm1 + Fm2 + Fm3 .

Our argument is based on elementary properties of the Fibonacci sequence com-
bined with some basic facts about biquadratic fields and with a 2-adic linear form
in two logarithms due to Bugeaud and Laurent [2]. For technical reasons,
we shall split the argument into two parts, according to whether m1 = 1, 2, or
m1 ≥ 3, where the second case is computationally harder. We start with the
2-adic argument.

Before proceeding to the proofs, we recall a few known facts about the Fi-
bonacci sequence. Binet’s formula says that

Fn =
αn − βn

α− β
(3)

holds for all n ≥ 0, where α = (1 +
√

5 )/2 and β = (1 − √
5 )/2 are the two

roots of the characteristic equation x2 − x − 1 = 0 of the Fibonacci sequence.
The sequence of Lucas numbers (Ln)n≥0 starts with L0 = 2, L1 = 1, and obeys
the same recurrence relation Ln+2 = Ln+1 + Ln for all n ≥ 0 as the Fibonacci
sequence. Its Binet formula is

Ln = αn + βn for all n ≥ 0. (4)

There are many formulas linking the Fibonacci and Lucas numbers such as F2n =
FnLn and L2

n−5F 2
n = 4(−1)n valid for all n ≥ 0. We shall freely use such formulas

throughout the paper whenever needed.

2. A linear form in logarithms to the rescue

The following lemma will be useful in what follows. For a prime ideal π in
a number field L and an algebraic integer m in L we write νπ(m) for the exact
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order of π in the factorization of the principal fractional ideal generated by m

in L. When π is a prime integer, we understand that the underlying field L is the
field Q of rational numbers.

Lemma 1. Let N be a positive integer not of the form Fm for some positive

integer m. Then for all positive integers n ≥ 3 one has

ν2(Fn −N) < 1730 log(6N2)max{10, log n}2. (5)

Proof. We use formula (3). Since β = −α−1, it follows that βn = εα−n,
where ε = (−1)n ∈ {±1}. Then

Fn−N =
αn− εα−n

√
5

−N =
α−n

√
5

(
(αn)2−

√
5Nαn− ε

)
=

α−n

√
5

(αn − z1)(αn − z2),

where

z1,2 =
√

5N ±√∆
2

with ∆ = 5N2 + 4ε.

Write ∆ = du2, where d is squarefree. Note that d > 1, since if not then
5N2 + 4ε = u2, therefore u2 − 5N2 = ±4. However, it is well-known that all
positive integer solutions (u,N) of the above Diophantine equation are of the
form (u,N) = (Lm, Fm) for some positive integer m, and by hypothesis N is a
positive integer which is not a Fibonacci number.

Let K1 = Q[
√

5 ], K2 = Q[
√

d ], K3 = Q[
√

5d ] and L = K1K2. Note that
L = Q[z1, z2] = Q[

√
5,
√

d ]. Since d > 1 is coprime to 5 (because ∆ ≡ ±4
(mod 5)), it follows that L is of degree 4. The prime 2 is inert in K1, because the
discriminant of K1 is 5 (so, congruent to 5 (mod 8)), but it cannot be inert in
L since when d is odd, one of the numbers d or 5d is congruent to ±1 (mod 8).
Thus, in L, we either have 2 = π1π2, where π1 and π2 are distinct primes, or
2 = π2, according to whether d is odd or even, respectively.

Now we let π be any prime ideal dividing 2 in L. As we have seen, it has
NL/Q(π) = 4 = 2f (so, f = 2), and if πe‖2, then e ∈ {1, 2}. Then

ν2(Fn −N) =
νπ(Fn −N)

e
=

1
e

(νπ(αn − z1) + νπ(αn − z2)) . (6)

Next, let a be maximal such that πa | gcdL(αn − z1, α
n − z2). Then

πa | (z1 − z2) =
√

∆, so π2a | ∆. (7)

Observe that if N is odd, then so is ∆. If 4 | N , then 4‖∆. Finally, if N = 2N0,
where N0 is odd, then

∆ = 4(5N2
0 ± 1),
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and 5N2
0 ± 1 ≡ 4, 6 (mod 8). Hence, in all cases we have that ν2(∆) ≤ 4. Now,

write ∆ = 2ν2(∆)` = πeν2(∆)γ, where γ is an ideal in L coprime to π. Then the
divisibility relation (7) implies that 2a ≤ eν2(∆), yielding 2a ≤ 4e ≤ 8, therefore
a ≤ 4.

Hence, the above arguments show that

ν2(Fn −N) ≤ 1
e

(max{νπ(αn − z1), νπ(αn − z2)}+ 4) . (8)

Now let i = 1, 2, and let us find an upper bound on

νπ(αn − zi).

For this, we apply Corollary 1 on Page 315 in [2]. We take α1 = α, α2 = zi, b1 = n,
b2 = 1, p = 2. To see that α1 and α2 are multiplicatively independent, assume
that this is not so. Then αu

1 = αv
2 holds for some integers u and v not both zero.

We may assume (by squaring the above relation if necessary), that u and v are
both even. But note that αv

2 = (z2
i )v/2 belongs to Q[

√
5d ], while αu

1 ∈ Q[
√

5 ].
Since they are both units (the inverse of z1 is −εz2), it follows that αu

1 is a
unit which belongs to both Q[

√
5 ] and Q[

√
5d ] and since it is positive, we get

that αu
1 = 1. Hence, αu

1 = αv
2 = 1, leading to u = v = 0, which is false.

With the notations from [2], we have that we can take f = 2, g ≤ pf − 1 = 3,
D = [L : Q]/f = 2, and A1 and A2 to be two positive real numbers such that

log Ai ≥ max
{

h(αi),
log 2

2

}
, for both i = 1, 2.

Here, h(•) is the logarithmic height. Note that

h(α1) = h(α) =
log((1 +

√
5 )/2)

2
,

so we can take log A1 = (log 2)/2. Furthermore, note that the conjugates of zi

are the four numbers
±√5N ±√5N2 + 4ε

2
,

of which two are of absolute values
∣∣∣∣∣

√
5N −√5N2 + 4ε

2

∣∣∣∣∣ =
4

2(
√

5N +
√

5N2 + 4ε )
<

2√
5N

< 1,
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while the other two are of absolute values∣∣∣∣∣

√
5N +

√
5N2 + 4ε

2

∣∣∣∣∣ <
√

5N2 + 4 <
√

6N2,

so we can take

log A2 =
2 log(

√
6N2 )

4
=

log(6N2)
4

.

Finally, we take

b′ =
b1

D log A2
+

b2

D log A1
=

2n

log(6N2)
+

1
log 2

.

Then, Corollary 1 in [2] shows that
(

f

4

)
νπ(αn − zi) ≤ 24 · 2 · 3 · 24

(log 2)4
max{10, log b′ + log log 2 + 0.4}2 log A1 log A2

≤ 32 · 25

(log 2)3
log(6N2)max{10, log b′ + 0.034}2.

The factor f/4 above, not present in [2], arises for us because in the statements
of [2] all valuations are normalized, so in particular the upper bounds from there
apply to the normalized valuation (f/4)νπ(•). Note that

log b′ + 0.034 = log
(

2e0.034n

log(6N2)
+

e0.034

log 2

)
< log

(
2.1n

log(6N2)
+ 1.5

)

< log
(

2.1n

4.5
+ 1.5

)
< log n,

where the above inequalities hold because N ≥ 4 (N is not a Fibonacci number),
and n ≥ 3. Since 32 · 25/(log 2)3 < 864.9 and f = 2, we get that

νπ(αn − zi)
2

< 864.9 log(6N2)max{10, log n}2.
The above inequality together with inequality (8) gives us that

ν2(Fn−N) ≤ max{νπ(αn−z1), νπ(αn−z2)}+4 < 1730 log(6N2) max{10, log n}2,
which is what we wanted. ¤

From now on, we distinguish two cases according to whether m1 = 1, 2, or
m1 ≥ 3. We first ran a short calculation with Mathematica which shows that
if n ≤ 100, then the only solutions are the ones appearing in the statement of
Theorem 1. From now on, we assume that n > 100 and our goal is to prove that
there are no such solutions.

We continue with some elementary considerations about the situation when
m1 ∈ {3, 4}.
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3. The case m1 ∈ {3, 4}

Assume first that m1 ≥ 3. Then 6 | Fn and in particular 12 | n, therefore
144 = F12 | Fn. This shows, for example, that m1 = 3 and m2 ≥ 4 is impossible,
for then 8 divides both Fn and m2!+m3! but not m1!. Similarly, if m1 = m2 = 3,
then either m3 ≥ 4, which is impossible since then 8 divides both Fn and m3!
but not m1! + m2! = 12, while if m1 = m2 = m3 = 3, then the right hand side of
equation (2) is 18 which is not a Fibonacci number.

Thus, m1 ≥ 4. The case m1 = 4 and m2 ≥ 6 is impossible since then 9
divides both Fn and m2! + m3! but not m1! = 24. When m1 = m2 = 4, then the
case m3 ≥ 6 leads again to a contradiction modulo 9, while when m3 = 4, 5, one
gets that the right hand side of equation (2) is either 72 or 168 and none of these
is a Fibonacci number. When m1 = 4, m2 = 5, then equation (2) becomes

Fn − F12 = m3! (9)

Since 12 | n, one checks that the left hand side of equation (9) above can be
factored as F(n+12)/2L(n−12)/2. Since n > 100 > 12, we have that (n+12)/2 > 12,
therefore the number F(n+12)/2 has a primitive prime factor p. Recall that a
primitive prime factor of Fm (or Lm) is a prime divisor of Fm (or Lm) which
does not divide F` (or L`) for all 1 ≤ ` < m. For technical reasons, such a
prime is taken to be different from 5. Whenever it exists, it has the property
that it is congruent to ±1 modulo m. The fact that it exists for all m > 12
is a result of Carmichael [3] of 1913. Returning to our problem, we get that
F(n+12)/2 has a prime factor p such that p ≡ ±1 (mod (n+12)/2). In particular,
p ≥ (n + 12)/2 − 1 = (n + 10)/2. Since p | m3!, we get that m3 ≥ (n + 10)/2.
Thus,

αn > Fn > Fn − F12 = F(n−12)/2L(n+12)/2 = m3! ≥ p! ≥
(p

e

)p

>

(
n + 10

2e

)(n+10)/2

>

(
n + 10

2e

)n/2

.

In the above calculation we used the well-known inequality m! > (m/e)m, which
holds for all m ≥ 1. We thus get that

n + 10 < 2eα2 < 15,

which is false because n > 100. Thus, we have just showed that if m1 ≥ 3, then
m1 ≥ 5. In particular, 5 | Fn, therefore 5 | n. Hence, 60 | n.
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4. A bound on n when m1 ≥ 3

Up to now, we have seen that m1 ≥ 5 and that 60 | n. We show that n < e10.
Assume, on the contrary, that n > e10.

Let s = ν2(m1!). It is known that

s =
⌊m1

2

⌋
+

⌊m1

4

⌋
+ · · · ≥ m1

2
, (10)

since m1 ≥ 5. Since s ≥ 3 and 2s | Fn, we get that 3 · 2s−2 | n. Since also 5 | n,
we get that

2s−2 ≤ n

15
,

therefore

s ≤ log(4n/15)
log 2

<
log n

log 2
. (11)

Comparing estimates (10) and (11), we get that

m1 ≤ 2 log n

log 2
. (12)

Next we bound m2. Let N = m1!. The largest Fibonacci number which is a
factorial is 2! = F3 (see [6]). Thus, N is not a Fibonacci number. Since m1 ≥ 5,
we have

6N2 = 6(m1!)2 < (3m1!)2 = (3 · 2 · 3 · · ·m1)2 <

(
3 · 2 · 3 · 4

54

)2

m2m1
1 < m2m1

1

(because 72/625 < 1), we get that

log(6N2) < 2m1 log m1 <
4

log 2
log n log

(
2 log n

log 2

)
.

Lemma 1 (note that n > e10, so log n > 10) now shows that

ν2(Fn −m1!) <
1730 · 4
log 2

(log n)3 log
(

2 log n

log 2

)
< 104(log n)3 log

(
2 log n

log 2

)
.

Since ν2(Fn −m1!) = ν2(m2!) ≥ m2/2, we get that

m2 ≤ 2 · 104(log n)3 log
(

2 log n

log 2

)
.



218 Mark Bollman, Santos Hernández Hernández and Florian Luca

Next take N = m1! + m2! ≤ 2m2!. The largest Fibonacci number which is a sum
of two factorials is F12 = 4! + 5! (see [5]). Since m2 ≥ m1 ≥ 5, it follows that N

is not a Fibonacci number. Furthermore, again as in the previous case,

6N2 ≤ 24(m2!)2 < (5m2!)2 = (5 · 2 · 3 · · ·m2)2

<

(
2 · 3 · 4

53

)2

m2m2
2 < m2m2

2 ,

(because 24/125 < 1), therefore

log(6N2) < 2m2 log m2 < 4 · 104(log n)3 log
(

2 log n

log 2

)
log m2.

Let us next observe that log m2 < 8 log log n + 1. Indeed, to see why this is so
observe that since log n > 10, we have that n ≥ 5 and for such positive integers
n we know that 2n > n2. Thus, it follows that

log
(

2 log n

log 2

)
< log n,

so, in particular,
m2 < 2 · 104(log n)4 < 2(log n)8,

Hence, indeed
log m2 < 8 log log n + 1.

Thus,

log(6N2) < 4 · 104(log n)3 log
(

2 log n

log 2

)
(8 log log n + 1)

< 32 · 104(log n)3(log log n + 1.1)2,

where we used the fact that log(2/ log 2) < 1.1. Now Lemma 1 shows that

ν2(Fn −m1!−m2!) ≤ 1730 · 32 · 104 · (log n)5 · (log log n + 1.1)2

< 6 · 108(log n)5(log log n + 1.1)2.

Clearly,

ν2(Fn −m1!−m2!) = ν2(m3!) = m3 − σ2(m3) ≥ m3 − log(m3 + 1)
log 2

,

where we used σ2(m) for the sum of the binary digits of m (see, for example,
Lemma 2.2 in [4]). Thus,

m3 − log(m3 + 1)
log 2

< 6 · 108(log n)5(log log n + 1.1)2.
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On the other hand,

mm3
3 > m3! ≥ Fn

3
> αn−6,

so
m3 log m3 > (n− 6) log α,

which implies that

m3 >
(n− 6) log α

log((n− 6) log α)
. (13)

Since the function x 7→ x− log(x + 1)/ log 2 is increasing for x > 1, we get that

(n− 6) log α

log((n− 6) log α)
− 1

log 2
log

(
(n− 6) log α

log((n− 6) log α)
+ 1

)

< 6 · 108(log n)5(log log n + 1.1)2,

giving
n < 2 · 1029.

We now immediately get that m1 ≤ 35. Indeed, assume that m1 ≥ 36. Since

234 · 317 · 58 · 75 · 113 · 132 · 172 | 36!,
it follows that

232 · 316 · 58 · 74 · 112 · 13 · 17 | n,

but this is impossible since the number on the left above is > 2 · 1029, whereas
the number on the right is < 2 · 1029. Thus, m1 ≤ 35. Next, a quick computation
revealed that for each m1 ∈ [5, 35] there is a prime p ∈ [m1 + 1, 61] such that the
congruence

Fx ≡ m1! (mod p)

has no integer solution x. This shows that m2 ≤ 60. Thus,

N ≤ 26! + 60! < 1082,

giving that log(6N2) < 380. Hence, we get that

m3 − log(m3 + 1)
log 2

≤ ν2(m3!) = ν2(Fn −N) ≤ 1730 · 380(log n)2

< 6.6 · 105(log n)3.

Combining this with the lower bound (13) on m3, we get

(n− 6) log α

log((n− 6) log α)
− 1

log 2
log

(
(n− 6) log α

log((n− 6) log α)
+ 1

)
< 6.6 · 105(log n)2,
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giving n < 2 · 1010. We now get that m1 ≤ 19, since if m1 ≥ 20, then since

218 · 38 · 54 · 72 | 20!
we get that

216 · 37 · 54 · 7 | n,

which is impossible since the number on the left above is > 2 · 1010. Hence,
m1 ≤ 19 and also m2 ≤ 60. A quick computation with Mathematica shows that
for each 5 ≤ m1 ≤ m2 with m1 ≤ 19 and m2 ≤ 60, there exists a prime p in the
interval [61, 859] such that the congruence

Fx ≡ m1! + m2! (mod p)

has no integer solution x. This shows that m3 ≤ 858, therefore

Fn ≤ 19! + 60! + 858!,

leading to n < 5000, which is a contradiction. Hence, n < e10.

5. A bound on n when m1 ∈ {1, 2}

Assume first that m1 = m2 = 1. Since n > 100, we have that m3 is very
large and in particular Fn ≡ 2 (mod 8), which implies that n ≡ ±3 (mod 12).
We now rewrite our equation (2) as

Fn − F3 = m3!. (14)

Since n is odd, we get that the left hand side above is F(n±3)/2L(n∓3)/2 according
to whether n ≡ 1, 3 (mod 4) (see Lemma 2 in [9]). Since n > 100 is large, it follows
that (n ± 3)/2 > 12, therefore both F(n±3)/2 and L(n∓3)/2 have primitive prime
factors. Thus, there is a prime p ≡ ±1 (mod (n+3)/2) which divides the left hand
side of equation (14) leading to the fact that m3 ≥ p ≥ (n+3)/2− 1 = (n+1)/2.
Hence, we get that

αn > Fn > Fn − F3 = m3! ≥ p! ≥
(p

e

)p

>

(
n + 1

2e

)n/2

,

leading to n + 1 < 2eα2 < 15, contradicting the fact that n > 100. This shows
that in our range for n it is not possible that m1 = m2 = 1.

Assume still that m1 = 1 but that m2 = 2. Then, since m3 > 3, we get that
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3 | Fn, therefore 4 | n. Hence, equation (2) is

Fn − F4 = m3! (15)

Since 4 | n, the left hand side above factors as F(n−4)/2L(n+4)/2. Since
(n + 4)/2 > 12, it follows that the left hand side of equation (15) has a prime
factor p ≡ ±1 (mod (n + 4)/2). Hence, m3 ≥ p ≥ (n + 4)/2− 1 = (n + 2)/2. We
thus get that

αn > Fn > Fn − F4 = m3! ≥ p! ≥
(p

e

)p

≥
(

n + 2
2e

)n/2

,

leading to n + 2 < 2eα2 < 15, which is again a contradiction.
If m1 = 1 and m2 = 3, then since m3 is large, we get that Fn ≡ 4 (mod 8),

which is a contradiction. From now on, we assume that m2 ≥ 4 whenever m1 = 1.
If m1 = m2 = 2, then since m3 > 4, we get that Fn ≡ 4 (mod 8), which

is impossible. If m1 = 2 and m2 = 3, then since m3 ≥ 4, we get that 8 | Fn,
therefore 6 | n. We thus get that equation (2) is

Fn − F6 = m3!, (16)

where n is even. In particular, the left hand side of equation (16) above is of the
form F(n±6)/2L(n∓6)/2 according to whether n ≡ 0, 2 (mod 4). Since n > 100 is
large, we have that (n+6)/2 > 12, therefore the left hand side of equation (16) is
divisible by a prime p ≡ ±1 (mod (n + 6)/2). Hence, m3 ≥ p ≥ (n + 6)/2− 1 ≥
(n+4)/2, and, as before, we reach the contradiction n+4 < 2eα2. From now on,
we assume that m2 ≥ 4 when m1 = 2.

Next we shall show that n < e10. Assume that this is not so.
Since m1 = 1, 2, we get that m1! = Ft for some t ∈ {1, 2, 3}. Furthermore,

when m2 = 2, then Fn ≡ 2 (mod 8), therefore n ≡ ±3 (mod 12), and, in partic-
ular, n is odd, so n ≡ t (mod 2) in this case. Thus, in all these cases we have
that

Fn −m1! = Fn − Ft = F(n±t)/2L(n±t)/2, n ≡ ±t (mod 4) and t ∈ {1, 2, 3}.
We now bound m2. Since m2 ≥ 4, it follows that by putting s = ν2(m2!), we
have s ≥ m2/2. Note also that s ≥ 3. Thus,

m2

2
≤ s = ν2(m2!) ≤ ν2(Fn −m1!) = ν2(F(n±t)/2L(n±t)/2).

It is known that Lm is never a multiple of 8. Thus, 2s−2 | F(n±t)/2, leading to
the conclusion that either s = 3, 4, or

3 · 2s−4 | (n± t)/2.
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Hence,

s ≤ log(8(n + 3)/3)
log 2

<
log(3n)
log 2

,

therefore

m2 <
2 log(3n)

log 2
. (17)

Put N = m1! + m2! ≤ 2 + m2!. Then

6N2 ≤ 6(m2! + 2)2 < (3m2!)2 = (3 · 2 · 3 · · ·m2)2 <

(
3 · 2 · 3

43

)2

m2m2
2 < m2m2

2 ,

(here, we used the fact that m2 ≥ 4 and 18/64 < 1), so

log(6N2) < 2m2 log m2 <
4 log(3n)

log 2
log

(
2 log(3n)

log 2

)
.

We are now ready to apply again Lemma 1 observing that for m1 = 1, 2 and
m2 ≥ 4, the number N is not a Fibonacci number by the results from [5]. Thus,
by Lemma 1, we get that

ν2(m3!) = ν2(Fn −N) <
1730 · 4
log 2

(log n)2 log(3n) log
(

2 log(3n)
log 2

)
. (18)

On the other hand,

ν2(m3!) ≥ m3 − log(m3 + 1)
log 2

≥ (n− 6) log α

log((n− 6) log α)

− 1
log 2

log
(

(n− 6) log α

log((n− 6) log α)
+ 1

)
(19)

(see inequality (13), for example). Combining inequalities (18) and (19) and using
the fact that 1730 · (4/ log 2) < 104, we get

(n− 6) log α

log((n− 6) log α)
− 1

log 2
log

(
(n− 6) log α

log((n− 6) log α)
+ 1

)

≤ 104(log n)2 log(3n) log
(

2 log(3n)
log 2

)
,

yielding n < 4 · 1010. Combining this with (17), we get that m2 ≤ 73. A short
computation with Mathematica showed that for each m1 ∈ {1, 2} and m2 ∈ [4, 73],
there exists a prime p ∈ [79, 863] such that the congruence

Fx ≡ m1! + m2! (mod p)

has no positive integer solution x. Thus, m3 ≤ 863, therefore Fn ≤ 2!+73!+863!,
so n < 11000, contradicting the fact that n > e10. Hence, n < e10.
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6. The final calculation

Let us assume that n < e10. If m1 ≥ 10, then

28 · 34 · 52 | 10! | Fn,

leading to
26 · 33 · 52 | n,

which is impossible because the number on the left above is 43200 > e10. Thus,
m1 ≤ 9. When m1 = 1, or 2, inequality (17) shows that m2 ≤ 32. When
m1 ∈ [3, 9], a short computation with Mathematica revealed that for each m1 ∈
[3, 9], there is a prime p ∈ [11, 37] such that the congruence Fx ≡ m1! (mod p)
has no positive integer solution x. Thus, m2 ≤ 36. A short computation with
Mathematica revealed that for all pairs (m1,m2) with m1 ∈ [1, 9] and m2 ∈
[m1, 36] except for (m1,m2) = (1, 1), (1, 2), (2, 3), (4, 5), there is a prime p ∈
[41, 523], such that the congruence Fx ≡ m1! + m2! (mod p) has no positive
integer solution x. Since the cases (m1,m2) = (1, 1), (1, 2), (2, 3), (4, 5) have
already been treated, it follows that m3 ≤ 522, therefore Fn ≤ 9! + 36! + 522!,
leading to n < 6000. A short computation with Mathematica revealed that there
are no numbers which are both of the form Fn for some 100 < n < 6000 and
m1!+m2!+m3! with m1 ≤ 9, m1 ≤ m2 ≤ 36 and m2 ≤ m3 ≤ 522, which finishes
the proof of Theorem 1.
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